Приказ Росстандарта №1360 от 06.06.2022

№1360 от 06.06.2022
Приказ Федерального агентства по техническому регулированию и метрологии (Росстандарт)

# 330138
ПРИКАЗ О внесении изменений в сведения об утвержденных типах СИ (3)
Приказы по основной деятельности по агентству Вн. Приказ № 1360 от 06.06.2022

2022 год
месяц June
сертификация программного обеспечения

1546 Kb

Файлов: 2 шт.

ЗАГРУЗИТЬ ПРИКАЗ

    
Приказ Росстандарта №1360 от 06.06.2022, https://oei-analitika.ru

МИНИСТЕРСТВО ПРОМЫШЛЕННОСТИ И ТОРГОВЛИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ (Госстандарт)

ПРИКАЗ

06 июня 2022 г.

1360

Москва

О внесении изменений в сведения об утвержденных типах средств измерений

В соответствии с Административным регламентом по предоставлению Федеральным агентством по техническому регулированию и метрологии государственной услуги по утверждению типа стандартных образцов или типа средств измерений, утвержденным приказом Федерального агентства по техническому регулированию и метрологии от 12 ноября 2018 г. № 2346 «Об утверждении Административного регламента по предоставлению Федеральным агентством по техническому регулированию и метрологии государственной услуги по утверждению типа стандартных образцов или типа средств измерений», приказываю:

  • 1. Внести изменения в сведения об утвержденных типах средств измерений в части сведений об изготовителях (правообладателях) утвержденных типов средств измерений согласно приложению к настоящему приказу.

  • 2. Утвердить измененные описания типов средств измерений, прилагаемые к настоящему приказу.

  • 3. ФГБУ «ВНИИМС» внести сведения об утвержденных типах средств измерений согласно приложению к настоящему приказу в Федеральный информационный фонд по обеспечению единства измерений в соответствии с Порядком создания и ведения Федерального информационного фонда по обеспечению единства измерений, передачи сведений в него и внесения изменений в данные сведения, предоставления содержащихся в нем документов и сведений, утвержденным приказом Министерства промышленности и торговли Российской Федерации от 28 августа 2020 г. № 2906^

  • 4. Контроль за испол                                  за собой.

Федеральное агентство по техническому регулированию и

метрологии.

Заместитель Руководителя

Сертификат: 029D109B0OOBAE27A64C995DDB0602O3A9 Кому выдан: Лазаренко Евгений Русланович Действителен: с 27.12.2021 до 27.12.2022

к_________________________

Е.Р.Лазаренко




ПРИЛОЖЕНИЕ к приказу Федерального агентства по техническому регулированию и метрологии от «6» июня 2022 г. № 1360

Сведения

об утвержденных типах средств измерений, подлежащие изменению в части сведений об изготовителях (правообладателях)

№ п/п

Наименование типа

Обозначение типа

Регистрационный номер в ФИФ

Изготовитель

Правообладатель

Заявитель

Отменяемые сведения

Устанавливаемые сведения

Отменяемые сведения

Устанавливаемые сведения

1

2

3

4

5

6

7

8

9

1.

Расходомеры жидких сред

УРАН-1РМ

63788-16

Юридический (почтовый) адрес: 390011, г. Рязань, Куйбышевское шоссе, 14а

Адрес: 390011, область Рязанская, город Рязань, шоссе Куйбышевское, дом 14А, литера А2, корпус 4, помещение Н4

Общество с ограниченной ответственностью «Теплоприбор» (ООО «Теплоприбор»), г. Рязань

2.

Комплексы для измерений геометрических параметров колесных пар

«ГЕОМЕТРИКС

КП»

61942-15

Адрес: 194291 г. Санкт-Петербург, пр. Луначарского, д. 72/1

Юридический адрес: Россия, 194223, г. Санкт-Петербург, вн.тер. г. муниципальный округ Светлановское, улица Курчатова, дом 9, строение 2, помещение 435

Акционерное общество «Виматек» (АО «Виматек»), г. Санкт-Петербург

3.

Комплексы автоматизированные для измерений геометрических параметров осей колесных пар и крупногабаритных тел вращения

«ГЕОМЕТРИКС

-О»

61943-15

Адрес: 194291 г. Санкт-Петербург, пр. Луначарского, д. 72/1

Юридический адрес: Россия, 194223, г. Санкт-Петербург, вн.тер. г. муниципальный округ Светлановское, улица Курчатова, дом 9, строение 2, помещение 435

Акционерное общество «Виматек» (АО «Виматек»), г. Санкт-Петербург

УТВЕРЖДЕНО приказом Федерального агентства по техническому регулированию и метрологии от «6» июня 2022 г. № 1360

Лист № 1

Всего листов 8

Регистрационный № 63788-16

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Расходомеры жидких сред УРАН-1РМ

Назначение средства измерений

Расходомеры жидких сред УРАН-1РМ (далее - расходомеры) предназначены для измерения объемного расхода различных жидкостей в трубопроводах и передачи результатов измерения в виде аналогового и цифрового выходных сигналов.

Описание средства измерений

Принцип действия заключается в поочередной коммутации электроакустических преобразователей на излучение и прием ультразвуковых колебаний. Излучение производится с частотой 250 Гц. При этом платой измерения расхода производится измерение времен прохождения ультразвуковых колебаний по потоку и против потока движущейся жидкости. По известным временам прохождения определяется скорость ультразвука в среде, по разности времен по потоку и против потока при известной скорости ультразвука определяется объемный расход жидкости. Расходомеры имеют один канал измерения. Цепи электрического питания, контроля и выходных сигналов гальванически изолированы друг от друга.

Конструктивно расходомер состоит из первичного преобразователя (ПП) с установленными пьезопреобразователями и вторичного преобразователя (ВП-А) со встроенной платой измерения расхода, соединительных кабелей связи с преобразователем первичным (КСП), соединительных кабелей связи с преобразователем вторичным (КСВ), переходной муфты (М-12).

ПП устанавливаются в разрыв трубопровода. В зависимости от условий эксплуатации предусмотрены модификации ПП, отличающиеся конструктивным исполнением, материалом корпуса, способом соединения с трубопроводом и максимальным рабочим давлением контролируемой среды:

- ППО-А - первичный преобразователь осевой, для трубопроводов с диаметром условного прохода от 10 до 40 мм включительно;

- ППОТ-К - первичный преобразователь осевой, для трубопроводов с диаметром условного прохода 50 и 65 мм;

- ППУ-А - первичный преобразователь угловой, для трубопроводов с диаметром условного прохода (Ду) свыше 65 мм.

