СТЕНДЫ КОНТРОЛЬНО-ИЗМЕРИТЕЛЬНЫЕ Э250

Методика поверки

 $9250.00.00.000_\Pi M$

Удален[Unknown]:

Форматированный[lyudmila.n.kuzmina]: Отступ: Слева: 0 мм, Первая строка: 0 мм

1. ОБЛАСТЬ ПРИМЕНЕНИЯ

Настоящая методика поверки распространяется на стенды контрольноизмерительные Э250 (далее – стенды), выпускаемые по ТУ 4577-033-53473129-2006, предназначенные для измерения параметров снятого с автомобилей электрооборудования: частоты вращения, крутящего момента, силы тока и напряжения постоянного и переменного тока, электрического сопротивления в условиях автотранспортных предприятий, станций технического обслуживания.

Настоящая методика поверки устанавливает методы и средства поверки.

Межповерочный интервал – 1 год.

2 ОПЕРАЦИИ ПОВЕРКИ

При проведении поверки должны быть выполнены следующие операции, указанные в таблице 1. Таблица 1

Наименование	Номер пункта	Проведение операции при		
операции	методики	первичной поверке	периодической поверке	
1. Внешний осмотр	6.1	+	+	
2. Опробование	6.2	+	+	
3. Проверка требований безопасности	6.3	+	+	
3. Определение метрологических характеристик	6.4			
3.1. Определение диапазона и основной относительной погрешности при измерении частоты вращения	6.4.1	+	+	
3.2. Определение диапазона и основной относительной погрешности при измерении силы постоянного электрического тока в диапазонах 0.5-5A 5-150A 150-500A 300-1000A	6.4.2 6.4.2.1 6.4.2.2 6.4.2.3 6.4.2.4	+	+	
3.3. Определение диапазона и основной относительной погрешности при измерении электрического напряжения постоянного тока	6.4.3	+	+	
3.4. Определение диапазона и основной относительной погрешности при измерении электрического напряжения переменного тока	6.4.3	+	+	
3.5. Определение диапазона и основной относительной погрешности измерения крутящего момента	6.4.5	+	+	
3.6. Определение диапазона и основной относительной погрешности при измерении электрического сопротивления постоянному току	6.4.4	+	+	
4. Оформление результатов поверки	7	+	+	

3 СРЕДСТВА ПОВЕРКИ

При проведении поверки должны использоваться средства поверки с характеристиками, указанными в таблице 2.

Таблица 2

Номер	Наименование и тип основного или вспомогательного средства поверки,
пункта документа	обозначение нормативного документа, регламентирующего технические
по поверке	требования и (или) метрологические и основные технические характеристики
	средства поверки.
	Динамометр образцовый ДОСМ-3-1У 5094 ТУ25-7701.0045-87
	Вольтамперметр М2017, кл. 0,2 ТУ25-04-3109-78
	Частотомер Ч3-54 ДЛИ 2.721.006 TO
	Вольтамперметр М2015, кл. 0,2 3ПБ.378.019 ТО
	Магазин сопротивлений МСР-63 ТУ 25-04.3919-80
	Нагрузочное устройство Н-1767
	Установка для поверки вольтметров В1-8 ЯЫ2.761.004 ТО
	Установка для поверки вольтметров В1-13 2.085.008 ТО
	Шунт ШС75-150-0,5 ГОСТ 8042-78
	Шунт ШС75-500-0,5 ГОСТ 8042-78
	Шунт ШС75-1000-0,5 ГОСТ 8042-78
	Комплект измерительный К505 ТУ25-04.2251-77
	Секундомер СОСпр-2б-2-000 ТУ25-1894.003-90
	Установка пробойная УПУ 1-М АЭ2.771.001ТУ
	Мегаомметр Ф4101 ТУ25-04.2467-75
	Миллиомметр Е6-18 ЯИ2.722.013 ТО
	Нажимное устройство Н-1656
Примечание	 Допускается применение других средств поверки, обеспечивающих
требуемую то	очность измерений.

