

Расходомеры Neco-Flow модели Beluga

МЕТОДИКА ПОВЕРКИ

МП 2550-0270-2015 л.р. 63804-16

> Руководитель НИО 255 ФГУП «ВНИИМ им Д.И. Менделеева»

> > К.В. Попов "17" октября 2015 г.

Настоящая методика поверки распространяется на расходомеры Neco-Flow модели Beluga, далее - расходомеры, и устанавливает методику их первичной и периодической поверки.

Интервал между поверками - 4 года.

1 Операции поверки

Первичная поверка расходомеров проводится поэлементно в каждом режиме измерений (уровня и расхода) в лабораторных условиях (всех моделей расходомеров).

1.1 При проведении поверки выполняются операции в соответствии с таблицей 1. Таблица 1

Наименование операции	Номер пункта методики поверки	Первичная поверка	Периодическая поверка	
Внешний осмотр	5.1	+	Поверка	
Опробование	5.2	+	+	
Подтверждение соответствия программного обеспечения	5.3	+	+	
Определение погрешности в режиме измерений уровня потока жидкости	5.4	+	+	
Определение погрешности в режиме измерений средней скорости потока жидкости	5.5	+	+	

1.2 При отрицательных результатах одной из операций поверка прекращается.

2 Средства поверки

При проведении поверки применяются нижеперечисленные средства измерений:

- рабочий эталон высшей точности Р') ВТ 6-98, № 001, диапазон расхода (0.012-320) м³/ч (т/ч), пределы допускаемой относительной погрешности при измерении скорости (0.05-0.3) %;
- лента измерительная 3-го разряда по ГОСТ Р 8.763-2011, диапазон измерений (0-20) м;
- установка уровнемерная УРГ-6000, диапазон измерений 0-6000 мм, погрешность измерений \pm 1 мм;
- термометр ртутный стеклянный лабораторный по ГОСТ 28498-90, цена деления $0.1\,^{\circ}\mathrm{C};$
 - барометр РТВ220 кл. А (погрешность \pm 20 Па).

Примечание:

При поверке расходомеров допускается применять средства измерений других типов и марок с характеристиками не хуже указанных в п.2.

- 3 Требования безопасности
- 3.1 При поверке необходимо соблюдать требования:
 - правил пожарной безопасности;
- «Правил технической эксплуатации электроустановок потребителей» (утверждены приказом № 6 Минэнерго РФ от 13.01.03 г.);

- ПОТ Р М-016-2001, РД 153-34.0-03.150-00 (с изм. 2003) «Межотраслевые правила по охране труда (правилами безопасности) при эксплуатации электроустановок»;
 - «Правил устройства электроустановок (ПУЭ) потребителей» (6-е изд., 7-е изд.);
- правил безопасности при эксплуатации средств поверки, приведенных в эксплуатационной документации;
- 3.2 К средствам поверки и используемому при поверке оборудованию обеспечивают свободный доступ.
- 3.3 Освещенность должна обеспечивать отчетливую видимость применяемых средств измерений, снятие показаний приборов и соответствует санитарным нормам согласно СНиП Π -4-79.
- 3.4 Управление оборудованием и средствами поверки производят лица, прошедшие обучение и проверку знаний требований безопасности и допущенные к обслуживанию технологического оборудования и средств поверки.
- 3.5 При появлении течи рабочей жидкости и других ситуаций, нарушающих процесс поверки, поверка должна быть прекращена.

4 Условия поверки и подготовка к ней

4.1 При проведении первичной поверки должны быть соблюдены следующие условия:

температура окружающего воздуха, °С	$20 \pm 5;$
относительная влажность воздуха, %	65 ± 15 ;
атмосферное давление, кПа	84 - 106,7;
напряжение питания, В	$220 \pm 22;$
частота сети, Гц	50 ± 1 .

