Методика поверки «Комплекс автоматизированный измерительно-вычислительный ТМСА 1.0-50.0 Б 088» (165-17-12 МП)
УТВЕРЖДАЮ
Первый заместитель генерального директора -заместитель по нау работе
ФГУП «В
d и □ 5 __ _ ____
»£ 'VA внииетри
тарное
А.Н. Щипунов
ФТРИ»
2017 г.
Инструкция Комплекс автоматизированный измерительно-вычислительный
ТМСА 1.0-50.0 Б 088
Методика поверки
165-17-12 МП
2017 г.
СОДЕРЖАНИЕ
-
-
8.3 Определение метрологических характеристик
-
8.3.1 Определение погрешности измерений амплитудного распределения электромагнитного поля и абсолютной погрешности измерений фазового распределения электромагнитного поля. 6
-
8.3.2 Определение погрешности измерений относительных уровней амплитудных диаграмм направленности и абсолютной погрешности измерений фазовых диаграмм направленности.... 13
-
8.3.3 Определение погрешности измерений коэффициента усиления антенн
-
8.3.4 Определение погрешности измерений поляризационных диаграмм
-
8.3.7 Определение сектора углов восстанавливаемых диаграмм направленности
-
-
1.1 Настоящая методика поверки (далее - МП) устанавливает методы и средства первичной и периодической поверок комплекса автоматизированного измерительно-вычислительного ТМСА 1.0-50.0 Б 088, изготовленного ООО «НПП «ТРИМ СШП Измерительные системы», г. Санкт-Петербург, заводской № 088 (далее - комплекс).
Первичная поверка комплекса проводится при вводе его в эксплуатацию и после ремонта.
Периодическая поверка комплекса проводится в ходе его эксплуатации и хранения.
-
1.2 Комплекс предназначен для измерений радиотехнических характеристик антенн.
-
1.3 Поверка комплекса проводится не реже одного раза в 24 (двадцать четыре) месяца.
При проведении поверки комплекса должны быть выполнены операции, указанные в таблице 1.
Таблица 1 - Операции поверки
Наименование операции |
Пункт МП |
Проведение операций при | |
первичной поверке |
периодической поверке | ||
1 Внешний осмотр |
8.1 |
+ |
+ |
2 Опробование |
8.2 |
+ |
+ |
3 Определение метрологических характеристик |
8.3 |
+ |
+ |
3.1 Определение погрешности измерений амплитудного распределения электромагнитного поля и абсолютной погрешности измерений фазового распределения электромагнитного поля |
8.3.1 |
+ |
+ |
3.2 Определение погрешности измерений относительных уровней амплитудных диаграмм и абсолютной погрешности измерений фазовых диаграмм |
8.3.2 |
+ |
- |
3.3 Определение погрешности измерений коэффициента усиления антенны методом замещения |
8.3.3 |
+ |
- |
3.4 Определение погрешности измерений поляризационных диаграмм |
8.3.4 |
+ |
- |
3.5 Определение диапазона рабочих частот |
8.3.5 |
+ |
- |
3.6 Определение размеров рабочей области сканирования |
8.3.6 |
+ |
- |
3.7 Определение сектора углов измеряемых диаграмм направленности |
8.3.7 |
+ |
- |
3.1 При проведении поверки комплекса должны быть применены средства измерений, указанные в таблице 2.
Таблица 2 - Средства измерений для поверки комплекса
Пункт МП |
Наименование и тип (условное обозначение) основного или вспомогательного средства поверки; обозначение нормативного документа, регламентирующего технические требования, и (или) метрологические и основные технические характеристики средства поверки |
8.3.1 -8.3.5, 8.3.7 |
Аттенюатор ступенчатый программируемый 84908М, диапазон частот от 0 до 50 ГГц, диапазон вводимых ослаблений от 0 до 65 дБ с шагом 5 дБ |
8.3.1 - 8.3.4, 8.3.7 |
Набор мер коэффициентов передачи и отражения 85056А, диапазон частот от 45 МГц до 50 ГГц |
8.3.1 -8.3.7 |
Система лазерная координатно-измерительная Leica АТ401, диапазон измерений расстояний от 1,5 до 60000 мм, предел допускаемой основной абсолютной погрешности объемных измерений ±15 мкм + 6 мкм/м |
-
3.2 Допускается использовать аналогичные средства поверки, которые обеспечат измерения соответствующих параметров с требуемой точностью.
-
3.3 Средства поверки должны быть исправны, поверены и иметь свидетельства о поверке.
-
4.1 Поверка должна осуществляться лицами с высшим и среднем техническим образованием, аттестованными в качестве поверителей в области радиотехнических измерений в соответствии с ГОСТ Р 56069-2014, и имеющими квалификационную группу электробезопасности не ниже третьей.
-
4.2 Перед проведением поверки поверитель должен предварительно ознакомиться с документом «Комплекс автоматизированный измерительно-вычислительный ТМСА 1.0-50.0 Б 088. Руководство по эксплуатации. ТМСА 088. 050. 00Б РЭ».
