Методика поверки «ГСИ.Комплекс автоматизированный измерительно-вычислительный ТМСА 0.15-10.0 Б 090» (133-19-07 МП)

Методика поверки

Тип документа

ГСИ.Комплекс автоматизированный измерительно-вычислительный ТМСА 0.15-10.0 Б 090

Наименование

133-19-07 МП

Обозначение документа

ВНИИФТРИ

Разработчик

904 Кб
1 файл

ЗАГРУЗИТЬ ДОКУМЕНТ

  

УТВЕРЖДАЮ

Первый заместитель генерального

Комплекс автоматизированный измерительно-вычислительный

ТМСА 0.15-10.0 Б 090

Методика поверки 133-19-07 МП

р.п. Менделеево 2019 г.

СОДЕРЖАНИЕ

электромагнитного поля и абсолютной погрешности измерений фазового распределения электромагнитного поля

  • 8.3.2 Определение относительной погрешности измерений относительных уровней

амплитудных диаграмм направленности и абсолютной погрешности измерений фазовых диаграмм направленности

1 ВВОДНАЯ ЧАСТЬ
  • 1.1 Настоящая методика поверки (далее - МП) устанавливает методы и средства первичной и периодической поверок комплекса автоматизированного измерительно-вычислительного ТМСА 0.15-10.0 Б 090 (далее - комплекс), изготовленного ООО «НПП «ТРИМ СШП Измерительные системы», г. Санкт-Петербург, заводской № 090.

  • 1.2 Первичная поверка комплекса проводится при вводе его в эксплуатацию и после ремонта.

  • 1.3 Периодическая поверка комплекса проводится в ходе его эксплуатации и хранения.

  • 1.4 Комплекс предназначен для измерений радиотехнических характеристик антенн.

  • 1.5 Периодическая поверка комплекса проводится не реже одного раза в 24 (двадцать четыре) месяца.

2 ОПЕРАЦИИ ПОВЕРКИ
  • 2.1 При проведении поверки комплекса должны быть выполнены операции, указанные в таблице 1.

Таблица 1 - Операции поверки

Наименование операции

Пункт МП

Проведение операций при

первичной поверке

периодической поверке

1 Внешний осмотр

8.1

+

+

2 Опробование

8.2

+

+

3 Определение метрологических характеристик

8.3

+

+

3.1 Определение относительной погрешности измерений амплитудного распределения электромагнитного поля и абсолютной погрешности измерений фазового распределения электромагнитного поля

8.3.1

+

+

3.2 Определение относительной погрешности измерений относительных уровней амплитудных диаграмм направленности и абсолютной погрешности измерений фазовых диаграмм направленности

8.3.2

+

-

3.3 Определение относительной погрешности измерений коэффициента усиления антенны методом замещения

8.3.3

+

-

3.4 Определение диапазона рабочих частот

8.3.4

+

-

3.5 Определение размеров рабочей области сканирования

8.3.5

+

-

3.6 Определение сектора углов восстанавливаемых диаграмм направленности

8.3.6

+

-

2.2 Не допускается проведение поверки отдельных измерительных каналов или отдельных автономных блоков или меньшего числа измеряемых величин или на меньшем числе поддиапазонов измерений.

3 СРЕДСТВА ПОВЕРКИ

3.1 При проведении поверки комплекса должны быть применены средства измерений, указанные в таблице 2.

Таблица 2 - Средства измерений для поверки комплекса

Пункт МП

Наименование и тип (условное обозначение) основного или вспомогательного средства поверки; обозначение нормативного документа, регламентирующего технические требования, и (или) метрологические и основные технические характеристики средства поверки

8.3.1 -8.3.4,

8.3.6

Аттенюатор ступенчатый программируемый 84908М, диапазон частот от 0 до 50 ГГц, диапазон вводимых ослаблений от 0 до 65 дБ с шагом 5 дБ

8.3.1 -8.3.4,

8.3.6

Набор мер коэффициентов передачи и отражения 85056А, диапазон частот от 45 МГц до 50 ГГц

8.3.1 -8.3.4,

8.3.6

Комплект антенный измерительный АНК 1-40Б, диапазон частот от 0,9 до 40 ГГц, пределы допускаемой абсолютной погрешности измерений коэффициента усиления ±1,8 дБ для П6-123, ±1,2 дБ для Пб-140-х

8.3.1 -8.3.6

Система лазерная координатно-измерительная Leica Absolute Tracker АТ401, диапазон измерений расстояний от 1,5 до 60000 мм, предел допускаемой основной абсолютной погрешности объемных измерений ±15 мкм + 6 мкм/м

  • 3.2 Допускается использовать аналогичные средства поверки, обеспечивающих определение метрологических характеристик поверяемого комплекса с требуемой точностью.

  • 3.3 Средства поверки должны быть исправны, поверены и иметь свидетельства о поверке.