4 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЯ И БЕЗОПАСНОСТИ

- 4.1 При проведении поверки должны быть соблюдены требования безопасности по ГОСТ 12.3.019-80. Работа в помещении с незаземленными металлическими конструкциями, доступными к прикосновению, запрещается. Металлические каркасы и основания столов должны быть заземлены. Средства измерений должны быть заземлены.
- $4.2~\mathrm{K}$ поверке допускаются лица, ознакомленные с руководством по эксплуатации $3250.00.00.000~\mathrm{P}$ Э, методикой поверки $3250.00.00.000\mathrm{IM}$ и имеющие допуск к работе на установках напряжением до $1000~\mathrm{B}$.

5 УСЛОВИЯ ПОВЕРКИ

6 ПРОВЕДЕНИЕ ПОВЕРКИ

6.1 Внешний осмотр

При проведении внешнего осмотра должно быть установлено соответствие прибора следующим требованиям:

- все детали и узлы прибора не должны иметь механических повреждений, влияющих на его эксплуатационные качества;
- индикаторы должны быть чистыми и не иметь механических повреждений (сколы, царапины и т.д.).

6.2 Опробование

При опробовании должно быть установлено соответствие стенда следующим требованиям:

- на выходе регулируемого источника напряжение при крайних положениях регулятора должно быть не более 2B и не менее 16B- в режиме «12B», не более 2B и не менее 32B в режиме «24B»;
- изменение частоты вращения привода должно обеспечиваться в диапазоне от $(500\pm10\%)$ об/мин до $(6000\pm10\%)$ об/мин;
- должны быть работоспособны все измерители, стробоскоп, датчик крутящего момента и силовая нагрузка.

Порядок опробования указан в п.п.9.4.1, 9.4.2, 9.4.3, 9.4.4 руководства по эксплуатации 3250.00.00.000PЭ.

6. 3 Проверка требований безопасности.

При проверке выполнения требований безопасности должно быть установлено:

- наличие защитного заземления;
- сопротивление изоляции , измеренное с помощью мегомметра Ф4101 ТУ25-04.2467-75, замеренное между фазными и заземляющим штырями сетевой вилки, должно быть не менее 5 МОм;
- прочность изоляции должна выдерживать в течение 1 минуты без пробоя и поверхностного перекрытия действие испытательного напряжения переменного тока 2000В подаваемое с пробойной установки УПУ 1-М АЭ2.771.001ТУ между соединенными между собой штырям вилки сетевого кабеля (кроме заземляющего) и заземляющим зажимом стенда;
- электрическое сопротивление между заземляющим зажимом стенда и тумбой, панелью управления, замеренное миллиомметром E6-18 ЯИ2.722.013 ТО, должно быть не более 0,1 Ом;
- при отключении и восстановлении питания двигатель привода не должен самопроизвольно включаться независимо от положения органов управления.

6. 4. Определение метрологических характеристик

6.4.1 Определение основной относительной погрешности при измерении частоты вращения производят при помощи частотомера Ч3-54 ДЛИ 2.721.006 ТО в следующем порядке:

- подать на вход частотомера сигнал с контрольных гнезд «поверка n» расположенных на левой боковой стенке стенда;

- установить переключатель режима работы универсального измерителя в положение «n_{стp}»;

- нажать кнопку на осветителе и с помощью регулятора «п» универсального измерителя и регулятора осветителя последовательно установить на индикаторе универсального измерителя значения: 0,50; 1,00; 3,00; 6,00 и 9,50, что соответствует тыс. об/мин. Для каждого значения частоты вращения измерить частотомером период повторения импульсов.

Проверка индикатора привода. Установить на индикаторе универсального измерителя значение частоты вращения 5000 об/мин. Включить привод стенда. Регулятором частоты вращения привода добиться стробоскопического эффекта. Установить переключатель режима работы универсального измерителя в положение «п». Индикатор универсального измерителя должен показывать значение частоты вращения $(500006/мин. \pm 10\%)$ об/мин.