-
5.1 При проведении поверки должны быть соблюдены все требования безопасности в соответствии с ГОСТ 12.3.019-80 «ССБТ. Испытания и измерения электрические. Общие требования безопасности», а также требования безопасности, приведённые в эксплуатационной документации на составные элементы комплекса и средства поверки.
-
5.2 Размещение и подключение измерительных приборов разрешается производить только при выключенном питании.
-
6.1 При проведении поверки комплекса должны соблюдаться условия, приведенные в таблице 3.
Таблица 3 - Условия проведения поверки комплекса
Влияющая величина |
Нормальное значение |
Допускаемое отклонение от нормального значения |
Температура окружающей среды, °C |
20 |
±5 |
Относительная влажность воздуха, % |
от 30 до 80 |
- |
Атмосферное давление, кПа |
от 84 до 106,7 |
- |
Напряжение питающей сети переменного тока, В |
220 |
±22 |
Частота питающей сети, Гц |
50 |
±1 |
-
7.1 Проверить наличие эксплуатационной документации и срок действия свидетельств о поверке на средства поверки.
-
7.2 Подготовить средства поверки к проведению измерений в соответствии с руководствами по их эксплуатации.
-
8 ПРОВЕДЕНИЕ ПОВЕРКИ
-
8.1.1 При проведении внешнего осмотра комплекса проверить:
-
- комплектность и маркировку комплекса;
-
- наружную поверхность элементов комплекса, в том числе управляющих и питающих кабелей;
-
- состояние органов управления;
-
8.1.2 Проверку комплектности комплекса проводить сличением действительной комплектности с данными, приведенными в разделе «Комплект поставки» документа «Комплекс автоматизированный измерительно-вычислительный ТМСА 1.0-50.0 Б 088. Паспорт. ТМСА 088. 050. 00Б ПС» (далее - ПС).
-
8.1.3 Проверку маркировки производить путем внешнего осмотра и сличением с данными, приведенными в ПС.
-
8.1.4 Результаты внешнего осмотра считать положительными, если:
-
- комплектность и маркировка комплекса соответствует ПС;
-
- наружная поверхность комплекса не имеет механических повреждений и других дефектов;
-
- управляющие и питающие кабели не имеют механических и электрических повреждений;
-
- органы управления закреплены прочно и без перекосов, действуют плавно и обеспечивают надежную фиксацию;
-
- все надписи на органах управления и индикации четкие и соответствуют их функциональному назначению.
В противном случае результаты внешнего осмотра считать отрицательными и последующие операции поверки не проводить.
8.2 Опробование-
8.2.1 Идентификация программного обеспечения (далее - ПО)
-
8.2.1.1 Включить персональные компьютеры (далее - ПК), для чего:
-
-
- на блоке источника бесперебойного питания нажать кнопку ВКЛ;
-
- нажать на системном блоке ПК кнопку включения;
-
- включить монитор.
После загрузки операционной системы WINDOWS 7 на экране монитора ПК наблюдать иконку программы FrequencyMeas, NFCalc, Amr View.
Установить далее на ПК программу, позволяющую определять версию и контрольную сумму файла по алгоритму MD5, например, программу «HashTab».
-
8.2.1.2 Выбрать в папке TRIM файл FrequencyMeas.exe, нажать на правую кнопку мыши на файле и выбрать пункт «Свойства». Открыть вкладку «Хеш-суммы файлов». Наблюдать контрольную сумму файла FrequencyMeas.exe по алгоритму MD5. Открыть вкладку «О программе». Наблюдать значение версии файла FrequencyMeas.exe. Результаты наблюдения зафиксировать в рабочем журнале.
-
8.2.1.3 Повторить операции п. 8.2.1.2 для программ NFCalc.exe и AmrView.exe.
-
8.2.1.4 Сравнить полученные контрольные суммы и версии с их значениями, записанными в ПС. Результат сравнения зафиксировать в рабочем журнале.
-
8.2.1.5 Результаты идентификации ПО считать положительными, если полученные идентификационные данные ПО соответствуют значениям, приведенным в таблице 3.
Таблица 3 - Идентификационные данные ПО
Идентификационные данные (признаки) |
Значение | ||
Идентификационное наименование ПО |
FrequencyMeas.exe |
NFCalc.exe |
AmrView.exe |
Номер версии (идентификационный номер) ПО |
6.0.0.0 |
3.20.1 |
3.16.60612 |
Цифровой идентификатор ПО (контрольная сумма исполняемого кода) |
776C8FC8E058E725 27CC58A6A8D62804 (алгоритм MD5) |
90F2307A43D11220 7504337B9CCA9F24 (алгоритм MD5) |
FAF113F3C83206EB 863D69624F5D3FC0 (алгоритм MD5) |
В противном случае результаты проверки соответствия ПО считать отрицательными и последующие операции поверки не проводить.
