

«Утверждаю»

Директор ФБУ «Самарский ЦСМ»

Е А Стредыников

«25» angens 2016 t

Система автоматизированная информационно-измерительная коммерческого учета электрической энергии (АИИС КУЭ)

ООО «Лукойл-Волгограднефтепереработка»

МЕТОДИКА ПОВЕРКИ МП 4222-06-7714348389-2016

1.p.64520-16

СОДЕРЖАНИЕ

1 Введение	4
2 Назначение	4
3 Условия проведения поверки	4
4 Требования к квалификации поверителей	4
5 Требования по безопасности	5
6 Эталоны и вспомогательные устройства	5
7 Операции поверки	6
8 Подготовка к поверке	7
9 Проведение поверки	7
10 Оформление результатов поверки	14

Список принятых сокращений.

АИИС КУЭ - Автоматизированная информационно - измерительная система коммерческого учета электроэнергии

АРМ - автоматизированное рабочее место

ИК - измерительный канал

MX - метрологические характеристики

НД - нормативная документация

пэвм - персональная электронно-вычислительная машина

ПО - программное обеспечение

СИ - средства измерения

СУБД - система управления базами данных

ТН - трансформатор напряжения

ТТ - трансформатор тока

УСПД - устройство сбора данных

ЭД - эксплуатационная документация

ИИК - информационно-измерительный комплекс

ИВКЭ - измерительно-вычислительный комплекс электроустановок

ИВК - измерительно-вычислительный комплекс

1. Введение.

- 1.1 Настоящая методика устанавливает порядок проведения первичной и периодической поверки системы автоматизированной информационно-измерительной коммерческого учета электрической энергии (АИИС КУЭ) ООО «Лукойл-Волгограднефтепереработка» (далее-АИИС КУЭ), а также измерительных каналов после замены компонентов в канале и каналов дополнительно вводимых в систему. Поверке подлежат измерительные каналы (далее-ИК) АИИС КУЭ, по которым производится расчетный (коммерческий) учет электрической энергии.
- 1.2 Методика разработана в соответствии с требованиями нормативных документов (НД): МИ 3290-2010, ГОСТ 7746-2001, ГОСТ 1983-2001, ГОСТ 31819.22-2012 при измерении активной электроэнергии и ГОСТ 31819.23-2012 при измерении реактивной электроэнергии, Приказом №1815 от 02.07.2015г «Об утверждении Порядка проведения поверки средств измерений, требования к знаку поверки и содержания свидетельства о поверке» и эксплуатационной документации (ЭД) на компоненты АИИС КУЭ.
 - 1.3 Рекомендуемый межповерочный интервал системы 4 года.

2. Назначение.

АИИС КУЭ предназначена для измерения активной и реактивной электроэнергии, потребленной за установленные интервалы времени, автоматизированного сбора, обработки, хранения, отображения информации, формирования отчётных документов и передачи полученной информации.

3. Условия проведения поверки.

При проведении поверки должны соблюдаться рабочие условия эксплуатации компонентов, входящих в состав АИИС КУЭ, в соответствии с НД на эти компоненты.

4. Требования к квалификации поверителей.

- 4.1 К проведению поверки допускаются лица, аттестованные в качестве поверителей в порядке, установленном Федеральным агентством по техническому регулированию и метрологии в соответствии с ПР 50.2.012-94 «Порядок аттестации поверителей средств измерений», изучившие настоящую методику поверки и руководство по эксплуатации АИИС КУЭ, имеющие стаж работы по данному виду измерений не менее 1 года, а также прошедшие инструктаж по технике безопасности на рабочем месте и имеющие группу по технике электробезопасности не ниже III.
- 4.2 Измерение вторичной нагрузки измерительных трансформаторов тока, входящих в состав АИИС КУЭ, осуществляется персоналом, имеющим стаж работы по данному виду измерений не менее 1 года, изучившим документ «Методика выполнения измерений мощности нагрузки трансформаторов тока в условиях эксплуатации» и прошедшим обучение по проведению измерений в соответствии с указанным документом. Измерение проводят не менее двух специалистов, один из которых должен иметь удостоверение, подтверждающее право работы на установках свыше 1000 В с группой по электробезопасности не ниже III.
- 4.3 Измерение вторичной нагрузки измерительных трансформаторов напряжения входящих в состав АИИС КУЭ, осуществляется персоналом, имеющим стаж работы по данному виду измерений не менее 1 года, изучившим документ «Методика выполнения измерений мощности нагрузки трансформаторов напряжения в условиях эксплуатации» и прошедшим обучение по проведению измерений в соответствии с указанным документом. Измерение проводят не менее двух специалистов, один из которых должен иметь удостоверение, подтверждающее право работы на установках свыше 1000 В с группой по электробезопасности не ниже IV.