Значения основной относительной погрешности рассчитывают по формуле:

$$\delta n = \Delta n / nx \quad 100\%$$

где: δn – основная относительная погрешность, %

$$\Delta n = (nx - n_{\pi}) + q$$
, если $nx > = n\pi$

$$\Delta n = (nx - n_{\pi}) - q$$
, если $nx < n\pi$

где: Δn – основная абсолютная погрешность, об/мин;

nx – поверяемая точка, об/мин;

q – единица младшего разряда индикатора стенда;

n_д – действительное значение частоты вращения, об/мин, определяемое по формуле:

$$n = 60 / T$$
,

где: Т – период следования импульсов по показаниям частотомера, с.

Результаты поверки считаются положительными, если основная относительная погрешность не превышает $\pm 3\%$.

6.4.2 Определение основной относительной погрешности при измерении силы, постоянного электрического тока для разных пределов измерения производят по схемам, приведенным на рисунках 1 - 3, при помощи соответствующих наружных шунтов ШС75 ГОСТ 8042-78 и образцового вольтамперметра М2017 ТУ25-04-3109-78 или М2015 ЗПБ.378.019 ТО.

Значения основной относительной погрешности рассчитывают по формуле:

$$\delta I = \Delta I / Ix 100\%$$

где: δI – основная относительная погрешность, %

$$\Delta I = (Ix - I_{\pi}) + q$$
, если $Ix >= I_{\pi}$

$$\Delta I = (Ix - I_{\pi})$$
 - q , если $Ix < I_{\pi}$

где: ΔI – основная абсолютная погрешность, A;

Іх – поверяемая точка, А;

 $I_{\mbox{\tiny J}}$ – действительное значение силы тока, определяемое по показаниям образцового прибора, A;

q – единица младшего разряда индикатора стенда.

Результаты поверки считаются положительными, если основная относительная погрешность не превышает $\pm 4\%$.

6.4.2.1 Определение основной относительной погрешности при измерении силы постоянного электрического тока в диапазоне измерений от 0.5 до 5 А производят по схеме, приведенной на рисунке 1, в следующем порядке:

- установить переключатель универсального измерителя в положение "5 А";
- -подключить источник регулируемого напряжения к клеммам нагрузки (Кл2, Кл3);

-установить диапазон рабочего напряжения 12B или 24B на источнике регулируемого напряжения и блоке регулируемой нагрузки;

- установить максимальное выходное напряжение источника регулируемого напряжения для выбранного диапазона;

- регулятором нагрузки установить ток в цепи нагрузки 5...6А;
- регулятором источника регулируемого напряжения последовательно установить на индикаторе универсального измерителя значения тока 0,5; 1; 2; 3; 4 и 5 А. Для каждого значения тока снять показания образцового прибора.

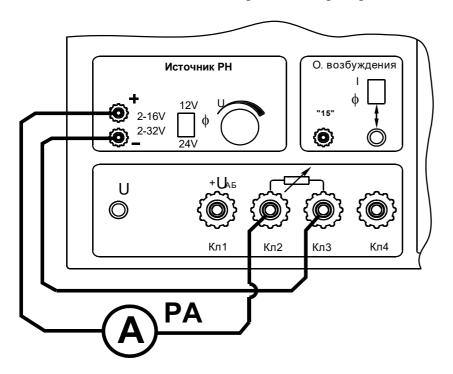


Рисунок 1 — Схема соединений для определения погрешности в диапазоне измерений от 0.5 до 5 A . PA — вольтамперметр M2015

6.4.2.2 Определение основной относительной погрешности при измерении силы, постоянного электрического тока в диапазоне измерений от 5 до 150 А производят по схеме, приведенной на рисунке 2, в следующем порядке:

- установить диапазон измерения амперметра в положение "150 А";

- Переключателем нагрузки и регулятором блока нагрузки последовательно установить на индикаторе тока значения 15, 30 80, 100 и 150 А;

- для каждого значения тока снять показания образцового прибора.