8.2.2 Проверка работоспособности
-
8.2.2.1 Подготовить комплекс к работе в соответствии с РЭ.
-
8.2.2.2 Проверить работоспособность аппаратуры комплекса путем проверки отсутствия сообщений об ошибках и неисправностях при загрузке программного продукта для измерений в ближней зоне «FrequencyMeas».
-
8.2.2.3 Проверить работоспособность всех приводов четырехкоординатного Т-сканера:
-
- при перемещении по оси Ох;
-
- при перемещении по оси Оу;
-
- при перемещении по оси Oz;
-
- при вращении каретки зонда в плоскости поляризации.
-
8.2.2.4 Соединить при помощи перемычки соединитель кабеля «вход антенны-зонда» и соединитель кабеля «выход испытываемой антенны». В соответствии с эксплуатационной документацией произвести коммутацию СВЧ-опто и Опто-СВЧ преобразователей, подготовить к работе векторный анализатор электрических цепей (далее - анализатор) из состава комплекса, перевести его в режим измерений модуля комплексного коэффициента передачи. Установить следующие настройки анализатора:
-
- полоса анализа от 1 до 50 ГГц;
-
- ширина полосы пропускания 1 МГц;
-
- уровень мощности выходного колебания 0 дБ (мВт).
На экране анализатора наблюдать результат измерений частотной зависимости модуля коэффициента передачи. При этом должны отсутствовать резкие изменения полученной характеристики, свидетельствующие о неудовлетворительном состоянии радиочастотного тракта комплекса.
-
8.2.2.5 Результаты поверки считать положительными, если четырехкоординатный Т-сканер обеспечивает перемещение антенны-зонда по осям Ох, Оу, Oz и в плоскости поляризации, на экране анализатора наблюдается результат измерений частотной зависимости модуля коэффициента передачи без резких изменений, а также отсутствует программная или аппаратная сигнализация о неисправностях комплекса.
В противном случае результаты поверки считать отрицательными и последующие операции поверки не проводить, комплекс бракуется и подлежит ремонту.
8.3 Определение метрологических характеристик 8.3.1 Определение погрешности измерений амплитудного распределения электромагнитного поля и абсолютной погрешности измерений фазового распределения электромагнитного поля-
8.3.1.1 Погрешность измерений амплитудного распределения электромагнитного поля 3А, дБ, определить по формулам (1) - (4):
^=201g(l + ASE), (1)
ts + | |||
S + - |
+ &А2 |
9 |
V3
^=^Л1+3^2~ + ^2
(3)
\ 7
т-\
(4)
где вм - погрешность измерений модуля комплексного коэффициента передачи анализатором из состава комплекса;
^А2 ~ погрешность измерений, обусловленная неидеальной поляризационной развязкой антенн-зондов из состава комплекса;
S - среднее квадратическое отклонение результатов измерений амплитудного распределения;
А - результат измерений амплитудного распределения;
А - среднее арифметическое результатов измерений амплитудного распределения;
t - коэффициент Стьюдента для заданного числа реализаций измерений амплитудного распределения.
Абсолютную погрешность измерений фазового распределения электромагнитного поля Аф, определить по формулам (5) - (8):
-
(5)
-
(6)
-
(7)
-
(8)
где 0Ф1 - погрешность измерений фазы комплексного коэффициента передачи векторным анализатором цепей из состава комплекса, рад;
&Ф2 ~ погрешность измерений фазы, обусловленная неточностью позиционирования антенны-зонда в плоскости сканирования, рад;
^Ф3~ погрешность измерений фазы, обусловленная случайными перегибами радиочастотного тракта комплекса, рад;
S<p - среднее квадратическое отклонение результатов измерений фазового распределения, рад;
<р - результат измерений фазового распределения, рад;
(р - среднее арифметическое значение результатов измерений фазового распределения, рад.
Погрешности измерений амплитудного распределения электромагнитного поля и абсолютные погрешности измерений фазового распределения электромагнитного поля определить 7
при относительных уровнях амплитудного распределения от минус 10 до минус 50 дБ с интервалом 10 дБ. Динамический диапазон измерений амплитудного распределения при этом должен составлять не менее 60 дБ. Под динамическим диапазоном измерений амплитудного распределения понимать отношение максимального уровня амплитудного распределения к среднему уровню измеряемых радиошумов.
Погрешности измерений амплитудного распределения электромагнитного поля и относительные погрешности измерений фазового распределения электромагнитного поля определить на частотах 1; 25; 50 ГГц.
На частотах от 1 до 25 ГГц ограничиться формулами (9) и (10):
8а = ±2Olg(l + |0,1| + |0u|); (9)
Дф = ± —1,1^Ф1+«Ф2+^! ■ (Ю)
71Частные составляющие погрешности измерений (слагаемые в выражениях (2), (3), (6), (7)) определить по следующим методикам.
