Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт метрологии им. Д. И. Менделеева» ФГУП «ВНИИМ им. Д. И. Менделеева»

Утверждаю И. о директора

ФГУП «ВНИИМ им Д. И. Менделеева»

А. Н. Пронин

«21» января 2019 г.

Государственная система обеспечения единства измерений

РЕГИСТРАТОРЫ БАЛЛИСТИЧЕСКИЕ РБ-1000 Методика поверки МП 253-0065-2019

> Руководитель НИО А. А. Янковский

Заместитель руководителя НИО Д. Б. Пухов

г. Санкт-Петербург 2019 г.

Abr. al

# Оглавление

| введение                                                     | 3 |
|--------------------------------------------------------------|---|
| 1 ОПЕРАЦИИ ПОВЕРКИ                                           | 4 |
| 2 СРЕДСТВА ПОВЕРКИ                                           | 4 |
| 3 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ                                    | 4 |
| 4 УСЛОВИЯ ПОВЕРКИ                                            | 5 |
| 5 ПРОВЕДЕНИЕ ПОВЕРКИ                                         | 5 |
| 5.1 Внешний осмотр, проверка комплектности и маркировки      | 5 |
| 5.2 Подтверждение соответствия программного обеспечения      | 5 |
| 5.3 Опробование                                              | 5 |
| 5.4 Определение относительной погрешности измерений скорости | 6 |
| 5.5 Проверка диапазона измерений скорости                    | 8 |
| 6. ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ                            | 8 |
| ПРИПОЖЕНИЕ А                                                 | Q |

# **ВВЕДЕНИЕ**

1. Настоящая методика поверки распространяется на регистраторы баллистические РБ-1000 (далее по тексту – регистратор), изготовленные Закрытым Акционерным Обществом «Научно-производственное объединение специальных материалов», и устанавливает объём и порядок проведения поверки.

Интервал между поверками – 1 год.

- 2. Методикой поверки не предусмотрена возможность проведения поверки отдельных измерительных каналов и (или) отдельных автономных блоков из состава средства измерений для меньшего числа измеряемых величин или на меньшем числе поддиапазонов измерений.
- 3. Перед началом работы необходимо ознакомиться с настоящей методикой поверки, эксплуатационной документацией на регистратор, средства измерений и оборудования, используемых при проведении поверки.

В тексте настоящей методики используются следующие сокращения:

ПС – паспорт;

МП – методика поверки.

#### 1 ОПЕРАЦИИ ПОВЕРКИ

1.1 При проведении поверки должны выполняться операции, указанные в таблице 1.

Таблица 1 – Операции при проведении поверки

| Наименование операции          | Номер  | Обязательност  | ь проведения  |
|--------------------------------|--------|----------------|---------------|
|                                | пункта | операции при п | оверке        |
|                                |        | Первичной      | Периодической |
| 1                              | 2      | 3              | 4             |
| Внешний осмотр, проверка       | 5.1    | да             | да            |
| комплектности и маркировки     |        |                |               |
| Подтверждение соответствия     | 5.2    | да             | да            |
| программного обеспечения       |        |                |               |
| Опробование                    | 5.3    | да             | да            |
| Определение относительной      | 5.4    | да             | да            |
| погрешности измерений скорости |        |                |               |
| Проверка диапазона измерений   | 5.5    | да             | да            |
| скорости                       |        |                |               |
| Оформление результатов поверки | 6      | да             | да            |

## 2 СРЕДСТВА ПОВЕРКИ

При проведении поверки должны применяться средства измерений, указанные в таблице 2, имеющие свидетельства о поверке с неистекшим сроком действия.

Таблица 2 - Перечень средств измерений

| r                     | – перечень средств измерен                                   | 171                                                                                                                                                                                                                                                     |
|-----------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Номер<br>пункта<br>МП | Наименование средства<br>поверки и его тип                   | Основные метрологические характеристики                                                                                                                                                                                                                 |
| 5.4                   | Рулетка измерительная металлическая Geobox модификации РК2-8 |                                                                                                                                                                                                                                                         |
| 5.4 – 5.5             | Генератор сигналов<br>специальной формы Г6-37                | Диапазон частот от 0,001 Гц до 20 МГц, относительная основная погрешность в диапазоне частот от 0,1 Гц до 100кГц δ=±2%, рег. № 10630-86                                                                                                                 |
| 5.4 – 5.5             | Частотомер электронно-<br>счётный Ч3-85/3                    | Диапазон измеряемых частот от 0,001 Гц до 500 МГц, пределы допускаемой погрешности ±5⋅10 <sup>-7</sup> , рег.№ 32359-06                                                                                                                                 |
| 5.4 – 5.5             | Термогигрометр<br>электронный CENTER<br>модели 310           | Диапазон измерений температуры от минус 20 до плюс 60, пределы допускаемой абсолютной погрешности результата измерений температуры ±0,7°С, пределы допускаемой абсолютной погрешности результата измерений относительной влажности ±3 %, рег. №22129-09 |

Допускается применение других средств измерений, обеспечивающих требуемый запас точности (не менее 1/3), со свидетельствами о поверке с неистекшим сроком действия.