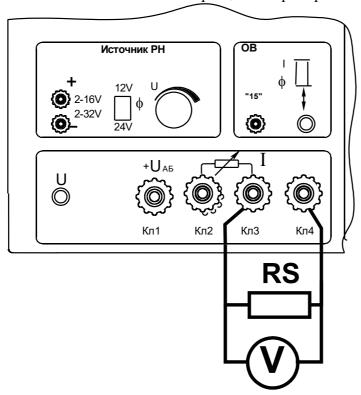
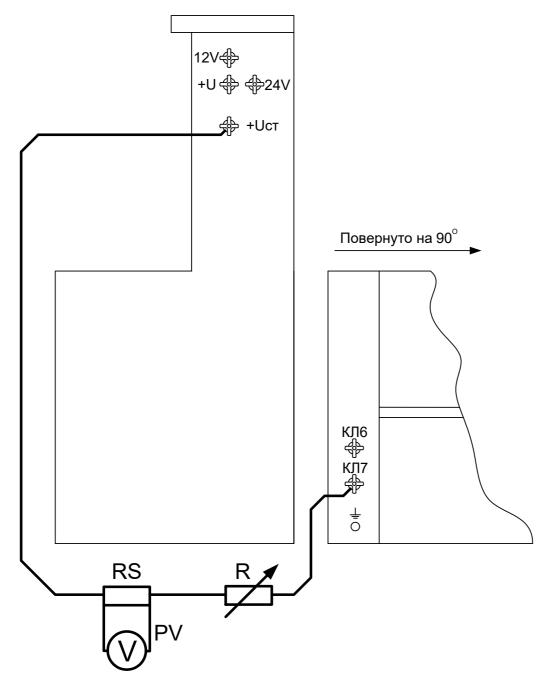


Рис. 2 – Схема подключения для определения погрешности в диапазоне измерений от 5 до $150~\mathrm{A},$

где: PV – вольтамперметр M2017;


RS - шунт ШС75-150-0,5;

6.4.2.3 Определение основной относительной погрешности при измерении силы, постоянного электрического тока в диапазоне измерений от 150 до 500 А производят с шунтами на 150 и 500 А по схеме, приведенной на рисунке 3, в следующем порядке:

- установить переключатель амперметра в положение "500 А";
- при помощи нагрузочного устройства H-1767 последовательно установить на индикаторе тока значения 150; 250; 400 и 500 A;
 - для каждого значения тока на индикаторе снять показания образцового прибора.

6.4.2.4 Определение основной относительной погрешности при измерении силы, постоянного электрического тока в диапазонах измерений от 300 до 1000 А производят с помощью дополнительного нагрузочного устройства H-1767 по схеме, приведенной на рисунке 3 с шунтами 500 и 1000 А, в следующем порядке:

- установить переключатель амперметра в положение "1000 А";
- установить рукоятку реостата силового блока в положение "от себя";
- с помощью нагрузочного устройства H-1767 последовательно установить на индикаторе тока значения 300; 400; 600 и 1000 А;
 - для каждого значения тока на индикаторе снять показания образцового прибора.

PV — вольтамперметр M2017, RS — шунт ШС75-150-0,5, ШС75-500-0,5 или ШС75-1000-0,5,

R – нагрузочное устройство H-1767

Рисунок 3 — Схема подключения для определения погрешности в диапазоне измерений от 150 до 500 A и от 300 до 1000 A

6.4.3 Определение основной относительной погрешности при измерении электрического напряжения постоянного тока производят с помощью прибора для поверки вольтметров В1-13.

Прибор В1-13 подключают к клеммам U= стенда. Прибором В1-13 последовательно устанавливают на входе вольтметра стенда напряжение, соответствующее поверяемым точкам Uд (см. таблицу 4) и снимают показания стенда.