-
8.3.1.2 Погрешность измерений модуля комплексного коэффициента передачи векторным анализатором цепей из состава комплекса определить при помощи аттенюатора Agilent 84908М.
В измерительный тракт комплекса внести аттенюатор таким образом, чтобы он соединял разъемы радиочастотных кабелей для подключения испытываемой антенны и антенны-зонда. Ослабление аттенюатора установить равным 0 дБ.
Провести полную двухпортовую калибровку анализатора из состава комплекса в комплекте с штатными радиочастотными кабелями, СВЧ-опто и Опто-СВЧ преобразователями и аттенюатором в диапазоне частот от 1 до 26 ГГц в соответствии с технической документацией на него.
Установить следующие настройки анализатора:
-
- полоса анализа от 1 до 26 ГГц;
-
- ширина полосы пропускания 500 Гц;
-
- режим измерений модуля комплексного коэффициента передачи S21;
-
- количество точек 3601.
Без подачи мощности с порта генератора векторного анализатора цепей провести изме
рения модуля комплексного коэффициента передачи
, дБ. Зафиксировать верхнюю гра
ницу АЧХ шума N, дБ.
Увеличивая мощность сигнала с порта генератора анализатора, зафиксировать опорный
уровень, при котором обеспечивается условие
512</;>(У + бф,дБ.
Изменяя ослабление аттенюатора от 0 до 50 дБ с шагом 10 дБ, провести измерения модуля комплексного коэффициента передачи.
Погрешность измерений модуля комплексного коэффициента передачи на каждой частоте f, указанной в п. 8.3.1.1, рассчитать как разность (в логарифмических единицах) между из
меренным значением модуля коэффициента передачи
, дБ, и действительным значени
ем ослабления аттенюатора Г(/~), дБ, записанным в его технической документации (свидетельстве о поверке), по формуле (11):
^(Z)=S12(/)-Z(/),
(П)
За погрешность 6АХ для каждого номинала ослабления, соответствующего относительному уровню амплитудного распределения электромагнитного поля М, принять максимальное
значение погрешности измерений 0Л1(/) соответствующего номинала ослабления аттенюатора
в установленной полосе частот в линейном масштабе (12): = шах-ПО
20
(12)
Аналогичные измерения и расчеты выполнить в диапазоне частот от 26 до 50 ГГц с применением высокочастотных кабельных сборок из состава комплекса.
Результаты поверки записать в таблицу 4.
Таблица 4 - Результаты оценки погрешности измерений модуля комплексного коэффициента
передачи анализатором из состава комплекса
Ослабление аттенюатора L, дБ |
Относительный уровень амплитудного распределения М, дБ |
Погрешность измерений ДБ |
10 |
-10 | |
20 |
-20 | |
30 |
-30 | |
40 |
-40 | |
50 |
-50 |
-
8.3.1.3 Погрешность измерений, обусловленную неидеальной поляризационной развязкой антенн-зондов из состава комплекса, определить по формуле (13):
0А2 = (1 + Ю0Ш7/>)2-1, (13)
где кпр - минимальный уровень кроссполяризационной развязки антенн-зондов из состава комплекса, принимаемый равным -20 дБ.
-
8.3.1.4 Погрешность измерений фазы комплексного коэффициента передачи векторным анализатором цепей из состава комплекса определить с помощью набора мер коэффициентов передачи и отражения 85056А и аттенюатора Agilent 84908М.
В измерительный тракт комплекса внести аттенюатор и меру фазового сдвига из состава набора 85056А таким образом, чтобы они соединяли разъемы радиочастотных кабелей для подключения испытываемой антенны и антенны-зонда. Ослабление аттенюатора установить равным 0 дБ.
Провести полную двухпортовую калибровку анализатора из состава комплекса в комплекте с штатными радиочастотными кабелями, аттенюатором, СВЧ-опто и Опто-СВЧ и мерой в диапазоне частот от 1 до 26 ГГц в соответствии с технической документацией на него.
Изменяя ослабление аттенюатора от 0 до 50 дБ с шагом 10 дБ, провести измерения фазы комплексного коэффициента передачи при следующих настройках анализатора:
-
- полоса анализа от 1 до 26 ГГц;
-
- ширина полосы пропускания 500 Гц;
-
- уровень мощности выходного колебания 0 дБ (мВт);
-
- режим измерений фазы комплексного коэффициента передачи S21;
-
- количество точек 3601.
Погрешность измерений фазы комплексного коэффициента передачи на каждой частоте/ , указанной в п. 8.3.1.1, рассчитать как разность между измеренным значением фазы коэффициента передачи arg(S12(/)), рад, и действительным значением установленного фазового сдвига мерыФ(Л°(/), рад, записанным в его технической документации (14):
0%’ (Z) = arg(S12(Z)) - (Z ), (14)
За погрешность 0Ф1 для каждого номинала относительного уровня фазового распределения электромагнитного поля принять максимальное значение погрешности измерений 0^ (/) соответствующего номинала ослабления аттенюатора в установленной полосе частот (15):
=тах{б»^) (/,)}. (15)
Провести аналогичные измерения и расчеты для полосы частот от 26 до 50 ГГц с применением высокочастотных кабельных сборок из состава комплекса.