4 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ
  • 4.1 Поверка должна осуществляться лицами с высшим или средним техническим образованием, аттестованными в качестве поверителей в области радиотехнических измерений, и имеющими квалификационную группу электробезопасности не ниже третьей.

  • 4.2 Перед проведением поверки поверитель должен предварительно ознакомиться с документом «Комплекс автоматизированный измерительно-вычислительный ТМСА 0.15-10.0 Б 090. Руководство по эксплуатации. ТМСА 010. 090. 00Б РЭ».

5 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ
  • 5.1 При проведении поверки должны быть соблюдены все требования безопасности в соответствии с ГОСТ 12.3.019-80 «ССБТ. Испытания и измерения электрические. Общие требования безопасности», а также требования безопасности, приведённые в эксплуатационной документации на составные элементы комплекса и средства поверки.

  • 5.2 Размещение и подключение измерительных приборов разрешается производить только при выключенном питании.

6 УСЛОВИЯ ПОВЕРКИ
  • 6.1 При проведении поверки комплекса должны соблюдаться условия, приведенные в таблице 3.

Таблица 3 - Условия проведения поверки комплекса

Влияющая величина

Нормальное значение

Допускаемое отклонение от нормального значения

Температура окружающего воздуха, °C

20

±5

Относительная влажность окружающего воздуха. %

от 30 до 80

-

Атмосферное давление, кПа

от 84 до 106,7

-

Напряжение питающей сети переменного тока, В

220

±22

Частота питающей сети, Гц

50

±1

7 ПОДГОТОВКА К ПРОВЕДЕНИЮ ПОВЕРКИ
  • 7.1 Проверить наличие эксплуатационной документации и срок действия свидетельств о поверке на средства поверки.

  • 7.2 Подготовить средства поверки к проведению измерений в соответствии с руководствами по их эксплуатации.

  • 8 ПРОВЕДЕНИЕ ПОВЕРКИ

8.1 Внешний осмотр
  • 8.1.1 При проведении внешнего осмотра комплекса проверить:

  • - комплектность и маркировку комплекса;

  • - наружную поверхность элементов комплекса, в том числе управляющих и питающих кабелей;

  • - состояние органов управления.

  • 8.1.2 Проверку комплектности комплекса проводить сличением действительной комплектности с данными, приведенными в разделе «Комплекс автоматизированный измерительно-вычислительный ТМСА 0.15-10.0 Б 090. Паспорт. ТМСА 010. 090. 00Б ПС» (далее - ПС).

  • 8.1.3 Проверку маркировки производить путем внешнего осмотра и сличением с данными, приведенными в ПС.

  • 8.1.4 Результаты внешнего осмотра считать положительными, если:

  • - комплектность и маркировка комплекса соответствует ПС;

  • - наружная поверхность комплекса не имеет механических повреждений и других дефектов;

  • - управляющие и питающие кабели не имеют механических и электрических повреждений;

  • - органы управления закреплены прочно и без перекосов, действуют плавно и обеспечивают надежную фиксацию;

  • - все надписи на органах управления и индикации четкие и соответствуют их функциональному назначению.

В противном случае результаты внешнего осмотра считать отрицательными и последующие операции поверки не проводить.

8.2 Опробование
  • 8.2.1 Идентификация программного обеспечения (далее - ПО)

    • 8.2.1.1 Включить персональные компьютеры (далее - ПК), для чего:

  • - на блоке источника бесперебойного питания нажать кнопку ВКЛ;

  • - нажать на системном блоке ПК кнопку включения;

  • - включить монитор.

После загрузки операционной системы WINDOWS 7 на экране монитора ПК наблюдать иконки программ FrequencyMeas, NFCalc, AmrView.

Установить далее на ПК программу, позволяющую определять версию и контрольную сумму файла по алгоритму MD5, например, программу «HashTab».

  • 8.2.1.2 Выбрать файл FrequencyMeas.exe, нажать на правую кнопку мыши на файле и выбрать пункт «Свойства». Открыть вкладку «Хеш-суммы файлов». Наблюдать контрольную сумму файла FrequencyMeas.exe по алгоритму MD5. Нажать правой кнопкой мыши на файл и выбрать пункт «ABOUT FREQUENCY MEAS». Наблюдать значение версии файла FrequencyMeas.exe. Результаты наблюдения зафиксировать в рабочем журнале.

  • 8.2.1.3 Повторить операции п. 8.2.1.2 для программ NFCalc.exe, AmrView.exe.

  • 8.2.1.4 Сравнить полученные контрольные суммы и версии с их значениями, записанными в ПС. Результат сравнения зафиксировать в рабочем журнале.

  • 8.2.1.5 Результаты идентификации ПО считать положительными, если полученные идентификационные данные ПО соответствуют значениям, приведенным в таблице 3.