Прием, обработка измерительной информации от ПП и формирование выходного сигнала осуществляется ВП-А. В зависимости от исполнения ВП-А расходомеры имеют один из видов выходного аналогового сигнала:

- напряжение постоянного тока от 0 до 5 В или от 0 до 10 В при сопротивлении нагрузки не менее 2 кОм;

- сила постоянного тока от 0 до 5 мА при сопротивлении нагрузки не более 2 кОм или от 4 до 20 мА при сопротивлении нагрузки не более 500 Ом.

Для аналоговых выходных сигналов линейная зависимость пропорциональна измеряемому расходу.

Подсоединение внешнего кабеля к ВП-А и кабелей от преобразователей первичных осуществляется через герметичные разъемы, расположенные на боковой стенке корпуса вторичного преобразователя прибора.

Расходомеры соответствуют требованиям по электромагнитной совместимости в условиях электромагнитной обстановки средней жесткости по группе исполнения III с критерием качества функционирования А по ГОСТ 32137-2013.

Степень защиты расходомеров, обеспечиваемая оболочкой, IP67 по ГОСТ 14254-96. Расходомеры предназначены для работы во взрывобезопасных помещениях. Фотографии внешнего вида расходомеров приведены на рисунках 1, 2 и 3, на которых цифрой 1 - обозначены места пломбировки от несанкционированного доступа, а цифрой 2 -информационная табличка.

Приказ Росстандарта №1360 от 06.06.2022, https://oei-analitika.ru

Рисунок 2 - Внешний вид преобразователя первичного осевого ППО-А

Приказ Росстандарта №1360 от 06.06.2022, https://oei-analitika.ru

Рисунок 3 - Внешний вид преобразователя первичного осевого ППОТ-К

Приказ Росстандарта №1360 от 06.06.2022, https://oei-analitika.ru

Рисунок 1- Внешний вид расходомера с преобразователем первичным угловым ППУ-А

Программное обеспечение

В расходомерах используется встроенное программное обеспечение (ПО), которое устанавливается в энергонезависимую память встроенной платы измерения расхода при изготовлении, в процессе эксплуатации данное ПО не может быть модифицировано, загружено или прочитано через какой-либо интерфейс.

ПО обеспечивает выполнение следующих функций:

- измерение (вычисление) времени прохождения ультразвукового импульса по потоку и против потока;

- пересчет полученных временных соотношений в значение расхода;

- выдача значения расхода в виде силы постоянного электрического тока, напряжения постоянного электрического тока или цифровым интерфейсом RS-485.

Идентификационные данные программного обеспечения указаны в таблице 1.

Таблица 1

Идентификационные данные ПО

Значение

Идентификационное наименование ПО

Uran 3.hex

Номер версии (идентификационный номер) ПО

1.0

Цифровой идентификатор (контрольная сумма)

BF88

Алгоритм вычисления цифрового идентификатора ПО

CRC16

Нормирование метрологических характеристик расходомеров проведено с учетом влияния ПО. Конструкция расходомеров исключает возможность несанкционированного влияния на ПО и измерительную информацию.

Уровень защиты ПО и измерительной информации «Высокий» по Р 50.2.077-2014 г.

Метрологические и технические характеристики

Расходомеры в зависимости от вида измеряемой среды имеют исполнения, указанные в таблице 2.

Таблица 2

Исполнение по виду измеряемой среды

Вид измеряемой среды

Рабочее давление, (Ру), МПа

Верхний предел измерений, м3

Диапазон температур измеряемой среды, °С

Кинематическая вязкость, мм2

I

морская вода

от 1,6 до 16

от 1,0 до 250,0

от минус 2

до плюс 35

1,04

от 25 до 63

от 1,0 до 40,0

II

пресная вода

10

от 1,0 до 250,0

от 0 до 180

1,0

бидистиллят воды

25

III

дизельное топливо

1

2

от 5 до 50

от 6 до 12

4

от 2,5 до 40,0

IV

масла: БЗВ по

ТУ 38-101-295-72 и

Т-46 по ТУ 38-101251-72

1

от 1,0 до 250,0

от 15 до 80

от 15 до 400

2

15

VI

рассол 60

25

250,0

до 50

-

Примечания:

  • 1 Верхний предел измерений расходомеров может быть любым из ряда: 1,0; 1,6; 2; 2,5; 5; 4,0; 6,3; 10,0; 15; 16,0; 25,0; 30; 40,0; 63,0; 100,0; 160,0; 250 м3/ч, но в пределах, указанных в таблице 2.

  • 2 Значения кинематической вязкости для измеряемых сред морская вода, пресная вода, вода приведены для температуры 20 °С, для остальных сред - в диапазоне рабочих температур.

  • 3 Измеряемая среда морская вода может содержать следующие примеси:

- механические частицы (текстильные волокна, песок, твердые продукты коррозии и т.п.) размером до 2,5 мм и содержанием до 15 мг/л;

- пищевые отходы с размерами частиц до 0,3 мм и содержанием до 1 г/л;

- жировые отходы, содержанием до 1 г/л;

- крахмал содержанием до 0,5 г/л;

- мыло содержанием до 0,5 г/л;

-уксус 3%-ный содержанием до 0,05 г/л;

- рассольная смесь от испарительных установок с температурой до 50 °С и соленостью до 60 %;

- нефтепродукты.

Допускается содержание газа 35 мг/л с объемом воздушных пузырей до 8 мм3 и диаметром до 2,5 мм.

Пределы основной допускаемой приведенной погрешности измерений (уосн), выраженной в процентах от верхнего предела измерений, %:

  • - в диапазоне от 31 до 101 % верхнего предела измерений

  • - в диапазоне от 10 до 100 % верхнего предела измерений Дополнительная погрешность расходомеров, вызванная отклонением

2 температуры измеряемой среды от градуировочного значения2 3 на каждые 10 °С, не более

Дополнительная погрешность расходомеров, вызванная отклонением

3 температуры окружающей среды от градуировочного значения на каждые 10 °С, не более Вариация выходного сигнала расходомеров, не более Выходной сигнал расходомера:

  • - напряжение постоянного тока, В

  • - сила постоянного тока, мА

  • - цифровой сигнал Параметры электрического питания

  • - напряжение постоянного тока (номинальное значение), В

  • - потребляемая мощность, Вт, не более Рабочие условия измерений:

  • - температура окружающей среды, °С

  • - относительная влажность воздуха при температуре 55 °С, % Габаритные размеры ПП ((Ду) х длина х высота), мм, не более:

  • - ППО-А

  • - ППОТ-К

  • - ППУ-А Габаритные размеры ВП-А (длина х ширина х высота), мм, не более Масса, кг, не более:

  • - ППО-А

  • - ППОТ-К

  • - ППУ-А

  • - ВП-А

±2,5;

±1,0.