Результаты поверки записать в таблицу 5.
Таблица 5 - Результаты оценки погрешности измерений фазы комплексного коэффициента пе-редачи анализатором из состава комплекса
Ослабление аттенюатора L, дБ |
Относительный уровень амплитудного распределения М, дБ |
Погрешность измерений 0Ф1, градус |
10 |
-10 | |
20 |
-20 | |
30 |
-30 | |
40 |
-40 | |
50 |
-50 |
-
8.3.1.5 Погрешность измерений фазы, обусловленную неточностью позиционирования антенны-зонда в плоскости сканирования, определить с помощью системы лазерной координатно-измерительной Leica АТ401.
Подготовить комплекс к измерению характеристик антенн в ближней зоне в соответствии с РЭ.
Подготовить систему лазерную координатно-измерительную Leica АТ401 к измерению в соответствии с эксплуатационной документацией на нее.
Оптический отражатель из состава системы лазерной координатно-измерительной Leica АТ401 закрепить на антенну-зонд, установленную на сканере из состава комплекса, в соответствии со схемой, приведенной на рисунке 1.
1 - антенна-зонд; 2 - оптический отражатель; 3 - система Leica АТ401; 4 - сканер Рисунок 1 - Схема измерений характеристик позиционирования сканера
С помощью программы ручного управления сканером (рис. 2) в соответствующей вкладке программного продукта для измерений в ближней зоне «FrequencyMeas» переместить антенну-зонд в крайнее центральное левое положение. Зафиксировать показания Leica АТ401.
Рисунок 2 - Меню программы для ручного управления движением сканера
Перемещая антенну-зонд с установленным оптическим отражателем вдоль оси Ох в пределах рабочей зоны сканера с шагом A,min - минимальная длина волны, соответству
ющая верхней границе диапазона рабочих частот комплекса, до срабатывания механического ограничителя, фиксировать показания системы лазерной координатно-измерительной Leica АТ401.
С помощью программы ручного управления сканером (рисунок 2) в соответствующей вкладке программного продукта для измерений в ближней зоне «NFMeas» переместить антенну-зонд в крайнее центральное нижнее положение. Зафиксировать показания Leica АТ401.
Перемещая антенну-зонд с установленным оптическим отражателем вдоль оси Оу в пределах рабочей зоны сканера с шагом Лтт12, до срабатывания механического ограничителя, фиксировать показания системы лазерной координатно-измерительной Leica АТ401.
Рассчитать погрешность позиционирования антенны-зонда как разность между координатами вертикальной плоскости измерений системы лазерной координатно-измерительной Leica АТ401 и измеренными координатами положения антенны-зонда Az, м.
Погрешность измерений фазы А^?(/), рад, обусловленную неточностью позиционирования антенны-зонда в плоскости сканирования, для каждого номинала частоты, указанного в п. 8.3.1.1, оценить по формуле (16):
A^(/)=fc-Az,
(16)
где к = 2л-/2 - волновое число, 1/м;
2 - длина волны, соответствующая частотам, указанным в п. 5.1.1, м.
За погрешность измерений фазы 0Ф2 для каждого номинала частоты, указанного в п.
8.3.1.1, принять среднее квадратическое значение погрешности, определенное по формуле (17):
i=0_______________
(П)
М - число точек, в которых проводились измерения пространственного положения антенны-зонда.
Размеры рабочей области сканирования по осям Ох и Оу рассчитать как разность между показаниями системы лазерной координатно-измерительной Leica АТ401 в момент срабатывания механического ограничителя сканера и ее показаниями при установке антенны-зонда в крайние положения.
-
8.3.1.6 Погрешность измерений фазы, обусловленную случайными перегибами радиочастотного тракта комплекса определить с помощью набора меры отражения из состава мер коэффициентов передачи и отражения 85056А.
В измерительный тракт комплекса внести меру отражения таким образом, чтобы он замыкал соединитель радиочастотного кабеля для подключения антенны-зонда.
Провести однопортовую калибровку анализатора из состава комплекса в диапазоне частот от 26 до 50 ГГц в соответствии с технической документацией на него.
Провести измерения фазы комплексного коэффициента отражения при следующих настройках анализатора:
-
- полоса анализа от 26 до 50 ГГц;
-
- ширина полосы пропускания 500 Гц;
-
- уровень мощности выходного колебания -10 дБ (мВт);
-
- режим измерений фазы комплексного коэффициента отражения SI 1.
С помощью программы ручного управления сканером (рис. 2) в соответствующей вкладке программного продукта для измерений в ближней зоне «NFMeas» переместить антенну-зонд в крайнее нижнее положение.