# 3 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

3.1 При поверке должны соблюдаться правила безопасности в соответствии с указаниями паспорта и эксплуатационных документов применяемых средств поверки. 3.2 К поверке допускаются лица, изучившие эксплуатационную документацию на регистратор и прошедшие инструктаж по технике безопасности.

#### 4 УСЛОВИЯ ПОВЕРКИ

- 4.1 При проведении поверки должны быть соблюдены следующие условия: температура окружающего воздуха, °C 20±5 относительная влажность воздуха при температуре 25 °C, %, не более 90
- 4.2 При подготовке к поверке, средства поверки и вспомогательное оборудование должны быть подготовлены в соответствии с указаниями эксплуатационной документации.

#### 5 ПРОВЕДЕНИЕ ПОВЕРКИ

5.1 Внешний осмотр, проверка комплектности и маркировки

При внешнем осмотре должно быть установлено отсутствие механических повреждений на корпусах составных частей регистратора.

При проверке комплектности должно быть установлено её соответствие перечню, приведённому в эксплуатационной документации на регистратор.

При проверке маркировки должно быть установлено наличие информационной таблички на корпусах блока датчиков и измерительного блока.

- 5.2 Подтверждение соответствия программного обеспечения
  - 5.2.1 Подготовить регистратор к работе в соответствии с ЭД.
- 5.2.2 Включить регистратор. После включения на дисплее отобразится информация о регистраторе:
  - наименование прибора:
  - номер версии встроенного программного обеспечения (ПО).
- 5.2.3 Сличить идентификационные данные ПО с данными, приведёнными в таблице 3.

Таблица 3 – Идентификационные данные ПО регистратора

| Идентификационные признаки                | Значение   |
|-------------------------------------------|------------|
| Идентификационное наименование ПО         | SBRM       |
| Номер версии (идентификационный номер) ПО | 2.1 и выше |

Регистратор считается прошедшим поверку по пункту 5.2, если наименование и версия ПО соответствуют идентификационным данным программного обеспечения, приведённым в таблице 3.

#### 5.3 Опробование

При проведении опробования должна быть установлена работоспособность регистратора.

- 5.3.1 Подготовить регистратор к работе в соответствии с ЭД.
- 5.3.2 Подключить внешний генератор к гнезду «Вход М» измерительного блока регистратора.
  - 5.3.3 Перевести регистратор в режим работы «Метрологическая поверка».
  - 5.3.4 Установить на генераторе выходной сигнал со следующими параметрами:
  - выходной сигал синусоида;
  - амплитуда 1,5 ±0,3 В.
  - 5.3.5 Включить генератор.
- 5.3.6 Установить на генераторе произвольное значение частоты из диапазона от 260 до 7500 Гц и нажать кнопку «Выбор». На дисплее измерительного блока отобразится измеренное значение частоты подаваемого сигнала.

5.3.7 Выключить регистратор.

Регистратор считается прошедшим поверку по пункту 5.3, если установлена его работоспособность.

- 5.4 Определение относительной погрешности измерений скорости
  - 5.4.1 Определение длины измерительной базы регистратора
- 5.4.1.1 Используя рулетку, провести измерение элементов конструкции блока датчиков –размеры A, Б и B на рисунке 1.

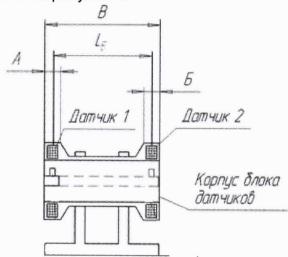



Рисунок 1 – Конструкция блока датчиков

5.4.1.2 По результатам измерений рассчитать значение измерительной базы регистратора ( $L_{\rm B}$ ) по формуле 1:

$$L_{\rm B} = {\rm B} - \frac{1}{2}({\rm A} + {\rm B})$$
 (1)

5.4.1.3 Выполнить операции п.п. 5.4.1.1 - 5.4.1.2 пять раз (n=5). Результаты измерений занести в таблицу 4.