4.4 Измерение потерь напряжения в линии соединения счетчика с измерительным трансформатором напряжения, входящими в состав АИИС КУЭ, осуществляется персоналом, имеющим стаж работы по данному виду измерений не менее 1 года, изучившим документ «Методика выполнения измерений потерь напряжения в линиях соединения счетчика с трансформатором напряжения в условиях эксплуатации» и прошедшим обучение по проведению измерений в соответствии с указанным документом. Измерение проводят не менее двух специалистов, один из которых должен иметь удостоверение, подтверждающее право работы на установках свыше 1000 В с группой по электробезопасности не ниже IV.

5. Требования по безопасности.

- 5.1. При проведении поверки необходимо соблюдать требования безопасности, предусмотренные «Правилами технической эксплуатации электроустановок потребителей и правилами техники безопасности при эксплуатации электроустановок потребителей» (издание 3-е), «Правилами технической эксплуатации электрических станций и сетей», ГОСТ 12.2.007.0-75, ГОСТ 12.2.007.3-75, ГОСТ 22261-94 и указаниями по безопасности, оговоренными в технических описаниях, руководствах по эксплуатации на измерительные компоненты системы, в соответствующей документации на эталоны и другие средства поверки.
- 5.2 Трансформаторы тока и трансформаторы напряжения в эксплуатации должны соответствовать требованиям безопасности по ГОСТ 12.2.007.3-75 и ГОСТ 12.2.007.0-75. Один из выводов вторичных обмоток ТТ и ТН должен быть заземлен.
- 5.3 Счетчики электроэнергии в эксплуатации должны соответствовать требованиям безопасности по ГОСТ 22261-94, ГОСТ 12.1.038-82 и ГОСТ Р 51350-99. По способу защиты человека от поражения электрическим током счетчики должны соответствовать требованиям ГОСТ 12.2.007-75.
- 5.4 Металлический цоколь счетчика должен быть заземлен. Требования к зажимам заземления должны соответствовать эксплуатационной документации счетчика.
- 5.5 Все клеммы, находящиеся в зажимной коробке счетчика, должны закрываться крышкой, приспособленной для пломбирования. Крышка должна закрывать нижние винты крепления счетчика к щиту, а также подводимые к счетчику провода не менее чем на 25 мм.
- 5.6 Требования безопасности сервера должны соответствовать требованиям ГОСТ 12.2.003-74 и ГОСТ 12.2.007.0-75. Технические требования в части безопасности должны соответствовать ГОСТ Р 51350-99 (МЭК 61010-1-90) классу защиты не ниже 1.
- 5.7 Вычислительные средства, входящие в состав АИИС КУЭ, должны по безопасности соответствовать требованиям, предъявляемым к ПЭВМ.

6. Эталоны и вспомогательные устройства.

При проведении поверки применяются эталоны и вспомогательные устройства, указанные в таблице 2

таблица 2- Эталоны и вспомогательные устройства

Наименование и	назначение	средств	поверки	И	Номер
вспомогательного о	борудования		_		пункта
Термометр лабораторный ТЛ-4, ГР №28208-04 Прибор комбинированный Testo-608-H1, ГР №53505-13				п.3	
Радиочасы МИР Р	I-01, ΓΡ №2700	08-04			п.9.6
мультиметр «Ресурс	-ПЭ-5», ГР № 3:	3750-12			п.9.3-9.5

Продолжение таблицы 1

Наименование аппаратных и программных средств						
Персональный компьютер, оптический преобразователь и комплекте с ПО «АльфаЦЕНТР» ПО «МеterCat», ПО «АльфаПЛЮС»	Обработка информации снятой со счетчиков. Сбор данных со счетчиков					

Примечание:

Допускается применение других СИ с МХ не хуже указанных в таблице 1.

7. Операции поверки.

При проведении поверки должны быть выполнены операции, указанные в таблице 2. таблица 2- Операции поверки.