Перемещая антенну-зонд с установленным оптическим отражателем вдоль оси хОу в пределах рабочей зоны сканера с шагом 20 см, фиксировать показания анализатора.
За оценку погрешности измерений фазы, обусловленную случайными перегибами радиочастотного тракта комплекса, принять разность между максимальным и минимальным значением измеренной фазы комплексного коэффициента отражения на частоте 50 ГГц.
-
8.3.1.7 Оценку среднего квадратического отклонения результатов измерений амплитудного и фазового распределений (АФР) проводить методом прямых измерений с многократными наблюдениями распределения поля, формируемого на плоскости сканирования антенной ТМА 1-50 Э из состава комплекса.
Антенну ТМА 1-50 Э установить на опорно-поворотное устройство в положение, соответствующее вертикальной поляризации, таким образом, чтобы плоскость раскрыва была параллельна плоскости сканирования.
Используя режим ручного или дистанционного управления сканера, установить антенну-зонд соосно с антенной ТМА 1-50 Э в положение, соответствующее вертикальной поляризации.
Расстояние между раскрывами антенны ТМА 1-50 Э и антенны-зонда установить равным в пределах ЗА., где А, - максимальная длина волны измеряемого поддиапазона частот.
Запустить программу измерений в частотной области.
В соответствии с РЭ на комплекс установить полосу частот анализатора от 26 до 50 ГГц, ширину полосы пропускания 100 Гц, шаг перестройки по частоте 5 ГГц, уровень мощности выходного сигнала анализатора 0 дБ (мВт).
Далее установить следующие настройки:
-
- шаг сканирования - не более А/2;
-
- режим сканирования - непрерывное сканирование без реверса;
-
- поляризация измеряемой антенны - вертикальная;
-
- поляризация зонда - вертикальная;
-
- размеры области сканирования 200 * 300 мм.
Нажать кнопку «НАЧАТЬ ИЗМЕРЕНИЯ».
Измерить АФР не менее 7 раз с интервалом не менее 5 мин (далее по тексту - результаты измерений АФР, полученные в ходе одного сканирования, - реализация).
Запустить программу расчета характеристик антенн по данным в ближнем поле nfcalc.exe, входящую в комплект поставки комплекса. На частоте 50 ГГц рассчитать амплитудные Aj и фазовые ср j распределения, а также среднее квадратическое отклонение результатов измерений амплитудного и фазового распределений по формулам (4) и (8).
-
8.3.1.8 Результаты поверки считать положительными, если значения погрешности измерений амплитудного распределения электромагнитного поля при динамическом диапазоне измерений амплитудного распределения не менее 60 дБ и кроссполяризационной развязке антенны-зонда не менее 20 дБ находятся в следующих пределах для относительных уровней амплитудного распределения:
ю дБ
±0,3 дБ;
20 дБ
±0,3 дБ;
30 дБ
±0,4 дБ;
40 дБ
±0,7 дБ;
50 дБ
± 1,1 дБ,
а значения абсолютной погрешности измерений фазового распределения электромагнитного поля при динамическом диапазоне измерений амплитудного распределения не менее 60 дБ находятся в следующих пределах при относительном уровне амплитудного распределения:
-10 дБ |
±13°; |
-20 дБ |
±13°; |
-30 дБ |
±13°; |
-40 дБ |
±14°; |
-50 дБ |
±18°. |
В противном случае результаты поверки считать отрицательными и последующие операции поверки не проводить, комплекс бракуется и подлежит ремонту.
-
8.3.2 Определение погрешности измерений относительных уровней амплитудных диаграмм направленности и абсолютной погрешности измерений фазовых диаграмм направленности
-
8.3.2.1 Определение погрешности измерений относительных уровней амплитудных диаграмм направленности (АДН) и фазовых диаграмм направленности (ФДН) осуществить методом математического моделирования с учетом результатов, полученных в п. 8.3.1 настоящего документа, путем сравнения невозмущенных амплитудных диаграмм направленности, определенных для антенн с равномерным синфазным распределением токов на апертуре, и тех же диаграмм направленности, но с учетом погрешности измерений амплитудного и фазового распределений (АФР).
-
8.3.2.2 Невозмущенную диаграмму направленности оценить следующим образом.
-
Размеры плоскости сканирования выбрать из критерия максимального сектора углов восстанавливаемой ДН, равного ±65°, по формулам (18):
Lx =a+2R- tgO, (18)
Ly =b+2R- tg(p,
где Lx, Ly- размеры плоскости сканирования в соответствующих плоскостях, м;
а, b - размеры раскрыва в соответствующих плоскостях, м, а = b > 5Атах, где Лтах - длина волны, соответствующая частотам 1; 25 и 50 ГГц;
R - измерительное расстояние, R = 3 Лтах, м;
0 - 2,27 рад..
Интервал дискретизации выбрать равным 0,5Лтас.