Таблица 4 - Результаты измерений длины измерительной базы регистратора

| 1                       | 2                       | 3              | 4                     | 5                              |
|-------------------------|-------------------------|----------------|-----------------------|--------------------------------|
| $L_{\mathrm{B,1}}$ , MM | $L_{\mathrm{B,2}},\;MM$ | $L_{B,3},\;MM$ | $L_{ m B,4},~{ m MM}$ | $L_{\mathrm{E,5}},\mathrm{MM}$ |
|                         |                         |                |                       |                                |

5.4.1.4 По результатам измерений рассчитать среднее значение длины измерительной базы регистратора  $(\overline{L_{\rm B}})$  и относительное среднеквадратическое отклонение результата измерений  $(S_L)$  по формулам 2 и 3:

$$\overline{L_{\rm B}} = \frac{1}{5} \sum_{n=1}^{5} L_{{\rm B},n} \tag{2}$$

$$S_L = \frac{\sqrt{\frac{1}{20} \sum_{n=1}^{5} \left( L_{\text{B},n} - \overline{L_{\text{B}}} \right)^2}}{\overline{L_{\text{B}}}} \cdot 100$$
 (3)

- 5.4.2 Определение относительной погрешности измерений скорости
- 5.4.2.1 Подключить выход генератора сигналов к гнезду «Метрология» измерительного блока регистратора.
  - 5.4.2.2 Установить следующие параметры выходного сигнала генератора:
  - форма выходного сигнала синусоида;
  - амплитуда импульса 1,5 ±0,3 В
- 5.4.2.3 Установить частоту выходного сигнала генератора, соответствующую первому значению  $\mathsf{F}_r$  в таблице 5.

Таблица 5 – Результаты измерений скорости

| Fr, Гц | $V_{F,n},$ M/C |   | $\overline{V_F}$ ,m/c $S_F$ ,% | <i>V</i> <sub>p</sub> ,м/с | $\delta V_F,\%$ |     |    |
|--------|----------------|---|--------------------------------|----------------------------|-----------------|-----|----|
|        | 1              | 2 | 3                              | F ,                        | •               | P , | Γ, |
| 71,43  | 1              |   |                                |                            |                 |     |    |
| 178,6  |                |   |                                |                            |                 |     |    |
| 357    |                |   |                                |                            |                 |     |    |
| 1786   |                |   |                                |                            |                 |     |    |
| 3571   |                |   |                                |                            |                 |     |    |
| 5357   |                |   |                                |                            |                 |     |    |
| 7143   |                |   |                                |                            |                 |     |    |

- 5.4.2.4 Нажать кнопку «Пуск» на измерительном блоке регистратора, снять показание с его дисплея  $(V_{F,n})$  и занести его в таблицу 5.
- 5.4.2.5 Выполнить операции п.п. 5.4.2.3 5.4.2.4 для всех значений частоты  $F_r$ приведённых в таблице 5, три раза (n=3).
- 5.4.2.6 По данным таблицы 5 для каждого значения частоты F<sub>г</sub> рассчитать среднее арифметическое значение  $\overline{V_F}$  и относительное среднеквадратическое отклонение результата измерений по формулам 4 и 5, соответственно. Результаты расчетов занести в таблицу 5.

$$\overline{V_F} = \frac{1}{3} \sum_{n=1}^{3} V_{F,n} \tag{4}$$

$$\overline{V_F} = \frac{1}{3} \sum_{n=1}^{3} V_{F,n}$$

$$S_F = \frac{\sqrt{\frac{1}{6} \sum_{n=1}^{3} (V_{F,n} - \overline{V_F})^2}}{\overline{V_F}} \cdot 100$$
(5)

5.4.2.7 Для каждого значения частоты F<sub>г</sub> определить расчётное значение скорости по формуле 6:

$$V_{\rm p} = \overline{L}_{\rm B} \cdot F_{\rm r} \tag{6}$$

где  $\overline{L}_{\rm B}$  - значения длины измерительной базы, определённое в п. 5.4.1. Результаты расчетов занести в таблицу 5.

5.4.2.8 Для каждого значения частоты  $F_r$  определить неисключённую относительную систематическую погрешность результата измерений скорости по формуле:

$$\delta V_F = \frac{(\overline{V_F} - V_p)}{V_p} \cdot 100 \tag{7}$$

5.4.2.9 По полученным экспериментальным данным для каждого значения частоты F<sub>г</sub> определить относительную погрешность результата измерений скорости при доверительной вероятности Р=0,95 по формуле 8:

$$\delta_{o}(V_{F}) = 2 \cdot \sqrt{S_{L}^{2} + S_{F}^{2} + \frac{(\theta_{L}^{2} + \theta_{F}^{2} + \delta V_{F}^{2})}{3}}$$
 (8)

где:

- $S_L$  СКО, характеризующее случайную составляющую погрешности измерении измерительной базы регистратора и определённое по формуле 3;
- $S_F$  СКО, характеризующее случайную составляющую погрешности измерении скорости и определённое по формуле 5:
- $heta_{\scriptscriptstyle L}$  неисключённая систематическая погрешность определения измерительной базы, обусловленная погрешностью рулетки;
- $heta_{F}$  неисключённая систематическая погрешность определения скорости, обусловленная погрешностью частотомера.
- 5.4.2.10 Из всех полученных  $\delta_{\,_{0}}(V_{F})$  выбрать максимальное значение из условия:

$$\delta_{0}(V) = max(\delta_{0}(V_{F}))$$

Регистратор считается прошедшим поверку по пункту 5.4, если относительная погрешность измерений скорости  $\delta_{\rm o}(V)$  не более 1 %.

### 5.5 Проверка диапазона измерений скорости

При выполнении требований пункта 5.4 МП за диапазон измерений скорости принять диапазон от 20 до 2000 м/с.

Регистратор считается прошедшим поверку по пункту 5.5, если относительная погрешность измерений скорости не превышает 1% в диапазоне скоростей от 20 до 2000 м/с.

#### 6. ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 6.1 При положительных результатах поверки, проведённой в соответствии с настоящей методикой, оформляется протокол поверки в соответствии с ПРИЛОЖЕНИЕМ А и выдаётся свидетельство о поверке. Знак поверки наносится на корпус измерительного блока регистратора.
- 6.2 При отрицательных результатах поверки регистратор к применению не допускается и на него оформляется извещение о непригодности.

# ПРИЛОЖЕНИЕ А. Протокол поверки регистратора баллистического РБ-1000

| Условия поверки:                                              |        |      |  |
|---------------------------------------------------------------|--------|------|--|
| Температура окружающего воздуха°С.                            |        |      |  |
| Относительная влажность воздуха %.                            |        |      |  |
| Атмосферное давление кПа.                                     |        |      |  |
| Результаты поверки                                            |        |      |  |
| 1 Внешний осмотр, проверка                                    |        |      |  |
| комплектности                                                 |        |      |  |
| 2 Опробование                                                 |        |      |  |
| 3 Подтверждение соответствия программного                     |        |      |  |
| обеспечения                                                   |        |      |  |
|                                                               |        |      |  |
| 4 Определение погрешности измерений                           |        |      |  |
| 4.1 Определение длины измерительной базы регистратора         |        |      |  |
|                                                               |        |      |  |
| Таблица 1 - Результаты измерений длины измерительной базы рег | гистра | тора |  |

| 1              | 2            | 3              | 4                     | 5                     |
|----------------|--------------|----------------|-----------------------|-----------------------|
| $L_{6,1},\;MM$ | $L_{6,2},MM$ | $L_{6,3}$ , MM | L <sub>6,4</sub> , MM | L <sub>6,5</sub> , MM |
|                |              |                |                       |                       |

$$\overline{L_6} = \frac{1}{5} \sum_{n=1}^{5} L_{6,n} =$$

$$S_L = \frac{\sqrt{\frac{1}{20}\sum_{n=1}^{5} \left(L_{E,n} - \overline{L_E}\right)^2}}{\overline{L_E}} \cdot 100 =$$

Таблица 2 - Результаты измерений скорости

| F <sub>r</sub> , Гц |   | $V_{F,n},M/C$ |   | $\overline{V_F}$ ,м/с | $S_F$ ,% | $\overline{V_F}$ , m/c $S_F$ , % $V_{ m p}$ |     | $\delta V_F,\%$ |
|---------------------|---|---------------|---|-----------------------|----------|---------------------------------------------|-----|-----------------|
|                     | 1 | 2             | 3 | 1.,                   |          | Ρ,                                          | 1.1 |                 |
| 71,43               |   |               |   |                       |          |                                             |     |                 |
| 178                 |   |               |   |                       |          |                                             |     |                 |
| 357                 |   |               |   |                       |          |                                             |     |                 |
| 1786                |   |               |   |                       |          |                                             |     |                 |
| 3571                |   |               |   |                       |          |                                             |     |                 |
| 5357                |   |               |   |                       |          |                                             |     |                 |
| 7142                |   |               |   |                       |          |                                             |     |                 |

$$\delta_{0}(V) = max(\delta_{0}(V_{F})) =$$

| 5 Заключение:  |                       | _ для эксплуатации  |
|----------------|-----------------------|---------------------|
|                | пригоден / непригоден |                     |
| Дата поверки « | »                     | _201_ г.            |
| Поверитель     |                       |                     |
|                | Подпись               | Расшифровка подписи |