		Обязательность проведения		
	Номер	-		
Наименование операции	пункта	Первичной	Периоди-	После
	МΠ	поверке	ческой	замены
			поверке	компоненто
1. Подготовка к поверке	8	Да	Да	Да
2. Внешний осмотр и проверка	9.1	Да	Да	Да
комплектности				
3. Проверка функционирования основных	9.2	Да	Да	Да
компонентов АИИС с Изменением №1				
4. Проверка счетчиков электрической	9.2.1	Да	Да	Да
энергии				
5.Проверка УСПД	9.2.2			
6. Проверка сервера	9.2.3	Да	Да	Да
7. Проверка нагрузки вторичных цепей	9.3	Да	Да	Да
измерительных трансформаторов				,
8. Проверка нагрузки вторичных цепей		Да	Да	Да
измерительных трансформаторов тока				
9. Проверка падения напряжения в линии		Да	Да	Да
связи между вторичной обмоткой ТН и				
счетчиком 10. Определение суточной погрешности	9.6	Да	По	По
измерения текущего времени	9.0	Да	Да	Да
11. Проверка отсутствия ошибок	9.7	По	πο	
информационного обмена информационного	1	Да	Да	:
12. Оценка защиты и идентификация ПО	10	π.	По	По
-		Да	Да	Да
13. Определение пределов допускаемых		Да	Да	Да
относительных погрешностей измерения	:			
активной и реактивной электроэнергии				
14. Оформление результатов поверки	12	Да	Да	Да
<u></u>	l	L	<u> </u>	L

8. Подготовка к поверке.

8.1. Для проведения поверки представляют следующую документацию:

- руководство по эксплуатации АИИС КУЭ;
- описание типа АИИС КУЭ;
- свидетельства о поверке измерительных компонентов, входящих в ИК, и свидетельство о предыдущей поверке системы (при периодической и внеочередной поверке);
- паспорта-протоколы на ИК;
- рабочие журналы АИИС КУЭ с данными по климатическим и иным условиям эксплуатации за межповерочный интервал (только при периодической поверке).

8.2. Перед проведением поверки выполняют следующие подготовительные работы:

- проводят организационно-технические мероприятия по доступу поверителей и персонала энергообъектов к местам установки измерительных трансформаторов, счетчиков электроэнергии, контроллеров, по размещению эталонов, отключению в необходимых случаях поверяемых средств измерений от штатной схемы;
- проводят организационно-технические мероприятия по обеспечению безопасности поверочных работ в соответствии с действующими правилами и руководствами по эксплуатации применяемого оборудования;
- средства поверки выдерживают в условиях и в течение времени, установленных в НТД на средства поверки;
- все средства измерений, которые подлежат заземлению, должны быть надежно заземлены, подсоединение зажимов защитного заземления к контуру заземления должно производиться ранее других соединений, а отсоединение после всех отсоединений.

9. Проведение поверки.

9.1 Внешний осмотр и проверка комплектности.

Методика певерки.

При проведении проверки внешнего вида и комплектности проверяется:

- соответствие номенклатуры и типов технических и программных компонентов АИИС КУЭ паспортным;
- наличие и качество заземления корпусов компонентов системы и металлических шкафов, в которых они расположены;
- внешний вид каждого компонента системы с целью выявления возможных механических повреждений, загрязнения и следов коррозии;
- наличие напряжения питания на счетчиках (должен работать жидкокристаллический индикатор счетчика);
- наличие напряжения питания на мультиплексорах (должен светиться светодиод сигнализирующий о наличии питания);
- наличие напряжения питания и отсутствие ошибки на сервере (должен светиться светодиод, сигнализирующий о наличии питания и не светиться светодиод, сигнализирующий о наличии ошибки);
- наличие напряжения питания на модемах (должны светиться светодиоды на лицевой панели модема);
- наличие напряжения питания на преобразователях интерфейсов (должен светиться светодиод, сигнализирующий о наличии питания);
- функционирование (должна функционировать операционная система необходимая для работы программы сбора данных);
 - маркировка технических средств должна быть нанесена четко и должна

соответствовать ГОСТ 22261 - 94;

- соединительные информационные провода не должны иметь каких-либо повреждений («оголений»), которые могли бы свидетельствовать о несанкционированном вмешательстве в АИИС КУЭ.

Критерии результатов поверки:

Проверка считается успешной

Если перечисленные операции настоящего пункта МП полностью выполнены

9.2 Проверка функционирования основных компонентов АИИС

При проведении проверки измерительных компонентов АИИС необходимо проверить:

- наличие действующих свидетельств (записей в паспортах) о поверке измерительных трансформаторов напряжения и тока, счетчиков электроэнергии.