5. Проведение поверки

5.1 Внешний осмотр

При проведении внешнего осмотра должно быть установлено соответствие расходомеров следующим требованиям:

- комплектность должна соответствовать эксплуатационной документации на данную модель расходомеров;
- изделия, входящие в состав расходомера, не должны иметь механических повреждений:
- органы управления (переключатели, кнопки, тумблеры) должны перемещаться без заеданий.

5.2 Опробование

- 5.2.1 При опробовании расходомеров устанавливается их работоспособность в соответствии с эксплуатационной документацией на него.
- 5.2.2 Произведите подготовку расходомера к работе в соответствии с эксплуатационной документацией. Переведите поверяемый расходомер в режим измерений скорости.
- 5.2.3 Задайте с помощью поверочной установки поочередно несколько значений скоростей из диапазона расходомерной установки. Убедитесь, что значения средней скорости потока жидкости на дисплее расходомера изменяется вместе с изменением скорости.
 - 5.2.4 Переведите поверяемый расходомер в режим измерений уровня.
- 5.2.5 При опробовании расходомеров с радарными и ультразвуковыми датчиками уровня, необходимо увеличивать и уменьшать расстояние между датчиком уровня и отражающей поверхностью, имитирующей уровень. Убедитесь, что при этом соответствующим образом меняются показания расходомера.

5.2.6 При опробовании расходомеров с гидростатическими датчиками уровня, необходимо увеличивать и уменьшать уровень контролируемой среды в уровнемерной установке. Убедитесь, что при этом соответствующим образом меняются показания расходомера.

5.3 Подтверждение соответствия программного обеспечения (ПО)

Идентификация осуществляется по номеру версии. Идентификация встроенного ПО осуществляется с помощью внешней программы RTQ-Log при подключении датчика скорости к ПК в основном окне программы. Номер версии внешнего ПО указан в заголовке программы (см. рис 1).

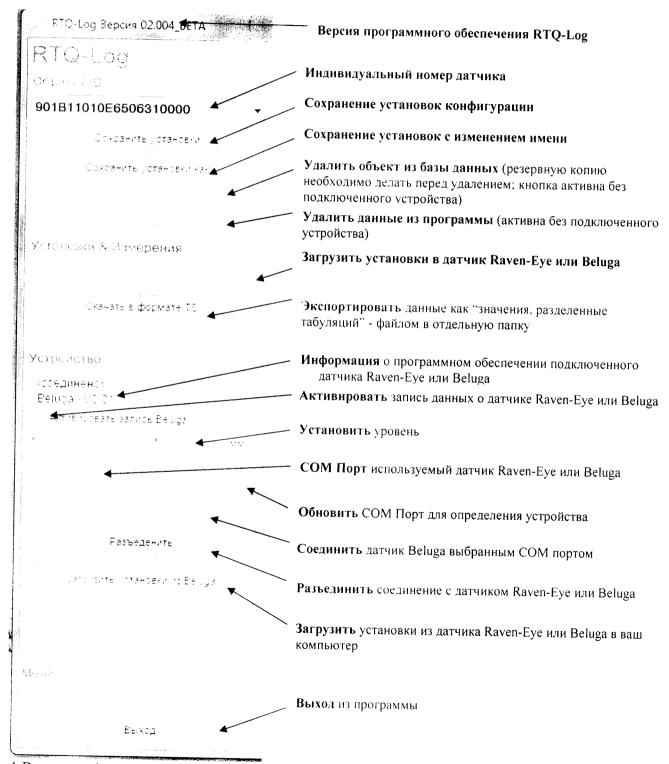


Рис. 1 Вид интерфейса программы RTQ-Log

При подключении радарных датчиков уровня VEGAPULS WL61, VEGAPULS 61 к ПК в основном окне программы Π O VegaPuls_60_ осуществляется идентификация версии Π O и серийных номеров датчиков уровня (см. рис. 2).