±0,1'|уосн.|.

±0,2’|уосн.|.

Уосн.

от 0 до 5; от 0 до 10 от 0 до 5 мА; от 4 до 20 мА интерфейс RS-485.

24; 27;

10.

от минус 10 до плюс 55;

95±3.

40х165х211;

65х165х211; 150х829х360; 350х260х110

15,8;

34,5; 172,9;

8,1.

Номенклатура типоразмеров расходомеров в зависимости от диаметра условного прохода (Ду) и верхнего предела измерений, рабочего давления (Ру) приведена в таблице 3.

Таблица 3

Исполнение расходомера

Исполнение по виду измеряемой среды

Рабочее давление среды, МПа

Ду, мм

Верхний предел измерений, м3

Рабочее давление

Ру, МПа

Исполнение

ПП

Способ соединения (П1 - фланцевое П2 - сварное)

1

2

3

4

5

6

7

10

1,0; 1,6

1

ППО-А

П1

IV

1

10

П1

I

6,3; 10

II

10

П2

I

1,6; 6,3; 10

II

10

16

П2

I

16

25

П1

I; II

25

П2

40

П2

I

40

63

П2

I

63

15

2,5; 4,0

1

ППО-А

П1

IV

1

4

П1

I

1,6

П1

iii

4

10

П1

I

6,3; 10

II

10

П2

I

6,3; 10

II

10

16

П2

I

16

25

П1

I; II

25

П2

40

П2

I

40

63

П2

I

63

20

5,0

4

ППО-А

П1

IV

1; 2

25

6,3; 10,0

1

ППО-А

П1

IV

1

1,6

П1

I

1,6

4

П1

III

4

6,3

П1

I

6,3

10

П1

I; II

10

П2

16

П2

I

16

25

П1

I; II

25

П2

40

П2

I

40

63

П2

I

63

Продолжение таблицы 3

1

2

3

4

5

6

7

32

2,0

1,0

ППО-А

П1

III

1,0

15,0

4,0

П1

IV

1,0; 2,0

16,0

10,0

П2

I

6,3

II

10,0

30,0

10,0

П2

II

10,0

40

16,0; 25,0

1,6

ППО-А

П1

I, II

1,6

4,0

П1

III, II

4,0

6,3

П1

I, II

6,3

10,0

П1

I; II

10,0

П2

25,0

П1

I; II

25,0

П2

50

5,0; 16,0;

25,0; 40,0

0,6; 1,6;

4,0; 25,0

ППОТ-К

П1

II

0,6; 1,6;

4,0; 25,0

П2

65

40,0

1,6

ППОТ-К

П1

I

1,6

4,0

П1

iii

4,0

6,3

П1

I

6,3

10,0

П1

I; II

10,0

П2

16,0

П2

I

16,0

25,0

П1

I; II

25,0

П2

63,0

1,6

ППОТ-К

П1

I

1,6

6,3

П1

I

6,3

10,0

П1

I; II

10,0

П2

16,0

П2

I

16,0

25,0

П1

II

25,0

П2

100

100,0

1,6

ППУ-А

П1

I

1,6

160,0

1,6

П1

I

1,6

IV

1,0

100,0,

160,0

6,3

П1

I

6,3

10,0

П1

I, II

10,0

П2

16,0

П2

I

16,0

25,0

П1

II

25,0

П2

Продолжение таблицы 3

1

2

3

4

5

6

7

150

160

1,0

ППУ-А

П1

II (дистиллят)

1,0

1,6

П1

I

1,6

6,3

П1

I

6,3

10

П1

I; II

10

П2

16

П2

I

16

25

П1

II

25

П2

250

1,0

ППУ-А

П1

II (дистиллят);

IV

1,0

1,6

П1

I

1,6

10

П1

II

10

П2

25

П1

II; VI

25

П2

П2

Знак утверждения типа

наносится типографским способом на титульном листе руководства по эксплуатации и на информационную табличку, расположенную на лицевой панели вторичного преобразователя (ВП-А), методом фотолитографии или другим способом, не ухудшающим качество, место нанесения обозначено цифрой 2 на рисунке 1.

Комплектность средства измерений

Комплектность расходомеров представлена в таблице 4.

Таблица 4

Наименование

Обозначение

Количество

Примечание

1

2

3

4

Первичный преобразователь

ППО-А, 11ПОТ-К или ППУ-А

1 шт.

Согласно заказу

Вторичный преобразователь

ВП-А

1 шт.

-

Муфта

М-12

1 шт.

По заказу

Кабель связи

КСП

2 шт.

Длина оговаривается при заказе

Кабель связи

КСВ

2 шт.

Для исполнения с муфтой.

Длина оговаривается при заказе

Кабель

КП-1

1 шт.

Для поверки

Кабель

КП-2

1 шт.

Для поверки

Одиночный комплект ЗИП

РИЮУ.407911.015

1 комп.

-

Монтажный комплект ЗИП:

Ключ

Шайба

1т8.392.009

1т8.940.032

1 шт.

8 шт.

Для исполнения с муфтой

Паспорт

РИЮУ.407254.005 ПС

1 экз.

Руководство по эксплуатации

РИЮУ.407254.005 РЭ

1 экз.

Методика поверки

РИЮУ.407254.005 МИ

1 экз.

Сведения о методиках (методах) измерений приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к расходомерам жидких сред УРАН-1РМ

ГОСТ 8.145-75. «ГСИ. Государственный первичный эталон и общесоюзная поверочная схема для средств измерений объемного расхода жидкостей в диапазоне от 340-6 до 10 м3/с»;

РИЮУ.407254.005 ТУ. «Расходомеры жидких сред УРАН-1РМ. Технические условия».