Таблица 3 - Идентификационные данные ПО

Идентификационные данные (признаки)

Значение

Идентификационное наименование ПО

FrequencyMeas.exe

NFCalc.exe

AmrView.exe

Номер версии (идентификационный номер) ПО

6.0.0.0

3.20.1

3.16.60612

Цифровой идентификатор ПО (контрольная сумма исполняемого кода)

BA7FD80981098463 7А0044СЕ13402738 (алгоритм MD5)

90F2307A43D11220 7504337B9CCA9F24

(алгоритм MD5)

FAF113F3C83206EB 863D69624F5D3FC0

(алгоритм MD5)

В противном случае результаты проверки соответствия ПО считать отрицательными и последующие операции поверки не проводить.

8.2.2 Проверка работоспособности

  • 8.2.2.1 Подготовить комплекс к работе в соответствии с РЭ.

  • 8.2.2.2 Проверить работоспособность аппаратуры комплекса путем проверки отсутствия сообщений об ошибках и неисправностях при загрузке программного продукта для измерений в ближней зоне «FrequencyMeas».

  • 8.2.2.3 Проверить работоспособность всех приводов сканера:

  • - при перемещении по оси Ох;

  • - при перемещении по оси Оу;

  • - при перемещении по оси Oz;

  • - при перемещении зонда в плоскости элевации;

  • - при вращении зонда по поляризации.

  • 8.2.2.4 Соединить при помощи перемычки соединитель кабеля «вход антенны-зонда» и соединитель кабеля «выход испытываемой антенны». В соответствии с эксплуатационной документацией подготовить к работе векторный анализатор электрических цепей (далее - анализатор) из состава комплекса, перевести его в режим измерений модуля комплексного коэффициента передачи. Установить следующие настройки анализатора:

  • - полоса анализа от 0,15 до 10,0 ГГц;

  • - ширина полосы пропускания 1 МГц;

  • - уровень мощности выходного колебания 0 дБ (мВт).

На экране анализатора наблюдать результат измерений частотной зависимости модуля коэффициента передачи. При этом должны отсутствовать резкие изменения полученной характеристики, свидетельствующие о неудовлетворительном состоянии радиочастотного тракта комплекса.

  • 8.2.2.5 Результаты поверки считать положительными, если сканер обеспечивает перемещение антенны-зонда по осям Ох, Оу, Oz, перемещение в плоскости элевации и вращение в плоскости поляризации, на экране анализатора наблюдается результат измерений частотной зависимости модуля коэффициента передачи без резких изменений, а также отсутствует программная или аппаратная сигнализация о неисправностях комплекса.

В противном случае результаты поверки считать отрицательными и последующие операции поверки не проводить, комплекс бракуется и подлежит ремонту.

8.3 Определение метрологических характеристик 8.3.1  Определение относительной погрешности измерений амплитудного распределения электромагнитного поля и абсолютной погрешности измерений фазового распределения электромагнитного поля
  • 8.3.1.1 Относительную погрешность измерений амплитудного распределения электромагнитного поля 3А, дБ, определить по формуле (1):

<?, =201g(l + XSi;),                                     (1)

где

(2)

  • (3)

  • (4)

0А] - погрешность измерений модуля комплексного коэффициента передачи анализатором из состава комплекса;

0А2- погрешность измерений, обусловленная неидеальной поляризационной развязкой антенн-зондов из состава комплекса;

S - среднее квадратическое отклонение результатов измерений амплитудного распределения;

А - результат измерений амплитудного распределения;

А - среднее арифметическое значение результатов измерений амплитудного распределения;

t - коэффициент Стьюдента для заданного числа реализаций измерений амплитудного распределения.

m - количество измерений.

Абсолютную погрешность измерений фазового распределения электромагнитного поля Дф, градус, определить по формуле (5):

Дф= — KtSzt,                           (5)

где

(6)

(7)

(8)

Оф] - погрешность измерений фазы комплексного коэффициента передачи векторным анализатором цепей из состава комплекса, рад;

0Ф2 - погрешность измерений фазы, обусловленная неточностью позиционирования антенны-зонда в плоскости сканирования, рад;

0ФЗ- погрешность измерений фазы, обусловленная случайными перегибами радиочастотного тракта комплекса, рад;

S<p - среднее квадратическое отклонение результатов измерений фазового распределения, рад;

(р - результат измерений фазового распределения, рад;

(р - среднее арифметическое значение результатов измерений фазового распределения, рад.

Относительную погрешность измерений амплитудного распределения электромагнитного поля и абсолютную погрешности измерений фазового распределения электромагнитного поля определить при относительных уровнях амплитудного распределения от минус 10 до минус 40 дБ с интервалом 10 дБ. Динамический диапазон измерений амплитудного распределения при этом должен составлять не менее 50 дБ. Под динамическим диапазоном измерений амплитудного распределения следует понимать отношение максимального уровня амплитудного распределения к среднему уровню измеряемых радиошумов.