При обнаружении просроченных свидетельств о поверке измерительных компонентов или свидетельств, срок действия которых близок к окончанию, дальнейшие операции по поверке ИК, в который они входят, выполняют после их поверки.

9.2.1. Проверка счетчиков электрической энергии.

При проведении проверки счетчиков электрической энергии необходимо проверить:

- наличие и сохранность пломб поверительных и энергосбытовых организаций на счетчике;
- наличие документов энергосбытовых организаций, подтверждающих правильность подключения счетчика к цепям тока и напряжения, в частности, правильность чередования фаз. При отсутствии таких документов или нарушении (отсутствии) пломб проверяют правильность подключения счетчиков к цепям тока и напряжения (соответствие схем подключения схемам, приведенным в паспорте на счетчик);
- проверка соответствия индикации даты в счетчике календарной дате (число, месяц, год),
 - работоспособность оптического порта счетчик,
 - проверка автоматического измерения приращений активной электроэнергии,

Проверка работоспособности оптического порта счетчика и опрос счетчика через оптопорт.

Методика поверки

Проверка работоспособности оптического порта счетчика

Проверка работоспособности оптического порта счетчика и опрос счетчика через оптопорт проводится с помощью переносного компьютера и оптического преобразователя для счетчиков:

- ЕвроАльфа с помощью ПО «АльфаПЛЮС»,
- -Альфа с помощью ПО «MeterCat».

После загрузки программы «MeterCat» или ПО «АльфаПЛЮС» на экране монитора компьютера появляется генеральная форма программы, содержащая рабочий стол, панель инструментов и меню для вызова подчиненных форм.

Делаем необходимые установки и в окне состояния обмена должно появиться сообщение «Обмен успешно завершен».

Критерии результатов поверки:

Проверка считается успешной:

Если счетчики опрошены и нет сообщений об ошибках, имеются данные о 30 минутных значениях мощности и отображаются в окне программы

Проверка автоматического измерения приращений активной электроэнергии.

Проверка автоматического измерения активной электроэнергии сводится к наблюдению за изменением 30 минутных интервалов счетчиков

- Открываем форму "Данные ГН", выбираем дату и наблюдаем за 30 минутным изменением профиля мощности.
- На начало следующей получасового интервала убедиться в появление новой записи

Результат проверки считается положительным, если есть данные о 30 минутных значениях мощности, и они отображаются в окне программы

Критерии результатов поверки:

Проверка считается успешной:

Если в результате опроса счетчиков за указанный срок во вкладке «Отчет» получены данные о 30 минутных значениях мощности.

Проверка соответствия индикации даты в счетчике календарной дате (число, месяц, год)

Методика поверки

Перед поверкой системы необходимо проверить соответствие даты и времени счетчика календарной дате и времени. Проверка осуществляется визуально или с помощью переносного компьютера и ПО «АльфаПЛЮС» для счетчиков ЕвроАльфа, и ПО «МеterCat» для счетчиков Альфа.

С индикатора счетчика визуально снимаются показания даты, времени и сравниваются с календарными (на индикаторах всех счетчиков должны присутствовать показания текущей даты и времени) или с помощью ПО во время опроса счетчика командой "Change Time".

Критерии результатов поверки:

Проверка считается успешной:

Если текущая дата и текущее время, полученные при визуальном осмотре и во время работы с переносным компьютером, совпадают с календарной датой и временем.

9.2.2. Проверка УСПД.

Проверка правильности функционирования контроллеров.

Методика поверки.

Для проверки функционирования УСПД необходимо:

- подать напряжение питания на все компоненты системы, проследить за правильностью прохождения загрузки операционной системы,
- запустить на выполнение программное обеспечение «АльфаЦЕНТР».
- Проверить в журнале событий наличие данных архива по 30-и минутному профилю в базе данных УСПД.

Или проверить выполнение данного требования непосредственно с УСПД. На рабочей станции запускают ПО, выбирают УСПД, к которому хотят обратиться, затем активируют поле "Функция", выбирают в списке задач "опрос УСПД" и далее нажимают кнопку "Пуск", осуществляют опрос УСПД по установленному соединению

Индикатор, расположенный в правой части строки состояния, предназначен для отображения состояния обмена данными с УСПД. Индикатор окрашивается в зеленый цвет, когда выполняется обмен данными с УСПД.