Изготовитель

Общество с ограниченной ответственностью «Теплоприбор» (ООО «Теплоприбор») ИНН 6227001715

Адрес: 390011, область Рязанская, город Рязань, шоссе Куйбышевское, дом 14А, литера А2, корпус 4, помещение Н4

Тел.: (4912) 77-94-49

Факс: (4912) 77-94-49 доб. 5010

E-mail: teplopr@teplopribor.ru

Испытательный центр

Закрытое акционерное общество Консалтинго - инжиниринговое предприятие «Метрологический центр энергоресурсов» (ЗАО КИП «МЦЭ»)

Адрес: 125424, г. Москва, Волоколамское шоссе, 88, стр. 8

Тел: (495) 491 78 12, (495) 491 86 55

Е-mail: sittek@mail.ru, kip-mce@nm. ru Аттестат аккредитации ЗАО КИП «МЦЭ» по проведению испытаний средств измерений в целях утверждения типа № RA.RU 311313 от 01.05.2015 г.

Примечания:

1

2

УТВЕРЖДЕНО приказом Федерального агентства по техническому регулированию и метрологии от «6» июня 2022 г. № 1360

Лист № 1 Регистрационный № 61942-15 Всего листов 8

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Комплексы для измерений геометрических параметров колесных пар «ГЕОМЕТРИКС КП»

Назначение средства измерений

Комплексы для измерений геометрических параметров колесных пар «ГЕОМЕТРИКС КП» (далее - комплексы) предназначены для автоматизированного измерения геометрических параметров колесных пар вагонов метрополитена и железных дорог.

Описание средства измерений

Комплексы изготавливаются в двух исполнениях:

  • •  исполнение 1 - предназначено для измерения геометрических параметров колесных пар вагонов метрополитена.

  • •  исполнение 2 -предназначено для измерения геометрических параметров колесных пар вагонов железных дорог.

Принцип действия комплексов основан на бесконтактном измерении линейных размеров лазерными триангуляционными измерительными датчиками.

Для измерения диаметров, конусности и овальности шеек оси используются лазерные триангуляционные датчики, обеспечивающие измерение расстояний в диапазоне 0-2 мм с дискретностью 0,0001 мм.

Для измерения остальных параметров колесной пары используются лазерные триангуляционные датчики, обеспечивающие измерение расстояний в диапазоне 0-50 мм с дискретностью 0,001 мм и 0-100 мм с дискретностью 0,01 мм.

В состав комплекса входят

  • •  портал

  • •  модули контроля

  • •  модули перемещения лазерных датчиков

  • •  механизм вращения колесной пары

  • •  шкаф автоматики с компьютером нижнего уровня

  • •  пульт управления

Портал представляет собой конструкцию, состоящую из боковых стоек и верхней поперечной балки, опирающейся на стойки сверху. Установка опирается на четыре регулируемые опоры, необходимые для точного выставления высоты относительно колесной пары, расположенной на роликах механизма вращения колесной пары. Для защиты установки от внешних воздействий предусмотрены боковые панели, крыша и тентовая шторка.

На поперечной балке портала закреплены

-модули контроля параметров шеек, предподступичных частей оси и толщины обода диска,

-модули контроля профиля диска, толщины обода диска и диаметра колес,

-лазерный датчик контроля центрального диаметра оси,

- датчик наличия оси,

-панель пневматики и распределительные коробки.

Модуль контроля параметров шеек, предподступичных частей оси и толщины обода диска

Три пары датчиков и один датчик расположены на измерительной скобе. Скоба прикрыта от внешних воздействий кожухами. Под кожухом расположен механизм автоматической настройки положения скобы в горизонтальной плоскости, по ходу движения колесной пары. Вертикальное и горизонтальное движение измерительных скоб осуществляют линейные модули с шаговыми двигателями.

Модуль контроля профиля диска, толщины обода диска и диаметра колес

В нижней части модуля расположены: датчик контроля профиля и толщины обода диска и датчик контроля диаметра колеса. Датчики закреплены на линейном модуле перемещения и прикрыты от внешних воздействий кожухом. Шток линейного преобразователя перемещений поднимается и опускается пневмоцилиндром через упорную деталь. Вертикальное и горизонтальное движение лазерных датчиков осуществляют линейные модули с шаговыми двигателями.

Панель пневматики

Панель пневматики предназначена для подготовки и распределения воздуха для исполнительных механизмов - пневмоцилиндров перемещения линейных преобразователей перемещения в модуле контроля диаметров колес.

Механизм вращения колесной пары предназначен для поворота колесной пары в разные угловые положения и выталкивания проконтролированной колесной пары с позиции контроля на выходной рельсовый путь при помощи пневмопривода.

Шкаф управления содержит процессорную плату, источники постоянного тока, драйверы шаговых двигателей, частотные преобразователи и систему силовой и коммутационной электроники. Процессорная плата формата PCI-104, комплектованная модулем дискретных входов-выходов PCI-104, и двумя платами гальванической развязки, представляет собой нижний уровень системы управления. Нижний уровень предназначен для управления работой механизмов перемещения, сбора данных с лазерных датчиков и управления циклами работы установки. Обмен данными между нижним и верхним уровнями осуществляется по сети ETHERNET. Также по сети ETHERNET устанавливается связь с цеховым сервером при необходимости передачи данных на удаленный ПК.

Пульт управления с компьютерной системой и специальным программным обеспечением предназначен для управления работой комплекса. На передней панели пульта управления расположены кнопки управления и лампы индикации.

В состав компьютерной системы входят:

  • •  промышленный компьютер с операционной системой WINDOWS;

  • •  ЖК монитор;

  • •  источник бесперебойного питания;

  • •  клавиатура;

  • •  манипулятор «мышь».

На жестком диске компьютера установлена программа для работы с установкой. Общий вид комплекса (портал и модули контроля и перемещения) показан на рисунке 1.

Приказ Росстандарта №1360 от 06.06.2022, https://oei-analitika.ru

Рисунок 1 - Общий вид Комплексов для измерений геометрических параметров колесных пар «ГЕОМЕТРИКС КП»

Программное обеспечение

Программное обеспечение «Geometrix/Wheelset-Measuring-Facility» установлено на промышленном компьютере, расположенном в пульте управления. Программное обеспечение управляет процессом измерений, собирает и анализирует данные со всех лазерных датчиков и выполняет вычисления параметров. В программной оболочке функции, дающие возможность изменения программного обеспечения пользователем, отсутствуют.