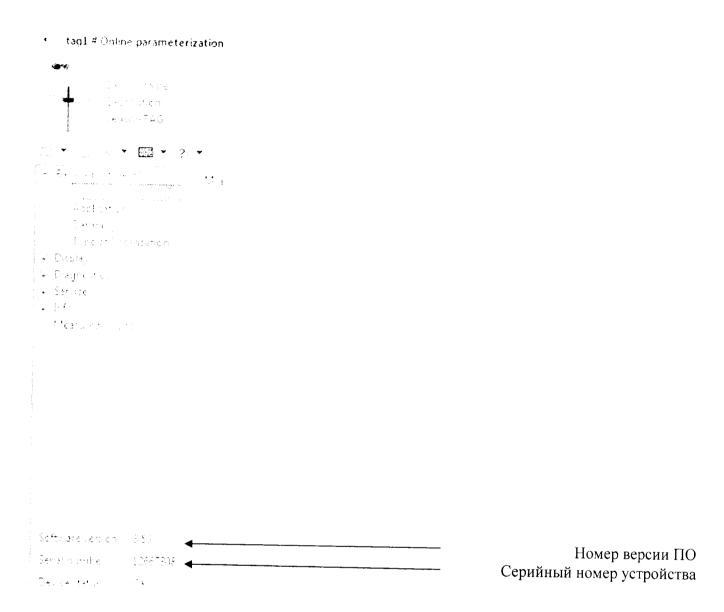
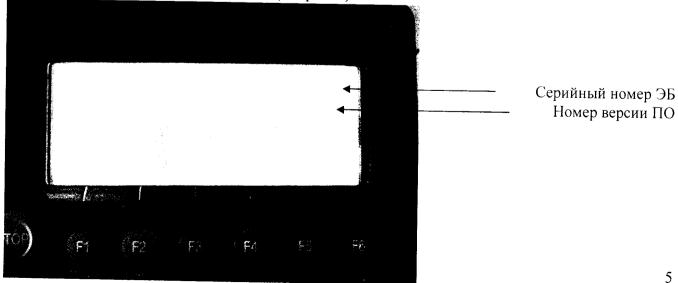



Рис. 2 Вид интерфейса ПО VegaPuls_60_

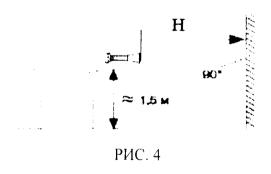
При включении электронного блока Neco-Monitor отображается номер версии ПО Neco-Monitor и серийный номер электронного блока (см. рис. 3).

Рис. 3 Вид дисплея электронного блока Neco-Monitor

Расходомер считается прошедшим проверку по данному пункту с положительными результатами, если проверяемые параметры ПО соответствует указанным в технической документации на СИ (см таблицу1).

Tr ~	1
Таолина	-1

Идентификационные данные (признаки)	Значения			
1	2	3	4	5
Идентификационное наименование ПО	ПО датчика скорости	ПО RTQ- Log	VegaPuls_60_	Neco-Monitor
Номер версии (идентификационный номер) ПО	Не ниже «версия 0.01»	Не ниже «версия 02.004»	Не ниже 3.8.х	Не ниже V68


5.4 Определение погрешности в режиме измерений уровня жидкости

Произведите подготовку расходомера к работе в соответствии с Руководством по эксплуатации на расходомер и переведите поверяемый расходомер в режим измерений уровня.

5.4.1 Определение приведенной погрешности измерений расстояния до потока жидкости ультразвуковыми датчиками уровня

Определение приведенной погрешности измерений расстояния до потока жидкости ультразвуковыми датчиками уровня (далее – датчиками) проводят с помощью ленты измерительной 3-го разряда по ГОСТ Р 8.763-2011 (далее – ленты) следующим образом.

Датчик устанавливают на горизонтальную поверхность, как показано на рисунке 4, в качестве имитатора контролируемой среды используют поверхность передвижного экрана.