Относительную погрешность измерений амплитудного распределения электромагнитного поля 5а и абсолютную погрешность измерений фазового распределения электромагнитного поля Дф определить:

  • - на частоте 10 ГГц по формулам (1) и (5) соответственно;

  • - на частотах 5,0 и 10,0 ГГц по формулам (9) и (10) соответственно:

^=20^(1 + 1.17^,+^);                       W

Дф=— 1.17^,+^г+^з-                    (Ю)

Частные составляющие погрешностей измерений (слагаемые в выражениях (2), (3), (6), (7)) определить по нижеследующим методикам.

  • 8.3.1.2 Погрешность измерений модуля комплексного коэффициента передачи векторным анализатором цепей из состава комплекса определить при помощи аттенюатора 84908М.

В измерительный тракт комплекса внести аттенюатор таким образом, чтобы он соединял разъемы радиочастотных кабелей для подключения испытываемой антенны и антенны-зонда. Ослабление аттенюатора установить равным 0 дБ.

Провести полную двухпортовую калибровку анализатора из состава комплекса в комплекте со штатными радиочастотными кабелями и аттенюатором в диапазоне частот от 0,15 до 10,0 ГГц в соответствии с технической документацией на него.

Установить следующие настройки анализатора:

  • - полоса анализа от 0,15 до 10,0 ГГц;

  • - ширина полосы пропускания 500 Гц;

  • - режим измерений модуля комплексного коэффициента передачи S21;

  • - количество точек 3601.

    , дБ. Зафиксировать верхнюю гра

Без подачи мощности с порта генератора векторного анализатора цепей провести измерения модуля комплексного коэффициента передачи ницу АЧХ шума N, дБ.

Увеличивая мощность сигнала с порта генератора анализатора, зафиксировать опорный

уровень, при котором обеспечивается условие pl2 (Д)| > (N + SO), дБ.

Изменяя ослабление аттенюатора от 0 до 40 дБ с шагом 10 дБ, провести измерения модуля комплексного коэффициента передачи.

Погрешность измерений модуля комплексного коэффициента передачи на каждой частоте/ , указанной в п. 8.3.1.1, рассчитать как разность (в логарифмических единицах) между из

меренным значением модуля коэффициента передачи

512Ш

, дБ, и действительным значени

ем ослабления аттенюатора £(/), дБ, записанным в его технической документации (свидетельстве о поверке), по формуле (11):

^,(Z)=512(/)-Z(Z).                        (11)

За погрешность 9А} для каждого номинала ослабления, соответствующего относительному уровню амплитудного распределения электромагнитного поля М, принять максимальное значение погрешности измерений #<,(/)соответствующего номинала ослабления аттенюатора

в установленной полосе частот в линейном масштабе (12):

0™ =maxho

20

(12)

Результаты поверки записать в таблицу 4.

Таблица 4 - Результаты оценки погрешности измерений модуля комплексного коэффициента передачи анализатором из состава комплекса

Ослабление аттенюатора L, дБ

Относительный уровень амплитудного распределения М, дБ

Погрешность измерений 6»л|, дБ

10

-10

20

-20

30

-30

40

-40

  • 8.3.1.3 Погрешность измерений, обусловленную неидеальной поляризационной развязкой антенн-зондов из состава комплекса, определить по формуле (13):

0А2 = (1 + 100Ш7Р)2-1,                                     (13)

где КПР - минимальный уровень кроссполяризационной развязки антенн-зондов из состава комплекса, принимаемый равным минус 20 дБ.

  • 8.3.1.4 Погрешность измерений фазы комплексного коэффициента передачи векторным анализатором цепей из состава комплекса определить с помощью набора мер коэффициентов передачи и отражения 85056А и аттенюатора 84908М.

В измерительный тракт комплекса внести аттенюатор и меру фазового сдвига из состава набора 85056А таким образом, чтобы они соединяли разъемы радиочастотных кабелей для подключения испытываемой антенны и антенны-зонда. Ослабление аттенюатора установить равным 0 дБ.

Провести полную двухпортовую калибровку анализатора из состава комплекса в комплекте с штатными радиочастотными кабелями, аттенюатором, в соответствии с технической документацией на него.

Изменяя ослабление аттенюатора от 0 до 40 дБ с шагом 10 дБ, провести измерения фазы комплексного коэффициента передачи при следующих настройках анализатора:

  • - полоса анализа от 0,15 до 10,0 ГГц;

  • - ширина полосы пропускания 500 Гц;

  • - уровень мощности выходного колебания 0 дБ (мВт);

  • - режим измерений фазы комплексного коэффициента передачи S21;

  • - количество точек 3601.

Погрешность измерений фазы комплексного коэффициента передачи на каждой частоте /, указанной в п. 8.3.1.1, рассчитать как разность между измеренным значением фазы коэффициента передачи arg(S12(/,)), рад, и действительным значением установленного фазового сдвига мерыФ1Л)(//), рад, записанным в его технической документации (14):

C>(/i) = arg(512(Z))-0(",(/,).                         (14)

За погрешность 0Ф] для каждого номинала относительного уровня фазового распределения электромагнитного поля принять максимальное значение погрешности измерений 0ф1} (Z) соответствующего номинала ослабления аттенюатора в установленной полосе частот (15):

^’ = тах^> (/,)}.                                 (15)

Результаты поверки записать в таблицу 5.