Идентификационные данные программного обеспечения приведены в таблице 1.

Таблица 1

Идентификационные данные (признаки)

Значение

Идентификационное наименование ПО

Geometrix/Wheel set-Measuring-F acility 2.0.832

Номер версии (идентификационный номер) ПО

2.0.832

Цифровой идентификатор ПО

E432A85C (CRC-32)

Другие данные, если имеются

не имеются

Уровень защиты программного обеспечения оценивается, как «высокое»

по Р 50.2.077-2014.

Метрологические и технические характеристики

Метрологические и технические характеристики представлены в таблице 2.

Таблица 2

№ п/ п

Наименование параметра

Исполнение 1

Исполнение 2

Диапазон измерений, мм

Предел допускаемой абсолютной погрешности, мм

Диапазон измерений, мм

Предел допускаемой абсолютной погрешности, мм

1

2

3

4

5

6

1.

Расстояние между внутренними поверхностями ободьев колес

от 1430,0 до 1450,0 вкл.

±0,5

от 1430,0 до 1450,0 вкл.

±0,5

2.

Диаметр по кругу катания

от 730,0 до 865,0 вкл.

±0,1

от 830,0 до 970,0 вкл.

±0,1

3.

Разность расстояний между внутренними поверхностями ободьев колес.

от 0 до 2,0 вкл.

±0,5

от 0 до 2,0 вкл.

±0,5

4.

Разность диаметров по кругу катания колес, насаженных на одну ось

от 0 дл 2,0

вкл.

±0,1

от 0 до 2,0 вкл.

±0,1

5.

Овальность по кругу катания

от 0 до 1,0 вкл.

±0,1

от 0 до 1,0 вкл.

±0,1

6.

Разность расстояний между торцами оси (вариант-торцами преподступичных частей) и внутренними поверхностями ободьев колес с одной и с другой стороны колесной пары.

-

-

от 0 до 5,0 вкл.

±0,5

7.

Эксцентричность круга катания относительно шейки оси

от 0 до 1,0 вкл.

±0,1

от 0 до 1,0 вкл.

±0,1

8.

Толщина обода цельнокатаного колеса

от 20,0 до 90,0 вкл.

±0,5

от 20,0 до 90,0 вкл.

±0,5

№ п/ п

Наименование параметра

Исполнение 1

Исполнение 2

Диапазон измерений, мм

Предел допускаемой абсолютной погрешности, мм

Диапазон измерений, мм

Предел допускаемой абсолютной погрешности, мм

1

2

3

4

5

6

9.

Разность толщин ободьев колес в одной колесной паре

от 0 до 5,0 вкл.

±0,5

от 0 до 5,0 вкл.

±0,5

10.

Равномерный прокат

от 0 до 10,0

вкл.

±0,1

от 0 до 10,0

вкл.

±0,1

11.

Ширина обода колеса

от 120,0 до 140,0 вкл.

±0,5

от 120,0 до 140,0 вкл.

±0,5

12.

Отклонение профиля:

- по поверхности катания

- по высоте гребня

- по поверхности гребня

от 0 до 1,0 вкл.

от 0 до 2,0 вкл.

от 0 до 1,0

вкл.

-

от 0 до 1, 0 вкл.

от 0 до 2,0 вкл.

от 0 до 1,0

вкл.

-

13.

Толщина гребня колеса

от 29,0 до 35,0 вкл.

±0,5

от 29,0 до 35,0 вкл.

±0,5

14.

Диаметр шейки оси

от 109,0 до

110,1 вкл.

±0,004

От 129,9 до

130,1 вкл.

±0,004

от 129,0 до

130,1 вкл.

от 149,9 до

150,1 вкл.

15.

Диаметр шейки ближний

-

-

от 129,9 до

  • 130.1 вкл.

от 149,9 до

  • 150.1 вкл.

±0,004

16.

Диаметр шейки дальний

-

-

от 129,9 до

  • 130.1 вкл.

от 149,9 до

  • 150.1 вкл.

±0,004

17.

Диаметр предподступичной части оси

от 140,0 до 170,0 вкл.

±0,03

от 160,0 до 190,0 вкл.

±0,03

18.

Диаметр средней части оси

от 140,0 до 170,0 вкл.

±0,6

от 170 до

190 вкл

±0,6

19.

Занижение диаметра шейки у галтели

-

-

от 0 до 1 вкл.

±0,06

20.

Занижение диаметра шейки у галтели

-

-

от 0 до 1 вкл.

±0,06

21.

Расстояние от торца предподступичной части оси до начала занижения диаметра шейки

-

-

от 15 до 35 вкл.

±0,6

№ п/ п

Наименование параметра

Исполнение 1

Исполнение 2

Диапазон измерений, мм

Предел допускаемой абсолютной погрешности, мм

Диапазон измерений, мм

Предел допускаемой абсолютной погрешности, мм

1

2

3

4

5

6

22.

Конусность шейки оси

от 0 до 0,1 вкл.

±0,002

от 0 до 0,1 вкл.

±0,004

23.

Овальность шейки оси

от 0 до 0,1

вкл

±0,002

от 0 до 0,1

вкл

±0,004

24.

Овальность предподступичной части оси

от 0 до 0,1 вкл.

±0,005

от 0 до 0,1 вкл.

±0,02

25.

Толщина диска

-

-

от 15 до 30 вкл.

±0,6

26.

Отклонение от теоретического профиля в месте перехода предподступичной части оси в подступичную

-

-

от 15 до 30 вкл.

±0,4

от 20 до 40 вкл.

27.

Отклонение от теоретического профиля в месте сопряжения шейки и предподступичной части оси

-

-

от 15 до 30 вкл.

±0,4

от 20 до 40 вкл.

28.

Биение средней части оси относительно шеек

-

-

Не более

16

0,5

29.

Биение предпоступичной части оси относительно шеек

-

-

Не более 5

0,3

Рабочие условия эксплуатации представлены в таблице 3.

Таблица 3

Температура окружающего воздуха, °С

от + 10 до + 35

Относительная влажность воздуха при 20°С, %

(65±15)

Габаритные размеры частей установки представлены в таблице 4.

Таблица 4

Наименование

Г абаритные размеры, мм

Механическая часть установки Длина

3234

Ширина

884

Высота

2620

Рабочее место оператора Длина

844

Ширина

600

Высота

1700

Шкаф управления

Длина

800

Ширина

360

Высота

1610

Знак утверждения типа

наносится на титульный лист руководства по эксплуатации и на титульный лист паспорта типографским способом, а также на нижнюю переднюю часть станины методом наклейки.