Для частоты 1 ГГц пересчитать АФР в раскрыве антенны в АФР на плоскости сканирования по формуле (19):
N-IM-1
J(x2,y2)=
п=0 т=0
^,y)e.p[J(V^ y))] { + г д >(19)
где J(х2, у2) - АФР на плоскости сканирования;
(х2, у2) - координаты на плоскости сканирования, м;
Ао - амплитуда сигнала (Ao = 1 В)',
<ро- фаза сигнала (уро = 0рад)',
N(M) =
Lx(Ly)
Лх(Ау)
- число шагов сканирования в каждой из плоскостей, где Ах, Ау - шаг ска
нирования в плоскости X и Y, соответственно.
Рассчитать нормированную амплитудную диаграмму направленности и фазовую диа
грамму направленности по формулам (20) и (21):
F . I, , 2 \3(J(x2,y2H
i(U’V> “ V MAXli3(J(x2,y2)ff
F„(u,v) = arg[S( J (x2, y2))]
где I...I - модуль комплексной величины;
(20)
(21)
3 (...) - оператор двумерного дискретного преобразования Фурье;
МАХ - максимальное значение амплитудной диаграммы направленности; arg - аргумент функции;
и = sin 0 • cos (р, v = sinO ■ sin q> - угловые координаты;
Л Л
U = ±---N, V = ±---М - угловые сектора в системе координат направляющих косинусов
27.^. 2Ly
(u,v), в пределах которых восстанавливается диаграмма, рад;
W = л/1-U2 - V2
, в = arccos w, <р = arctg — .
-
8.3.2.3 Амплитудную диаграмму антенны и ФДН с учетом погрешности измерений АФР оценить следующим образом.
Значения погрешности измерений амплитудного и фазового распределений для каждого относительного уровня амплитудного распределения М задавать программно с учетом оценки погрешности измерений АФР, полученных в п. 8.3.1, по формулам (22) и (23):
(22)
(23)
8А = Norm(0.cr2 а) , = Norm( 0,сг2р), где Norm - генератор случайных величин, распределенных по нормальному закону;
сгА - среднее квадратическое отклонение результатов измерений амплитудного распределения
аА =1020 /2,45;
бгр - среднее квадратическое отклонение результатов измерений фазового распределения стл =Дф/2,45.
Рассчитать амплитудное и фазовое распределения ЭМП на плоскости сканирования с учетом погрешности их измерений по формуле (24):
J* (х2 > У г) = Их2 > У2 X1 + ^)exp(j(arg(j(x2, у2))+ Д^)). (24)
Аналогичным образом провести расчет «возмущенных» ДН 7 раз. При каждой последующей реализации воспроизводить новые случайные величины по законам (21).
-
8.3.2.4 Погрешность измерений относительных уровней АДН и ФДН оценить следующим образом.
Среднее квадратическое отклонение результатов измерений уровней АДН и ФДН в двух главных сечениях при <р=0 и <р=тт/2 рассчитать по формулам (25) и (26):
°fa
(25)
(26)
где к - число реализаций моделирования, к =7.
Рассчитать погрешность измерений уровней АДН и ФДН по формулам (27) и (28):
8Fa = ±20 lg(l + 2,45о-Гл); (27)
1R0
ДГФ=±—2,45-<тГф. (28)
л
Аналогичные расчеты провести для номиналов частот, указанных в п. 8.3.2.2.
-
8.3.2.5 Результаты поверки считать положительными, если значения погрешности измерений относительных уровней амплитудных диаграмм направленности до уровней (при крос-споляризационной развязке антенны-зонда не менее 20 дБ, динамическом диапазоне измеренного амплитудного распределения антенны не менее 60 дБ), не превышают пределов:
-10 дБ
-20 дБ
-30 дБ
-40 дБ
-50 дБ
±0,3 дБ;
±0,4 дБ;
±0,6 дБ;
±1,0 дБ;
±1,7 дБ,
и значения абсолютной погрешности измерений фазовых диаграмм направленности (при кроссполяризационной развязке антенны-зонда не менее 20 дБ, динамическом диапазоне измеренного амплитудного распределения антенны не менее 60 дБ) при относительных уровнях амплитудных диаграмм, не превышают пределов:
-10 дБ
-20 дБ
-30 дБ
-40 дБ
-50 дБ
±13°; ±13°; ±14°;
±16°; ±21°.
В противном случае результаты поверки считать отрицательными и последующие операции поверки не проводить, комплекс бракуется и подлежит ремонту.
8.3.3 Определение погрешности измерений коэффициента усиления антенн-
8.3.3.1 Погрешность измерений коэффициента усиления определить расчетным путем при использовании результатов измерений, полученных в п. 8.3.2 настоящей МП.
Погрешность измерений коэффициента усиления 8, дБ, рассчитать по формуле (29):
(29)
где 31 - погрешность измерений АДН до уровней минус 10 дБ, <5/=0,072;
$2 - погрешность коэффициента усиления эталонной антенны, 32=0,12; 0,2; 0,41; 0,6;
Зз - погрешность за счет рассогласования.