Если щелкнуть по индикатору левой кнопкой мыши, откроется окно связь с УСПД, в котором можно указать параметры соединения с УСПД.

Критерии результатов проверки:

Проверка считается успешной:

Если загрузка операционной среды прошла успешно, программа успешно запущена и отображает необходимые данные: счетчики опрошены, нет сообщений об ошибках, данные архивов по 30-и минутному профилю в базе данных УСПД соответствуют показаниям счётчиков системы, имеются данные о коррекции времени- контроллеры считаются исправно функционирующим

9.2.3. Проверка функционирования сервера

При проведении проверки функционирования сервера проверяют:

Для проверки функционирования сервера необходимо:

подать напряжение питания на все компоненты системы, проследить за правильностью прохождения загрузки операционной системы,

проверить наличие данных об изменении 30 минутных интервалов счетчика

Методика поверки

Запустить на выполнение программное обеспечение ПО «АльфаЦЕНТР» . Проверить измерения активной электроэнергии путем просмотра событий на сервере об изменении 30 минутных интервалов счетчика.

Критерии результатов поверки:

Проверка считается успешной:

Если счетчики опрошены и нет сообщений об ошибках, а в таблице протокола сервера содержаться результаты соответствующего запроса

9.3. Проверка нагрузки вторичных цепей измерительных трансформаторов напряжения.

Методика поверки.

- 9.3.1 Проверяют наличие и сохранность пломб поверительных и энергоснабжающих организаций на клеммных соединениях, имеющихся на линии связи ТН со счетчиком. Проверяют наличие документов энергосбытовых организаций, подтверждающих правильность подключения первичных и вторичных обмоток ТН. При отсутствии таких документов или нарушении (отсутствии) пломб проверяют правильность подключения первичных и вторичных обмоток ТН.
- $9.3.2~{\rm При}$ проверке мощности нагрузки вторичных цепей ТН необходимо убедиться, что отклонение вторичного напряжения при нагруженной вторичной обмотке составляет не более $\pm 10~{\rm \%}$ от U ном.

Измеряют мощность нагрузки ТН, которая должна находиться в диапазоне (0,25-1,0) S ном.

Проверяют наличие данных измерений мощности нагрузки вторичных цепей ТН по МИ 3195-2009 «Государственная система обеспечения единства измерений мощность нагрузки трансформаторов напряжения без отключения цепей». Однако:

1. Допускается измерения мощности нагрузки вторичных цепей ТН не проводить, если такие измерения проводились при составлении паспортов-протоколов на данный измерительный канал в течение истекающего межповерочного интервала системы. Результаты проверки считают положительными, если паспорт-протокол подтверждает выполнение указанного выше условия для ТН.

2.Допускается мощность нагрузки определять расчетным путем, если известны входные (проходные) импедансы всех устройств, подключенных ко вторичным обмоткам измерительных трансформаторов.

Критерии результатов поверки:

Проверка считается успешной:

Если отклонение вторичного напряжения при нагруженной вторичной обмотке

составляет не более ±10 % от U ном:

Если имеются пломбы поверительных и энергоснабжающих организаций на клеммных соединениях, имеющихся на линии связи TH со счетчиком или проверена правильность подключения первичных и вторичных обмоток TH.

Если имеются документы энергосбытовых организаций, подтверждающих правильность подключения первичных и вторичных обмоток TH.

9.4. Проверка нагрузки вторичных цепей измерительных трансформаторов тока.

Методика поверки

- 9.4.1.Проверяют наличие документов энергосбытовых организаций, подтверждающих правильность подключения вторичных обмоток ТТ. При отсутствии таких документов проверяют правильность подключения вторичных обмоток ТТ.
- 9.4.2.Измеряют мощность нагрузки вторичных цепей ТТ, которая должна находиться в диапазоне (0,25-1,0) S ном.

Измерение тока и вторичной нагрузки ТТ проводят в соответствии с аттестованной в установленном порядке методикой выполнения измерений. Однако:

- 1. Допускается измерения мощности нагрузки вторичных цепей ТТ не проводить, если такие измерения проводились при составлении паспортов-протоколов на данный измерительный канал в течение истекающего межповерочного интервала системы. Результаты проверки считают положительными, если паспорт-протокол подтверждает выполнение указанного выше условия для ТТ.
- 2. Допускается мощность нагрузки определять расчетным путем, если известны входные (проходные) импедансы всех устройств, подключенных ко вторичным обмоткам ТТ.