Таблица 5 - Результаты оценки погрешности измерений фазы комплексного коэффициента пе-

редачи анализатором из состава комплекса

Ослабление аттенюатора L, дБ

Относительный уровень амплитудного распределения М, дБ

Погрешность измерений 0Ф1, градус

10

-10

20

-20

30

-30

40

-40

  • 8.3.1.5 Погрешность измерений фазы, обусловленную неточностью позиционирования антенны-зонда в плоскости сканирования, определить с помощью системы лазерной координатно-измерительной Leica Absolute Tracker АТ401.

Подготовить комплекс к измерению характеристик антенн в ближней зоне в соответствии с РЭ.

Подготовить систему Leica Absolute Tracker АТ401 к измерению в соответствии с эксплуатационной документацией на нее.

Оптический отражатель из состава системы Leica Absolute Tracker АТ401 закрепить на антенну-зонд, установленную на сканере из состава комплекса, в соответствии со схемой, приведенной на рисунке 1.

L

ЙЯЯИИВЯ

ЕЙ

1 - антенна-зонд; 2 - оптический отражатель; 3 - система Leica Absolute Tracker АТ401; 4 - сканер

Рисунок 1 - Схема измерений характеристик позиционирования сканера

С помощью программы ручного управления сканером (рисунок 2) в соответствующей вкладке программного продукта для измерений в ближней зоне «FrequencyMeas» переместить антенну-зонд в крайнее центральное левое положение. Переместить антенну-зонд в крайнее заднее положение по оси Z. Зафиксировать показания системы Leica Absolute Tracker АТ401.

Контроллер движения Приемник Равноеправление Измерения

Дост/хяеосм

Ру*ое/траеле»ме ОсьХ

| 0 00 мм

Скорость 100000

у         ООО***'

Нсеая лозкхия |          мм Установить

Q.

Поляризация    ООО град

Смешение      0 00 ьм   Установить

* J    *

Найти моль                  Обнулить поз

Рисунок 2 - Меню программы для ручного управления движением сканера

Переместить антенну зонд вдоль оси Oz в крайнее переднее положение и зафиксировать показания системы Leica Absolute Tracker АТ401.

Перемещая антенну-зонд с установленным оптическим отражателем вдоль оси Ох в пределах рабочей зоны сканера с шагом Лдаш/2 (где Лтм - минимальная длина волны, соответствующая верхней границе диапазона рабочих частот комплекса, до срабатывания механического ограничителя), фиксировать показания системы Leica Absolute Tracker АТ401.

С помощью программы ручного управления сканером (рисунок 2) в соответствующей вкладке программного продукта для измерений в ближней зоне «FrequencyMeas» переместить антенну-зонд в крайнее центральное нижнее положение. Зафиксировать показания системы Leica Absolute Tracker АТ401.

Перемещая антенну-зонд с установленным оптическим отражателем вдоль оси Оу в пределах рабочей зоны сканера с шагом Лт<„/2, до срабатывания механического ограничителя, фиксировать показания системы Leica Absolute Tracker АТ401.

По формуле (16) рассчитать погрешность позиционирования антенны-зонда как разность между координатами плоскости сканирования и координатами положения антенны-зонда Дз измеренными с использованием Leica Absolute Tracker АТ401, м.

^г“|^верт ^измер I                                   0^)

Погрешность измерений фазы Д$?(/), рад, обусловленную неточностью позиционирования антенны-зонда в плоскости сканирования, для каждого номинала частоты, указанного в п. 8.3.1.1, определить по формуле (17):

(17)

Др(/)=£-Дг,

где к = Ул/Л - волновое число, 1/м;

Л - длина волны, соответствующая частотам, указанным в п. 5.1.1, м.

За погрешность измерений фазы 0Ф2 для каждого номинала частоты, указанного в п.

8.3.1.1, принять среднее квадратическое значение погрешности, определенное по формуле (18):

5W,))2

(18)

1=0______________

М

где М - число точек, в которых проводились измерения пространственного положения антенны-зонда.

Размеры рабочей области сканирования по осям Ох, Оу, Oz рассчитать как разность между показаниями системы Leica Absolute Tracker АТ401 в момент срабатывания механического ограничителя сканера при установке антенны-зонда в крайние положения.

/ =1y   — у I-

х 1 нач кон1’ ] =|у  _ V

мнжч * кон1» tr=|ZHr,-Z,(m|.                              (19)

  • 8.3.1.6 Погрешность измерений фазы, обусловленную случайными перегибами радиочастотного тракта комплекса определить с помощью набора меры отражения из состава мер коэффициентов передачи и отражения 85056А.

В измерительный тракт комплекса внести меру отражения таким образом, чтобы он замыкал соединитель радиочастотного кабеля для подключения антенны-зонда.