За погрешность Зз принять максимальное из двух значений, рассчитанных по формулам
(30) и (31):
(30) (31)
где Гэ, Ги, Гк - коэффициенты отражения входов эталонной, испытываемой антенн, входа анализатора из состава комплекса.
Модуль коэффициента отражения связан с коэффициентом стоячей волны по напряжению (КСВН) соотношением (32):
Л
(32)
-
8.3.3.2 При расчетах погрешности за счет рассогласования значение КСВН эталонной антенны, используемой при проведении измерений, не должно превышать 1,2, испытываемой антенны - 2,0, КСВН входа векторного анализатора цепей - 1,2.
-
8.3.3.3 Результаты поверки считать положительными, если значения погрешности измерений коэффициента усиления антенны методом замещения при КСВН испытываемой антенны не более 2 и погрешности измерений коэффициента усиления эталонной антенны, дБ:
0,5 дБ
0,8 дБ
1,5 дБ
2,0 дБ
±0,7 дБ;
±1,0 дБ;
±1,7 дБ;
±2,2 дБ.
В противном случае результаты поверки считать отрицательными и последующие операции поверки не проводить, комплекс бракуется и подлежит ремонту.
8.3.4 Определение погрешности измерений поляризационных диаграмм-
8.3.4.1 Определение погрешности измерений поляризационных диаграмм проводить расчетным путем при использовании результатов расчетов, полученных в п. 8.3.2 настоящего документа.
Погрешность измерений относительных уровней поляризационных диаграмм Зпх (дБ), рассчитать по формуле (33):
(33)
где di - погрешность измерений амплитудных диаграмм на уровнях, соответствующих уровню поляризационной диаграммы, рассчитываемая по формуле (27);
82 - погрешность из-за неполной кроссполяризационной развязки зонда, оцениваемая по формуле (34):
(34)
^2 = 1 + 1Q0.05(^-/f3) ’
где Ки, Кз - коэффициент эллиптичности испытываемой антенны и зонда.
Результаты поверки считать положительными, если значения погрешности измерений поляризационных диаграмм не превышают допускаемых пределов при следующих относительных уровнях:
-10 дБ
-20 дБ
-30 дБ
-40 дБ
±0,3 дБ;
±0,4 дБ;
±0,7 дБ;
±1,3 дБ.
В противном случае результаты поверки считать отрицательными и последующие операции поверки не проводить, комплекс бракуется и подлежит ремонту.
8.3.5 Определение диапазона рабочих частот-
8.3.5.1 Проверку диапазона рабочих частот проводить по результатам определения погрешности измерений амплитудного и фазового распределений.
-
8.3.5.2 Результаты поверки считать положительными, если в диапазоне частот от 1 до 50 ГГц значения погрешности измерений амплитудного и фазового распределений не превышают установленных значений (см. п. 8.3.1). В этом случае диапазон частот комплекса составляет от 1 до 50 ГГц.
В противном случае результаты поверки считать отрицательными и последующие операции поверки не проводить, комплекс бракуется и подлежит ремонту.
8.3.6 Определение размеров рабочей области сканирования-
8.3.6.1 Определение размеров рабочей области сканирования осуществить по результатам измерений, выполненных в соответствии с п. 8.3.1.5 настоящей МП.
-
8.3.6.2 Результаты поверки считать положительными, если размеры рабочей области сканирования комплекса (длина х высота) не менее 5,7 х 5,65 м.
В противном случае результаты поверки считать отрицательными и последующие операции поверки не проводить, комплекс бракуется и подлежит ремонту.
8.3.7 Определение сектора углов восстанавливаемых диаграмм направленности-
8.3.7.1 Определение сектора углов восстанавливаемых диаграмм направленности осуществить по результатам определения погрешности измерений по п.8.3.2.
-
8.3.7.2 Результаты поверки считать положительными и сектор углов восстанавливаемой амплитудной диаграммы направленности в азимутальной и угломестной плоскостях составляет от -65° до 65°, если при заданных в п. 8.3.2 условиях моделирования (секторы углов 0 и <р) рассчитанная погрешность измерений относительных уровней АДН не превышает установленных в п. 8.3.2 значений.
В противном случае результаты поверки считать отрицательными и последующие операции поверки не проводить, комплекс бракуется и подлежит ремонту.
9 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ-
9.1 Комплекс признается годным, если в ходе поверки все результаты поверки положительные.
-
9.2 Результаты поверки удостоверяются свидетельством о поверке в соответствии с Приказом Министерства промышленности и торговли РФ от 02 июля 2015 г. № 1815.
-
9.3 Если по результатам поверки комплекс признан непригодным к применению, свидетельство о поверке аннулируется и выписывается извещение о непригодности к применению в соответствии с Приказом Министерства промышленности и торговли РФ от 02 июля 2015 г. №1815.
Начальник НИО-1 ФГУП «ВНИИФТРИ»
О.В. Каминский
17