Комплектность средства измерений

Таблица 5

Наименование

Кол-во

Комплекс «ГЕОМЕТРИКС КП» для измерений геометрических параметров колесных пар

1 шт.

Руководство по эксплуатации

1 экз.

Паспорт

1 экз.

Методика поверки

1 экз.

Сведения о методиках (методах) измерений

Метод измерений изложен в документе «Комплексы для измерений геометрических параметров колесных пар «ГЕОМЕТРИКС КП». Руководство по эксплуатации».

Нормативные и технические документы, устанавливающие требования к комплексам для измерений геометрических параметров колесных «ГЕОМЕТРИКС КП»

ГОСТ Р 8.763-2011 «Государственная система обеспечения единства измерений. Государственная поверочная схема для средств измерений длины в диапазоне от 140-9 до 50 м и длин волн в диапазоне от 0,2 до 50 мкм».

ТУ 4276-026-15157546-2014 «Комплексы для измерений геометрических параметров колесных пар «ГЕОМЕТРИКС КП» Технические условия».

Изготовитель

Акционерное общество «Виматек» (АО «Виматек»)

ИНН 7802214659

Юридический адрес: Россия, 194223, г.Санкт-Петербург, вн.тер. г. муниципальный округ

Светлановское, улица Курчатова, дом 9, строение 2, помещение 435 Тел.: +7 (812) 448-18-42

E-mail: info@vimatec.ru

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы» (ФГУП «ВНИИМС»).

Адрес: 119361, г. Москва, ул. Озерная, д. 46

Телефон: (495) 437-55-77, факс: (495) 437-56-66,

E-mail: office@vniims.ru

Аттестат аккредитации ФГУП «ВНИИМС» по проведению испытаний средств измерений в целях утверждения типа № 30004-13 от 26.07.2013г.

УТВЕРЖДЕНО приказом Федерального агентства по техническому регулированию и метрологии от «6» июня 2022 г. № 1360

Лист № 1

Всего листов 7

Регистрационный № 61943-15

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Комплексы автоматизированные для измерений геометрических параметров осей колесных пар и крупногабаритных тел вращения «ГЕОМЕТРИКС-О»

Назначение средства измерений

Комплексы автоматизированные для измерений геометрических параметров осей колесных пар и крупногабаритных тел вращения «ГЕОМЕТРИКС-О» (далее - комплексы) предназначены для проведения автоматизированного измерения геометрических параметров тел вращения, в том числе осей колесных пар вагонов железных дорог и метрополитена, различных валов и других тел вращения.

Описание средства измерений

Принцип действия комплексов основан на бесконтактном измерении линейных размеров лазерными измерительными датчиками.

Цикл измерений включает определение параметров для четырех угловых положений контролируемой детали, отличающихся на угол поворота 45°. Обработка информации с лазерных датчиков и управление комплексом осуществляется по заданному алгоритму. Результаты измерений, полученные с датчиков, поступают на персональный компьютер, где осуществляется их математическая обработка, вычисление значений требуемых геометрических параметров, их анализ согласно требованиям отраслевой нормативной документации и вывод на монитор.

В зависимости от назначения и перечня измеряемых параметров комплексы изготавливаются в трех исполнениях:

  • •  исполнение 1 - предназначено для измерений геометрических параметров осей колесных пар вагонов метрополитена;

  • •  исполнение 2 - предназначено для измерений геометрических параметров осей колесных пар вагонов железных дорог;

  • •  исполнение 3 - предназначено для измерений геометрических параметров крупногабаритных тел вращения.

Устройство комплексов:

В состав комплексов входят: станина; измерительные модули; пульт управления; механизм поворота контролируемой детали; шкаф управления; транспортное устройство (может отсутствовать при наличии цехового устройства для загрузки объектов контроля в зону проведения измерений).

Станина состоит из сварного основания, на котором смонтированы две подставки. На подставках крепятся опорные ролики вращения контролируемой детали, линейные модули с измерительными скобами, а также установлены стойки, к которым крепится балка.

На балке закреплены линейные модули перемещения, приводящие в движение измерительные кронштейны, с установленными на них лазерными датчиками контроля параметров измеряемой детали. Индуктивный выключатель служит для подтверждения нахождения контролируемой детали в позиции контроля. Пульт управления включает в себя компьютер с программным обеспечением, монитор, клавиатуру, мышь, источник бесперебойного питания, панели управления с кнопками.

Для поворота оси в разные угловые положения служит механизм поворота. Он состоит из 2-х блоков поворотных роликов, асинхронного мотор-редуктора с частотным управлением, двух зубчатых шкивов и зубчатого приводного ремня. Приводные ролики вращаются в корпусных подшипниковых узлах.

Состав и количество модулей комплекса конкретного исполнения комплектуется из следующих измерительных модулей:

- модуль универсального измерения;

- модуль прецизионного измерения диаметров;

- модуль одностороннего измерения радиальный;

- модуль одностороннего измерения осевой.

В состав комплекса исполнения 1 входят: два модуля прецизионного измерения диаметров и два модуля универсального измерения. В состав комплекса исполнения 2 входят: два модуля прецизионного измерения диаметров, два модуля универсального измерения и два модуля одностороннего измерения осевых. Состав и количество измерительных модулей комплекса исполнения 3 зависит от формы детали и значений измеряемых параметров. Геометрические параметры, измеряемые комплексом исполнения 3, соответствуют указанным в таблице 2, исполнения 1 и 2 - в таблице 3.

Модуль универсального измерения представляет собой скобу, на которой расположены два триангуляционных датчика навстречу друг другу. Скоба установлена на механизм перемещения, состоящий из одного или нескольких модулей линейного перемещения, что позволяет скобе перемещаться горизонтально - вдоль оси измеряемой детали и вертикально -перпендикулярно оси измеряемой детали. Такое перемещение скобы в двух взаимно перпендикулярных направлениях обеспечивает позиционирование датчиков, при котором их лучи будут направлены навстречу друг другу на диаметрально противоположные точки осевого сечения детали.

Сумма сигналов с датчиков дает информацию о диаметре детали в данном месте, а разность сигналов дает информацию о положении оси измеряемой поверхности в данном месте.