Провести однопортовую калибровку анализатора из состава комплекса в диапазоне частот от 0,15 до 10,0 ГГц в соответствии с технической документацией на него.

Провести измерения фазы комплексного коэффициента отражения при следующих настройках анализатора:

  • - полоса анализа от 0,15 до 10,0 ГГц;

  • - ширина полосы пропускания 500 Гц;

  • - уровень мощности выходного колебания минус 10 дБ (мВт);

  • - режим измерений фазы комплексного коэффициента отражения SI 1.

С помощью программы ручного управления сканером (рис. 2) в соответствующей вкладке программного продукта для измерений в ближней зоне «FrequencyMeas» переместить антенну-зонд в крайнее нижнее положение.

Перемещая антенну-зонд с установленным оптическим отражателем вдоль оси хОу в пределах рабочей зоны сканера с шагом 20 см, фиксировать показания анализатора.

За оценку погрешности измерений фазы, обусловленную случайными перегибами радиочастотного тракта комплекса, принять разность между максимальным и минимальным значением измеренной фазы комплексного коэффициента отражения на частоте 10 ГГц. Расчеты произвести по формуле (20):

= max(arg(S12fay))) - mirifargfSllfay)))                    (20)

где arg(S12(x,y))- значением фазы коэффициента передачи в соответствующих координатах плоскости сканирования, рад.

  • 8.3.1.7 Оценку среднего квадратического отклонения результатов измерений амплитудного и фазового распределений (АФР) проводить методом прямых измерений с многократными наблюдениями распределения поля, формируемого на плоскости сканирования антенной П6-140.

Антенну П6-140 установить на опорно-поворотное устройство в положение, соответствующее вертикальной поляризации, таким образом, чтобы плоскость раскрыва была параллельна плоскости сканирования.

Используя режим ручного или дистанционного управления сканера, установить антенну-зонд соосно с антенной П6-140 в положение, соответствующее вертикальной поляризации.

Расстояние между раскрывами антенны П6-140 и антенны-зонда установить равным в пределах ЗХ, где X - максимальная длина волны измеряемого поддиапазона частот.

Запустить программу измерений в частотной области.

В соответствии с РЭ на комплекс установить полосу частот анализатора от 8,0 до 10,0 ГГц, ширину полосы пропускания 100 Гц, шаг перестройки по частоте 1,0 ГГц, уровень мощности выходного сигнала анализатора 0 дБ (мВт).

Далее установить следующие настройки:

  • - шаг сканирования - не более Х/2;

  • - режим сканирования - непрерывное сканирование без реверса;

  • - поляризация измеряемой антенны - вертикальная;

  • - поляризация зонда - вертикальная;

  • - размеры области сканирования 600 х 900 мм.

Нажать кнопку «НАЧАТЬ ИЗМЕРЕНИЯ».

Измерить АФР не менее 7 раз с интервалом не менее 5 мин (далее по тексту - результаты измерений АФР, полученные в ходе одного сканирования, - реализация).

Запустить программу расчета характеристик антенн по данным в ближнем поле, входящую в комплект поставки комплекса. На частоте 10,0 ГГц рассчитать амплитудные /1 и фазовые , распределения, а также среднее квадратическое отклонение результатов измерений амплитудного и фазового распределений по формулам (4) и (8).

  • 8.3.1.8 Результаты поверки считать положительными, если значения погрешности измерений амплитудного распределения электромагнитного поля при динамическом диапазоне измерений амплитудного распределения не менее 50 дБ и кроссполяризационной развязке антенны-зонда не менее 20 дБ находятся в следующих пределах для относительных уровней амплитудного распределения:

  • - минус 10 дБ..................±0,2 дБ;

  • - минус 20 дБ..................±0,3 дБ;

  • - минус 30 дБ..................±0,5 дБ;

  • - минус 40 дБ..................±0,8 дБ,

а значения абсолютной погрешности измерений фазового распределения электромагнитного поля при динамическом диапазоне измерений амплитудного распределения не менее 50 дБ находятся в следующих пределах при относительном уровне амплитудного распределения:

В противном случае результаты поверки считать отрицательными и последующие операции поверки не проводить, комплекс бракуется и подлежит ремонту.

  • 8.3.2 Определение относительной погрешности измерений относительных уровней амплитудных диаграмм направленности и абсолютной погрешности измерений фазовых диаграмм направленности

    • 8.3.2.1 Определение погрешности измерений относительных уровней амплитудных диаграмм направленности (АДН) и фазовых диаграмм направленности (ФДН) осуществить методом математического моделирования с учетом результатов, полученных в п. 8.3.1 настоящей МП, путем сравнения невозмущенных амплитудных диаграмм направленности, определенных для антенн с равномерным синфазным распределением токов на апертуре, и тех же диаграмм направленности, но с учетом погрешности измерений амплитудного и фазового распределений (АФР).

    • 8.3.2.2 Невозмущенную диаграмму направленности оценить следующим образом.