Критерии результатов поверки:

Проверка считается успешной:

Если мощность нагрузки вторичных цепей ТТ находиться в диапазоне (0,25-1,0) S ном.

Если имеются документы энергосбытовых организаций, подтверждающих правильность подключения вторичных обмоток TT.

9.5. Проверка падения напряжения в линии связи между вторичной обмоткой ТН и счетчиком.

Методика поверки

Измеряют падение напряжения в проводной линии связи для каждой фазы по утвержденному документу «Методика выполнения измерений падения напряжения в линии соединения счетчика с трансформатором напряжения в условиях эксплуатации». Падение напряжения не должно превышать 0,25 % от номинального значения на вторичной обмотке ТН. Однако:

- 1 Допускается измерение падения напряжения в линии соединения счетчика с ТН не проводить, если такие измерения проводились при составлении паспортов протоколов на данный измерительный канал в течение истекающего межповерочного интервала системы. Результаты проверки считают положительными, если паспорт- протокол подтверждает выполнение указанного выше требования.
- 2 Допускается падение напряжения в линии соединения счетчика с ТН определять расчетным путем, если известны параметры проводной линии связи и сила электрического тока, протекающего через линию связи.

Критерии результатов поверки:

Проверка считается успешной:

Если падение напряжения в проводной линии связи для каждой фазы не превышает

9.6. Определение суточной погрешности измерения текущего времени Определение суточной погрешности измерения текущего времени Методика поверки.

Включается питание и запускается тестирующая программа центрального компьютера в режиме индикации текущего значения системного времени. К центральному компьютеру подключаются радиочасы и запускается технологическая программа TEST_MOD.EXE. В момент, когда на дисплее появится ровно одна минута следующего часа, произвести синхронизацию центрального компьютера и радиочасов. Через сутки провести измерения в конце того же часа и определить разницу показаний:

$$\Delta_{cymovhas} = t_2 - t_1$$

где t_1 - время, определенное радиочасами МИР РЧ-01;

 t_2 - системное время центрального компьютера.

Критерии результатов поверки:

Проверка считается успешной:

Если погрешность часов компонентов системы не превышает ±5 с.

9.7.Проверка отсутствия ошибок информационного обмена между компонентами АИИС

Операция проверки отсутствия ошибок информационного обмена предусматривает экспериментальное подтверждение идентичности числовой измерительной информации в счетчиках электрической энергии (исходная информация), и памяти сервера БД.

В момент проверки все технические средства, входящие в проверяемый ИК должны быть включены.

Методика поверки

Определение ошибок информационного обмена может проводиться в статическом режиме, т. е. когда показания счетчика в ходе проверки остаются неизменными и в динамическом режиме, когда показания счетчика изменяются.

1. По показаниям индикаторов счетчика при отсутствии нагрузки.

Снять показания текущих коммерческих данных (показания по энергии) с индикаторов счетчиков;

С помощью программного обеспечения ПО «АльфаЦентр» провести опрос всех счетчиков и получить отчет (показания по энергии);

Сравнить показания, зафиксированные на индикаторе каждого счетчика, с показаниями по тем же счетчикам, полученными в отчете.

Критерии результатов поверки:

Если разность показаний индикатора счетчика и ИВК не превышает двух единиц младшего (последнего) разряда, считают, что данный измерительный канал прошел проверку успешно.

2. При наличии нагрузки на основе сравнения предыдущего, ежедневного чтения счетчика, с показаниями в ИВК.

С помощью ПО «АльфаЦентр», (либо с индикатора счетчика) снимаем показания последнего предыдущего чтения по активной и реактивной энергии.

Сравниваем показания, зафиксированные счетчиком на конец предыдущего чтения, с показаниями по тем же счетчикам, хранимых в базе данных ИВК на 0 ч. 00 м.

Критерии результатов поверки:

Если разность показаний индикатора счетчика и БД ИВК не превышает двух единиц младшего (последнего) разряда, считают, что данный измерительный канал прошел проверку успешно.

10 Идентификация программного обеспечения

При идентификации программного обеспечения и оценки влияния на метрологические характеристики средства измерений необходимо проверить соответствие следующих заявленных идентификационных данных программного обеспечения:

- -наименование программного обеспечения,
- -идентификационное наименование программного обеспечения,
- -номер версии (идентификационный номер) программного обеспечения,
- -цифровой идентификатор программного обеспечения (контрольная сумма исполняемого кода),
 - -алгоритм вычисления цифрового идентификатора программного обеспечения,

Проверка идентификационного наименования ПО, версии метрологически значимого ПО, даты создания, цифрового идентификатора программного обеспечения (контрольная сумма исполняемого кода) уровня ИВК.