Для измерения линейных (по оси) размеров используются координаты механизма перемещения совместно с информацией с лазерных датчиков о моментах переходов (скачков) диаметра детали.

Таким образом, диаметры и линейные размеры между торцами (уступами) детали измеряются непосредственно, а измерение детали при сканировании по длине в нескольких угловых положениях детали позволяет получить следующие расчетные геометрические параметры: средний диаметр в конкретном сечении; средний диаметр на некотором участке; конусность; овальность; нецилиндричность; отклонения профиля образующей от заданного; биение одной цилиндрической поверхности относительно других поверхностей; биение торцевой поверхности относительно цилиндрических поверхностей.

В модуле универсального измерения диаметров применяются триангуляционные лазерные датчики с большим диапазоном измерений (протяженность диапазона составляет 100 мм).

Это позволяет одной скобой, при фиксированном положении датчиков, без переналадок контролировать разные диаметры, значения которых лежат в пределах указанного диапазона измерений. Аналогично выполняются измерения параметров отклонения профиля поверхности от заданного.

Модуль прецизионного измерения диаметров конструктивно аналогичен модулю универсального контроля диаметров, но в этом модуле используются датчики с малым диапазоном измерения, поэтому контролируемый диаметр может меняться только в небольших пределах. Для контроля разных диаметров применяется:

  • переналадка (ручная или автоматическая) датчиков на другой диаметр;

  • установка на одной скобе одновременно нескольких пар датчиков, настроенных на разные диаметры;

  • использование сменных скоб с настроенными на разные диаметры парами датчиков.

В первом случае обязательна фиксация датчиков на скобе и настройка после каждой переналадки.

Модуль одностороннего измерения радиальный представляет собой триангуляционный лазерный датчик, установленный неподвижно или на механизме перемещения. Механизм перемещения может быть специальным или входящим в один из модулей контроля диаметров.

Модуль одностороннего измерения осевой

Модуль одностороннего измерения осевой представляет собой триангуляционный лазерный датчик, установленный неподвижно или на механизме перемещения. Механизм перемещения может быть специальным или входящим в один из модулей контроля диаметров.

Шкаф управления содержит процессорную плату, блоки питания, драйверы шаговых двигателей, частотный преобразователь и систему силовой и коммутационной электроники. Для безударной загрузки оси на блоки роликов используется транспортное устройство. Транспортное устройство представляет собой гидравлический подъемный стол с закрепленным на нем держателем контролируемой детали, удерживающим деталь в необходимом положении. Загрузка детали в позицию контроля осуществляется кран-балкой сверху - деталь подается на призмы держателя оси подъемного стола, находящиеся в поднятом положении. В зависимости от конструктивных особенностей цеховой линии могут применяться другие варианты загрузочных устройств, обеспечивающих центрирование и аккуратную подачу объекта контроля в зону контроля комплекса.

Общий вид комплекса приведен на рисунке 1.

Приказ Росстандарта №1360 от 06.06.2022, https://oei-analitika.ru

Рисунок 1 - Общий вид комплексов автоматизированных для измерений геометрических параметров осей колесных пар и крупногабаритных тел вращения «ГЕОМЕТРИКС-О».

Программное обеспечение

Программное обеспечение «Geometrix/Axle-Measuring-Facility» установлено на промышленном компьютере в пульте управления.

Программное обеспечение управляет процессом измерений, собирает и анализирует данные со всех лазерных датчиков и выполняет вычисления параметров. В программной оболочке функции, дающие возможность изменения программного обеспечения пользователем, отсутствуют.

Идентификационные данные программного обеспечения приведены в таблице 1.

Таблица 1

Идентификационные данные (признаки)

Значение

Идентификационное наименование ПО

Geometrix/Axle Measuring Facility 2.0.768

Номер версии (идентификационный номер) ПО

2.0.768

Цифровой идентификатор ПО

D27B8616 (CRC-32)

Другие данные, если имеются

не имеются

Уровень защиты программного обеспечения оценивается, как «высокое» по

Р 50.2.077-2014.

Метрологические и технические характеристики

Метрологические и технические характеристики комплекса приведены в таблице 2.

Таблица 2 - Метрологические и технические характеристики

Наименование параметра

Значение параметра,

мм

Пределы допускаемо й абсолютной погрешност и, мм

1

2

3

1. Модуль прецизионного измерения диаметров

1.1. Диапазон измерения диаметров

от 20 до 400 вкл.

-

1.2. Диапазон изменения диаметра при настройке на конкретный диаметр (D мм)

D ± 2

± 0,004

2. Модуль универсального измерения

2.1. Диапазон измеряемых диаметров

от 20 до 400 вкл.

-

2.2. Протяженность диапазона измеряемых диаметров при фиксированном положении датчиков

100

± 0,1

2.3. Диапазон изменения диаметров при настройке на конкретный диаметр (D, мм)

D ± 2

± 0,03

2.4. Диапазон измерения длины при контроле одним продольно расположенным модулем

от 0 до 1250 вкл.

± 0,15

2.5. Диапазон измерения длины детали при контроле двумя продольно расположенными модулями

от 0 до 2500 вкл.

± 0,15

3. Модуль одностороннего измерения радиальный

3.1. Диапазон измерения диаметров

от 20 до 400 вкл.

-

3.2. Протяженность диапазона измеряемого диаметра при фиксированном положении датчика

80

± 0,3

3.3. Диапазон изменения диаметра при настройке на конкретный диаметр (D мм)

D ± 2

± 0,1

4. Модуль одностороннего измерения осевой

4.1. Диапазон измерения длины

от 0 до 30 вкл.

± 0,2

Таблица 3 - Геометрические параметры осей колесных пар, измеряемые комплексами исполнения 1 и исполнения 2

Наименование параметра

Исполнение 1

Исполнение 2

Диапазон значений параметров, мм

Диапазон значений параметров, мм

1

2

3

1. Диаметр шейки оси

от 109 до 110,1 вкл.

от 129,9 до 130,1 вкл.

от 129 до 130,1 вкл.

от 149,9 до 150,1 вкл.

2. Диаметр предподступичной части оси

от 140 до 170 вкл.

от 164 до 186 вкл

3. Диаметр подступичной части оси

от 150 до 180 вкл.

от 192 до 213 вкл.

4. Диаметр средней части оси

от 140 до 170 вкл.

от 170 до 189 вкл.

5. Длина между торцами оси

от 2200 до 2310 вкл.