Таблица 4

Диапазон измерений, В	Поверяемые точки, Uд, В				
0,2 – 2	0,2	0,5	1,0	1,5	2,0
2-20	2	5	10	15	20
20 – 40	20	25	30	-	40

Основную относительную погрешность определяют по формуле:

 $\delta u = \Delta U / U_{\pi}$ 100%,

где: δu – основная относительная погрешность, %

 $\Delta U = (Ux - Uд) + q$, если Ux Uд

 $\Delta U = (Ux - Uд) - q$, если Ux < Uд

 ΔU – абсолютная погрешность, B;

Uд – поверяемая точка, B;

Ux – показания стенда, B;

q – единица младшего разряда индикатора стенда.

Результаты поверки считаются положительными, если основная относительная погрешность не превышает $\pm 2\%$.

6.3.4 Определение основной относительной погрешности при измерении электрического напряжения переменного тока (п. 1.1.5) производят с помощью прибора для поверки вольтметров B1-8.

Прибор B1-8 подключают к клеммам U~ стенда. Прибором B1-8 последовательно устанавливают на входе вольтметра стенда переменное напряжение, соответствующее поверяемым точкам Uд (см. таблицу 5) и снимают показания стенда.

Таблица 5

Диапазон измерений, В	Поверяемые точки, Uд, В				
2 – 20	2	5	10	15	20
20 – 40	20	25	30	-	40

Основную относительную погрешность определяют по формуле:

 $\delta u = \Delta U / U_{\pi}$ 100%,

где: δu – основная относительная погрешность, %

 $\Delta U = (Ux - Uд) + q$, если Ux Uд

 $\Delta U = (Ux - U_{\pi}) - q$, если $Ux < U_{\pi}$

 ΔU – абсолютная погрешность, B;

Uд – поверяемая точка, B;

Ux – показания стенда, B;

q – единица младшего разряда индикатора стенда.

Результаты поверки считаются положительными, если основная относительная погрешность не превышает $\pm \, 2\%$.

6.4.5 Определение диапазона и основной относительной погрешности при измерении крутящего момента (п. 1.1.6) осуществляется при помощи нажимного устройства Н1656 и образцового динамометра ДОСМ-3-2У 5095 ТУ25-7701.0045-87 в следующем порядке: - снять датчик силы со стенда и установить его в нажимном устройстве;

- снять датчик силы со стенда и установить его в нажимном устройстве;

 подключить датчик к стенду в соответствии со схемой электрической принципиальной;

– установить динамометр ДОСМ-3-2У и рукояткой винта выбрать зазоры между динамометром и датчиком, не нагружая при этом динамометр;

– установить динамометр ДОСМ-3-2У и рукояткой винта выбрать зазоры между динамометром и датчиком, не нагружая при этом динамометр;

– установить переключатель универсального измерителя в положение «М» и нажать клавишу включения стартера в положение «І», которая параллельно с кнопкой включения «4сек» позволяет считывать текущие показания УИ и амперметра.

– установить нулевые показания на индикаторе универсального измерителя (для каждого положения переключателя крутящего момента, т.е модуля бендикса стартера) резистором установки нуля измерителя момента;

- вращением рукоятки винта нажимного устройства по часовой стрелке установить показания индикатора динамометра в мм, соответствующие значению нагрузки, рассчитанной по формуле действительного значения крутящего момента для каждой поверяемой отметки измерителя стенда согласно таблице 6;

 по формуле градуировочной характеристики динамометра рассчитать величину показаний его индикатора для каждого значения нагрузки, соответствующей поверяемой отметке;

- нагружение датчика производить на величину рассчитанных показаний индикатора динамометра начиная с минимального модуля «2,5х9»; показания динамометра считывать при его нагружении, показания при его разгружении не учитываются;