Методика проверки:

Для проверки идентификационного наименования ПО, версии метрологически значимого ПО, даты создания, цифрового идентификатора программного обеспечения (контрольная сумма исполняемого кода), уровня защиты программного обеспечения от непреднамеренных и преднамеренных изменений необходимо:

запустить программу «АльфаЦЕНТР». Авторизоваться в программе путем ввода логина и пароля (по умолчанию логин - cnt, пароль — cnt). В открывшемся окне будет указана версия ПО С помощью программы md5определить контрольные суммы исполняемого кода метрологически значимого модуля ас metrology.dll.

Критерии результата проверки:

Проверка считается успешной:

Если название ПО, номер версии (идентификационный номер), контрольная сумма, полученные с помощью утилиты, совпадают с представленными в Описании типа на АИИС КУЭ, результат проверки положительный.

11. Определение пределов допускаемых относительных погрешностей измерения активной и реактивной электрической энергии в рабочих условиях Методика определение пределов допускаемых относительных погрешностей измерения активной и реактивной электрической энергии для рабочих условий Относительные погрешностей измерения активной и реактивной электрической энергии для рабочих условий, рассчитываются по формуле:

$$\delta_{w} = \pm 1.1 \sqrt{\delta_{I}^{2} + \delta_{U}^{2} + \delta_{\theta}^{2} + \delta_{S}^{2} + \delta_{A}^{2} + \delta_{c,o}^{2} + \delta_{cf}^{2} + \delta_{cf}^{2} + \delta_{CHU}^{2} + \delta_{Mu}^{2}}$$
(1)

Доверительные границы относительной погрешности результата измерений количества активной и реактивной электрической энергии при доверительной вероятности P = 0,95:

- в диапазоне тока $0.01 \cdot I_{1H} \le I_1 < 0.05 \cdot I_{1H}$
- в диапазоне тока $0.05 \cdot I_{1H} \le I_1 < 0.2 \cdot I_{1H}$
- в диапазоне тока $0.2 \cdot I_{1H} \le I_1 < 1.0 \cdot I_{1H}$
- в диапазоне тока 1,0.11н $\leq 11 \leq 1,2.11$ н

где,

- $\delta_{\rm I}$ токовая погрешность ТТ, %;
- $\delta_{\rm U}$ погрешность напряжения ТН, %;
- δ_{θ} погрешность трансформаторной схемы подключения счетчика за счет угловых погрешностей ТТ θ I и TH θ U, %;
- δ_{π} погрешность из-за потери напряжения в линии присоединения счетчика к TH, %;

 $\delta_{c.o}$ - относительная погрешность счетчика, %;

δs - погрешность рассинхронизации при измерениях текущего календарного времени, %;

Дополнительными погрешностями счетчиков являются:

 δ_{ct} - температурная погрешность, %;

 δ_{cf} - погрешность от изменения частоты, %;

 δ_{CHU} - погрешность от изменения напряжения \pm 10 %;

 $\delta_{\it Mu}$ - погрешность от влияния магнитной индукции внешнего происхождения 0,5 мTл.

Примечание: При отсутствии в измерительном канале каких-либо измерительных компонентов, соответствующие значения погрешностей в формуле 1 не используются.

Критерии результатов поверки

Проверка считается успешной:

Если полученные значения погрешности в рабочих условиях по каждому измерительному каналу соответствуют техническим требованиям ОРЭ.

12. Оформление результатов поверки.

- 12.1. Результаты поверки оформляются записью в протоколе поверки произвольной формы.
- 12.2. При положительных результатах поверки выдается «Свидетельство о поверке» в соответствии с Приказом №1815 от 02.07.2015г «Об утверждении Порядка проведения поверки средств измерений, требования к знаку поверки и содержания свидетельства о поверке».
- 12.3. При отрицательных результатах поверки система к эксплуатации не допускается и выписывается «Извещение о непригодности» в соответствии с Приказом №1815 от 02.07.2015г «Об утверждении Порядка проведения поверки средств измерений, требования к знаку поверки и содержания свидетельства о поверке» с указанием причин непригодности.