Размеры плоскости сканирования выбрать из критерия максимального сектора углов восстанавливаемой диаграммы направленности, равного ±65°, по формулам (21):

Lx =a + 2R -tgO,                                     (21)

Ly =b+2R• tg(p,

где Lx, Ar- размеры плоскости сканирования в соответствующих плоскостях, м;

а, b - размеры раскрыва в соответствующих плоскостях, м, а = Ь>5Лтах, где Лотаг - длина волны, соответствующая частотам 0,15; 5,0 и 10,0 ГГц;

R - измерительное расстояние, R = 3 Лтах, м;

0 = 2,27 рад..

Интервал дискретизации выбрать равным 0.52mat.

Для частоты 0,5 ГГц пересчитать АФР в раскрыве антенны в АФР на плоскости сканирования по формуле (22):

] .(22)

Jfx-x, )2 + ( v- V, )2 + R2         A

где J(x2,y2) - АФР на плоскости сканирования; (X2, У2) - координаты на плоскости сканирования, м;

Ао - амплитуда сигнала (Ao = 1 В)\

(ро - фаза сигнала ((ро = 0 рад)\

N(M) =

Lx(Ly) &х(Ay)

- число шагов сканирования в каждой из плоскостей, где Ах, Ау - шаг ска

нирования в плоскости X и Y, соответственно.

Рассчитать нормированные АДН и ФДН по формулам (23) и (24):

  • (23)

  • (24)

F0(w,v) = arg[3(J(x2,^2))] , где |...| - модуль комплексной величины;

3 (...) - оператор двумерного дискретного преобразования Фурье;

МАХ - максимальное значение амплитудной диаграммы направленности; arg - аргумент функции;

и = sin 0 • cos (р, v = sin3- sin (р - угловые координаты;

Л           Л

U = ±---N, V = ±---М - угловые сектора в системе координат направляющих косинусов

2zLj^             2^у (m,v), в пределах которых восстанавливается диаграмма, рад;

w = д/1 -м2 - v2

( И

= arccos iv, (р = arctg —

  • 8.3.2.3 АДН и ФДН антенны с учетом погрешности измерений АФР оценить следующим образом.

Значения погрешности измерений АФР для каждого относительного уровня амплитудного распределения М задавать программно с учетом оценки погрешности измерений АФР, полученных в п. 8.3.1, по формулам (25) и (26):

ЗА = Norm(0,cr2 а),                                   (25)

\(р = Norm(Q,(j2q>),                                     (26)

где Norm - генератор случайных величин, распределенных по нормальному закону;

аА - среднее квадратическое отклонение результатов измерений амплитудного распределения сЙ = 10 “/2,45;

сго - среднее квадратическое отклонение результатов измерений фазового распределения <*л = А®/2.45.

Рассчитать АФР электромагнитного поля на плоскости сканирования с учетом погрешности их измерений по формуле (27):

j'(*2 .У2 ) = ИХ2 - У2 X1 + 54 )eXPWarg(ЛХ2 > ))+ Д'?)) •               (27)

Аналогичным образом провести расчет «возмущенных» диаграмм направленности 7 раз. При каждой последующей реализации воспроизводить новые случайные величины по законам (21).

  • 8.3.2.4 Погрешность измерений относительных уровней АДН и ФДН оценить следующим образом.

Среднее квадратическое отклонение результатов измерений уровней АДН и ФДН в двух главных сечениях при (р=0 и (р=л/2 рассчитать по формулам (28) и (29):

9

(29)

где к- число реализаций моделирования, к = 7.

Рассчитать погрешность измерений уровней АДН и ФДН по формулам (30) и (31):

SFa = ±201g(l + 2,45<rFj;                            (30)

AF,=±—2,45оРф.

(31)

Д’

±0,3 дБ;

±0,5 дБ;

±0,8 дБ;

±1,4 дБ;

  • 8.3.2.5 Результаты поверки считать положительными, если значения погрешности измерений относительных уровней АДН до уровней (при кроссполяризационной развязке антенны-зонда не менее 20 дБ, динамическом диапазоне измеренного амплитудного распределения антенны не менее 50 дБ) при относительных уровнях АДН, находятся в пределах:

  • - минус 10 дБ

  • - минус 20 дБ

  • - минус 30 дБ

  • - минус 40 дБ

    ±3°;

    ±5°;

    ±9°;

    ±14°.

и значения абсолютной погрешности измерений ФДН (при кроссполяризационной развязке антенны-зонда не менее 20 дБ, динамическом диапазоне измеренного амплитудного распределения антенны не менее 50 дБ) при относительных уровнях АДН, находятся в пределах:

  • - минус 10 дБ

  • - минус 20 дБ

  • - минус 30 дБ

  • - минус 40 дБ

В противном случае результаты поверки считать отрицательными и последующие операции поверки не проводить, комплекс бракуется и подлежит ремонту.