Определение приведенной погрешности измерений уровня потока жидкости проводят в пяти равномерно расположенных точках диапазона измерений при прямом и обратном перемещении экрана.

В каждой поверяемой точке определяют расстояние от датчика до экрана с помощью ленты и снимают показания расходомера.

Вычисляют приведенную погрешность измерений расстояния до потока жидкости (γH, %) в каждой поверяемой точке диапазона измерений по формуле

$$\gamma H = \frac{H_{\text{mp}} - H_{\text{c.n.}}}{H_{\text{max}}} \cdot 100\%, \qquad (1)$$

где $H_{n,p}$ – показания поверяемого расходомера, мм;

 $H_{c.n.}$ – показания ленты, мм;

 H_{max} – верхний предел диапазона измерений расстояния, мм.

Приведенная погрешность измерений расстояния до потока жидкости ультразвуковыми датчиками уровня не должна превышать нижеуказанных значений.

П	
Пределы допускаемой приведенной погрешности измерений	
расстояния до потока жидкости Н ультразвуковыми	
датчиками уровня, үН, % от верхнего предела диапазона	
измерений:	
Датчик уровня стандартного диапазона ULS-02	± 0.3
Датчик уровня увеличенного диапазона ULS-06	± 0.3 ± 0.2

5.4.2 Определение основной абсолютной погрешности измерений расстояния до потока жидкости радарными датчиками уровня

При определении основной абсолютной погрешности измерений расстояния до потока жидкости радарными датчиками уровня проводят измерения в соответствии с п. 5.4.1 настоящего документа.

Вычисляют основную абсолютную погрешность измерений расстояния до потока жидкости ($\Delta H_{\text{осн.}}$ мм) в каждой поверяемой точке диапазона измерений по формуле

$$\Delta H_{\text{och}} = H_{\text{n.p.}} - H_{\text{c.n.}}. \tag{2}$$

где $H_{\text{п.р.}}$ – показания поверяемого расходомера, мм;

 $H_{c.n.}$ – показания ленты, мм.

Основная абсолютная погрешность измерений расстояния до потока жидкости радарными датчиками уровня не должна превышать нижеуказанных значений.

Пределы допускаемой основной абсолютной погрешности	
измерений расстояния до потока жидкости Н радарными	
датчиками уровня, $\Delta H_{\text{осн}}$, мм:	± 2
Датчик уровня стандартного диапазона VEGAPULS WL61	_
Датчик уровня увеличенного диапазона VEGAPULS 61	

5.4.3 Определение приведенной погрешности измерений уровня потока жидкости гидростатическими датчиками уровня

Определение приведенной погрешности измерений уровня потока жидкости гидростатическими датчиками уровня проводят на установке уровнемерной УРГ-6000 в соответствии с ГОСТ 8.321-78 «Государственная система обеспечения единства измерений. Уровнемеры промышленного применения и поплавковые. Методы и средства поверки».

Вычисляют приведенную погрешность измерений уровня потока жидкости (үН, %) в каждой поверяемой точке диапазона измерений по формуле

$$\gamma H = \frac{H_{\rm np} - H_{\rm cn}}{H_{\rm max}} \cdot 100\% \,. \tag{3}$$

где $H_{n,p}$ – показания поверяемого расходомера, мм;

Н_{с.п.} – показания установки уровнемерной УРГ-6000, мм;

 H_{max} – верхний предел диапазона измерений уровня гидростатического датчика, мм.

Приведенная погрешность измерений уровня потока жидкости гидростатическими датчиками уровня не должна превышать нижеуказанных значений.

Пределы допускаемой приведенной погрешности измерений	
уровня потока жидкости Н гидростатическими датчиками	±0,1
уровня PLS, γH, % от верхнего предела диапазона измерений	

5.5 Определение погрешности в режиме измерений средней скорости потока жидкости

Произведите подготовку расходомера к работе в соответствии с Руководством по эксплуатации на расходомеры. Переведите поверяемый расходомер в режим измерений скорости.