от 2212 до 2250 вкл.

6. Длина шейки

от 178 до 242 вкл.

от 188 до 212 вкл.

7. Разница длин шеек с двух сторон оси

от 0 до 4 вкл.

от 0 до 4 вкл.

8. Длина предподступичной части

от 49 до 78 вкл.

от 69 до 78 вкл.

9. Длина между торцами предподступичной части

от 1798 до 1838 вкл.

от 1824 до 1838 вкл.

10. Длина подступичной части

от 190 до 400 вкл.

от 248 до 256 вкл.

11. Занижение диаметра шейки у галтели

от 0 до 1 вкл.

от 0 до 1 вкл.

12. Расстояние от торца предподступичной части оси до начала занижения диаметра шейки

от 15 до 35 вкл.

от 15 до 38 вкл.

13. Конусность шейки оси

от 0 до 0,1 вкл.

от 0 до 0,1 вкл.

14. Конусность предподступичной части оси

от 0 до 0,1 вкл.

от 0 до 0,1 вкл.

15. Конусность подступичной части оси

от 0 до 0,1 вкл.

от 0 до 0,1 вкл.

16. Овальность шейки оси

от 0 до 0,1 вкл.

от 0 до 0,1 вкл.

17. Овальность предподступичной части оси

от 0 до 0,1 вкл.

от 0 до 0,1 вкл.

18. Овальность подступичной части оси

от 0 до 0,1 вкл.

от 0 до 0,1 вкл.

19. Прямолинейность образующих предподступичной части оси

от 0 до 0,1 вкл.

от 0 до 0,1 вкл.

20. Прямолинейность образующих шейки

от 0 до 0,1 вкл.

от 0 до 0,1 вкл.

21. Прямолинейность образующих подступичной части оси

от 0 до 0,1 вкл.

от 0 до 0,1 вкл.

22. Прямолинейность образующих средней части оси

от 0 до 0,4 вкл.

от 0 до 0,1 вкл.

23. Отклонение от теоретического профиля в месте перехода предподступичной части оси в подступичную

от 15 до 30 вкл.

от 15 до 40 вкл.

Продолжение таблицы 3

1

2

3

24. Отклонение от теоретического профиля в месте перехода предподступичной части оси в подступичную

от 15 до 30 вкл.

от 15 до 40 вкл.

25. Отклонение от теоретического профиля в месте сопряжения шейки и предподступичной части оси

от 15 до 30 вкл.

от 15 до 40 вкл.

26. Биение средней части оси относительно шеек

до 5

до 5

27. Биение предподступичной части оси относительно шеек

до 5

до 5

28. Биение подступичной части оси относительно шеек

до 5

до 5

29. Биение торцов предподступичных частей оси на длине 5 мм

-

до 3

Рабочие условия эксплуатации представлены в таблице 4.

Таблица 4

Температура окружающего воздуха, °С

от + 10 до + 35

Относительная влажность воздуха при 20 С, %

(65±15)

Габаритные размеры частей комплекса (без учета транспортного устройства) представлены в таблице 5.

Таблица 5

Наименование

Количеств

о

Габаритные размеры, мм, не более

Масса, кг не более

Механическая часть комплекса -длина;

-ширина;

-высота

1

3500

1500

2500

1500

Рабочее место оператора -длина;

-ширина;

-высота

1

844

600

1700

160

Шкаф управления -длина;

-ширина;

-высота

1

800

360

1610

115

Знак утверждения типа

наносится на титульный лист руководства по эксплуатации и на титульный лист паспорта типографским способом, а также на нижнюю переднюю часть станины методом наклейки.

Лист № 7

Всего листов 7 Комплектность средства измерений

Таблица 6

Комплекс автоматизированный для измерений геометрических параметров осей колесных пар и крупногабаритных тел вращения «ГЕОМЕТРИКС -О»

Исполнение

1

Исполнение

2

Исполнение 3

-модуль прецизионного измерения диаметров

2 шт.

2 шт.

+

-модуль универсального измерения

2 шт.

2 шт.

+

-модуль одностороннего измерения радиальный

-

-

+

-модуль одностороннего измерения осевой

-

2 шт.

+

Руководство по эксплуатации

1 экз.

Паспорт

1 экз.

Методика поверки

1 экз.

Примечание - Состав и количество модулей комплекса исполнения 3 может меняться и зависит от формы детали и значений измеряемых параметров.

Сведения о методиках (методах) измерений

Метод измерений изложен в документе «Комплексы автоматизированные для измерений геометрических параметров осей колесных пар и крупногабаритных тел вращения «ГЕОМЕТРИКС-О». Руководство по эксплуатации»

Нормативные и технические документы, устанавливающие требования к Комплексам автоматизированным для измерений геометрических параметров осей колесных пар и крупногабаритных тел вращения «ГЕОМЕТРИКС-О»

ГОСТ Р 8.763-2011 «Государственная система обеспечения единства измерений. Государственная поверочная схема для средств измерений длины в диапазоне от 1409 до 50 м и длин волн в диапазоне от 0,2 до 50 мкм»

ТУ 4276-025-15157546-2014 «Комплексы автоматизированные для измерений геометрических параметров осей колесных пар и крупногабаритных тел вращения «ГЕОМЕТРИКС-О». Технические условия».

Изготовитель

Акционерное общество «Виматек» (АО «Виматек»)

ИНН 7802214659

Юридический адрес:

Россия, 194223, г.Санкт-Петербург, вн.тер. г. муниципальный округ Светлановское, улица Курчатова, дом 9, строение 2, помещение 435

Тел.: +7 (812) 448-18-42

E-mail: info@vimatec.ru

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы» (ФГУП «ВНИИМС»).

Адрес: 119361, г. Москва, ул. Озерная, д. 46

Телефон: (495) 437-55-77, факс: (495) 437-56-66,

E-mail: office@vniims.ru

Аттестат аккредитации ФГУП «ВНИИМС» по проведению испытаний средств измерений в целях утверждения типа № 30004-13 от 26.07.2013г.

1

  • - включая указанные значения диапазона измерений;

2

  • - градуировочное значение температуры измеряемой среды задается

3

при заказе из ряда 20, 50, 70, 90 °С;

  • - градуировочное значение температуры окружающей среды задается при заказе из ряда 20, 35 °С.




Настройки внешнего вида
Цветовая схема

Ширина

Левая панель