8.3.3 Определение относительной погрешности измерений коэффициента усиления антенн

8.3.3.1 Относительную погрешность измерений коэффициента усиления определить расчетным путем при использовании результатов измерений, полученных в п. 8.3.2 настоящей МП.

Относительную погрешность измерений коэффициента усиления 5, дБ, рассчитать по формуле (32):

8 = ±10 lg(l +1,1 ■ 7^+<522 + <332),

(32)

где 3/ - погрешность измерений АДН до уровней минус 10 дБ, <5/=0,072;

  • 32 - погрешность коэффициента усиления эталонной антенны. 32=0,07; 0,12; 0,2; 0,41; 0,6;

  • 33 - погрешность за счет рассогласования.

За погрешность Зз принять максимальное из двух значений, рассчитанных по формулам (33) и (34):

<?; =

53 =

(’-№)

(i+NKI)2

(1-КэГ)

(•-N-N)2

>-Кэ|2

(1-lrJ-l^l)2

(1-КэГ!

(i+N-N)2

-i,

-1,

(33)

(34)

где Гэ, Ги, Гк - коэффициенты отражения входов эталонной, испытываемой антенн, входа анализатора из состава комплекса.

где Гэ, Ги, Гк- коэффициенты отражения входов эталонной, испытываемой антенн, входа анализатора из состава комплекса.

Модуль коэффициента отражения связан с коэффициентом стоячей волны по напряжению (КСВН) соотношением (35):

и=—

(35)

1 1 tf + l

  • 8.3.3.2 При расчетах погрешности за счет рассогласования значение КСВН эталонной антенны, используемой при проведении измерений, не должно превышать 1,5, испытываемой антенны - 2,0, КСВН входа векторного анализатора цепей - 1,7.

  • 8.3.3.3 Результаты поверки считать положительными, если значения относительной погрешности измерений коэффициента усиления антенны методом замещения при КСВН испытываемой антенны не более 2 и погрешности измерений коэффициента усиления эталонной антенны находятся в пределах:

0,3 дБ

±0,5 дБ;

±0,7 дБ;

±1,0 дБ;

±1,7 дБ;

±2,3 дБ.

0,5 дБ

0,8 дБ

  • 1,5 дБ

2,0 дБ

В противном случае результаты поверки считать отрицательными и последующие операции поверки не проводить, комплекс бракуется и подлежит ремонту.

8.3.4 Определение диапазона рабочих частот
  • 8.3.4.1 Проверку диапазона рабочих частот проводить по результатам определения погрешностей измерений АФР (п. 8.3.1).

  • 8.3.4.2 Результаты поверки считать положительными, если в диапазоне частот от 0,15 до 10,0 ГГц значения погрешностей измерений АФР находятся в допускаемых пределах, приведенных в п. 8.3.1. В этом случае диапазон частот комплекса составляет от 0,15 до 10,0 ГГц.

В противном случае результаты поверки считать отрицательными и последующие операции поверки не проводить, комплекс бракуется и подлежит ремонту.

8.3.5 Определение размеров рабочей области сканирования
  • 8.3.5.1 Определение размеров рабочей области сканирования осуществить по результатам измерений, выполненных в соответствии с п. 8.3.1.5 настоящей МП.

  • 8.3.5.2 Результаты поверки считать положительными, если размеры рабочей области сканирования комплекса (длина х высота х ширина) не менее 26х 13х3 м.

В противном случае результаты поверки считать отрицательными и последующие операции поверки не проводить, комплекс бракуется и подлежит ремонту.

8.3.6 Определение сектора углов восстанавливаемых диаграмм направленности
  • 8.3.6.1 Определение сектора углов восстанавливаемых диаграмм направленности осуществить по результатам определения погрешности измерений по п.8.3.2.

  • 8.3.6.2 Результаты поверки считать положительными и сектор углов восстанавливаемой амплитудной диаграммы направленности в азимутальной и угломестной плоскостях составляет от минус 65° до плюс 65°, если при заданных в п. 8.3.2 условиях моделирования (секторы углов 0 и (р) рассчитанная погрешность измерений относительных уровней АДН находятся в допускаемых пределах, приведенных в п. 8.3.2.

В противном случае результаты поверки считать отрицательными и последующие операции поверки не проводить, комплекс бракуется и подлежит ремонту.

9 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ
  • 9.1 Комплекс признается годным, если в ходе поверки все результаты поверки положительные.

  • 9.2 Результаты поверки удостоверяются свидетельством о поверке установленной формы.

  • 9.3 Если по результатам поверки комплекс признан непригодным к применению, свидетельство о поверке аннулируется и выписывается извещение о непригодности к применению с указанием причин забракования.

Начальник НИО-1 ФГУП «ВНИИФТРИ»

Начальник отдела 13 ФГУП «ВНИИФТРИ»

Инженер лаборатории 133

ФГУП «ВНИИФТРИ»

куркин

17

Настройки внешнего вида
Цветовая схема

Ширина

Левая панель