Задайте в измерительном участке эталонной установки поочередно три значения скорости, соответствующих значениям средней скорости из диапазона поверочной установки.

Значение относительной погрешности измерений скорости определяют по формуле

$$\delta_{V_{i}} = \frac{V_{9i} - V_{i}}{V_{i}} \cdot 100 \%,$$

$$i = 1, 2, 3, 4, 5.$$
(5)

где Vi и Vэi - значения скорости жидкости по показаниям поверяемого расходомера и эталонной установки, соответственно.

При измерении средней скорости датчиком скорости BE20, BE45 относительная погрешность (δv) скорости не должна превышать следующих пределов:

Пределы допускаемой относительной погрешности при	
измерении средней скорости жидкости датчиком скорости	<u>+</u> 1
BE20, BE45, δ_V , %	

При этом абсолютная погрешность (Δ_V) датчика скорости BE20, BE45 в диапазоне скоростей от минус 0,3 м/с до плюс 0,3 м/с не должна превышать следующих пределов:

Пределы допускаемой абсолютной погрешности при	
измерении средней скорости жидкости датчиками скорости BE20. BE45 в диапазоне от минус 0,3 м/с до плюс 0,3 м/с, Δ_V ,	
M/C	

Примечание:

- 1. При отрицательных результатах любой операции поверки поверка прекращается, а на расходомер выписывается извещение о непригодности.
- 2. Каждая операция поверки регистрируется в протоколе, оформленном в произвольной форме.
 - 6.Оформление результатов поверки.
- 6.1. Положительные результаты первичной поверки оформляют записью в паспорте (раздел «Свидетельство о приемке»). заверенной поверителем и удостоверенной оттиском клейма.
- 6.2. Положительные результаты периодической поверки расходомера оформляют выдачей свидетельства о поверке установленного образца.
- 6.3. При отрицательных результатах поверки расходомер бракуют с выдачей извещения о непригодности с указанием причин непригодности.

ПРОТОКОЛ приложение А поверки расходомера Neco-Flow модели Beluga модель зав. номер____ Методика поверки МП 2550-0270-2015 Условия поверки: - температура окружающего воздуха, °С - относительная влажность, %- атмосферное давление, кПа Средства поверки: Результаты идентификации программного обеспечения Идентификационные данные Значения (признаки) 1 2 3 4 5 Идентификационное ПО датчика ПО RTQ-VegaPuls_60_ Neco-Monitor наименование ПО скорости Log Номер версии Не ниже Не ниже Не ниже 3.8.х Не ниже V68 (идентификационный номер) ПО «версия 0.01» «версия 02.004»

Определение приведенной погрешности измерений расстояния до потока жидкости

Дата	Н	п.р., М	Н _{с.п.} , м		Приведенная погрешность измерений
7	Прямой ход	Обратный ход	Прямой ход	Обратный ход	расстояния до потока жидкости, %

Определение основной абсолютной погрешности измерений расстояния до потока жидкости

Дата	Н	п.р., М	Н _{с.п.} , м		Основная абсолютная погрешность измерений
	Прямой ход	Обратный ход	Прямой ход	Обратный ход	расстояния до потока жидкости, мм

Определение приведенной погрешности измерений уровня потока жидкости

Дата	Н _{п.р.} , м		H _{e.n.} , M		Приведенная погрешность измерений
дата	Прямой ход	Обратный ход	Прямой ход	Обратный ход	уровня потока жидкости,

Определение относительной погрешности измерений средней скорости жидкости

Дата	№ опыта	Vэi	Vi	$\delta_{V_i} = \frac{V_{9i} - V_i}{V_i} \cdot 100 \%$ $i = 1, 2, 3, 4, 5.$
		м/с	м/с	%
	1	· · · ·		
	2			

Расходомер Neco-Flow модели Beluga зав. номер	
	годен (негоден)
Поверитель	