- снять показания с индикатора универсального измерителя стенда Таблица 6

Положение Передаточное отношение Поверяемые точки, Мх, Н⋅м переключателя крутящего (i) момента 100 $4,25 \times 10$ 3,7 40 60 80 30 3×11 5,18 40 60 8,0 10 2.5×9 20 30

Градуировочную характеристику динамометра по промежуточным нагрузкам, которые не градуируются при выпуске динамометров из производства, определить методом линейной интерполяции по ступеням нагружения по формуле:

$$A = (A_{\delta} - A_{M}) \frac{P - P_{M}}{P_{\delta} - P_{M}} + A_{M}$$

где А- показания динамометра для промежуточной нагрузки (Pn) в мм;

Аб - показания динамометра для нагрузки, которая по своему значению больше промежуточной, в мм;

Ам - показания динамометра для нагрузки, которая по своему значению меньше промежуточной, в мм;

Р – значение нагрузки в кН, соответствующее поверяемой отметке;

Рб – значение ближайшей нагрузки, которая по величине больше значения промежуточной нагрузки, в кH;

Рм — значение ближайшей нагрузки, которая по величине меньше значения промежуточной нагрузки, в кH.

Основную относительную погрешность определяют по формуле:

 $\delta M = \Delta M / MX 100\%$

где: бм – основная относительная погрешность, Н⋅м;

 Δ м = (мх – мд) + q, если мх мд

 Δ м = (мх – мд) - q, если мх < мд

 Δ м – абсолютная погрешность, H·м;

мх - поверяемая точка, H·м;

мд – действительное значение, H·м;

q – единица младшего разряда индикатора стенда.

Действительное значение крутящего момента, Н·м, определяется по формуле:

$$M_{\pi} = P \times L / i$$
,

где: Р – сила, определяемая по образцовому динамометру, Н;

L = 0.22 м - длина плеча приложения силы к датчику в стенде;

і – передаточное отношение шестерни стартера к зубчатому сектору тормозного стенда в зависимости от положения переключателя крутящего момента.

Результаты поверки считаются положительными, если основная относительная погрешность не превышает $\pm 10\%$.

6.4.6 Определение основной относительной погрешности при измерении электрического сопротивления постоянному току (п. 1.2.1.5) производят с помощью образцового магазина сопротивлений МСР-63 ТУ 25-04.3919-80, подключаемого к зажимам " Ω " стенда.

На магазине сопротивлений устанавливают сопротивления, соответствующие поверяемым точкам Rд (Таблица 7) и снимают показания стенда.

Таблица 7

Диапазон измерений	Поверяемые точки Rд
(1 – 100) Ом	10; 30; 60; 90 Ом
(1–100) кОм	10; 30; 60; 90 кОм

Основную относительную погрешность определяют по формуле:

 $\delta R = \Delta R / R_{\pi}$ 100%

где: δR – основная относительная погрешность, %

 $\Delta R = (Rx - R_{\mathcal{I}}) + q$, если $Rx R_{\mathcal{I}}$

 $\Delta R = (Rx - R_{\pi}) - q$, если $Rx < R_{\pi}$

 Δ R – абсолютная погрешность, кОм;

Rд – поверяемая точка, кОм;

Rx – показания стенда, кОм;

q – единица младшего разряда индикатора стенда.

Результаты поверки считаются положительными, если основная относительная погрешность не превышает $\pm 2,0$ %.

7. Оформление результатов поверки

7.1 Положительные результаты поверки оформляют:

- при первичной поверке - путем нанесения оттиска поверительного клейма и записи в разделе 14 руководства по эксплуатации стенда;

- при периодической поверке - путем нанесения оттиска поверительного клейма и записи в разделе 14 руководства по эксплуатации стенда с оформлением при необходимости свидетельства о поверке по форме, установленной Госстандартом.

7.2 При отрицательных результатах поверки (поверяемый стенд забракован) стенд не допускается к дальнейшей эксплуатации, в раздел 14 руководства по эксплуатации прибора вносят запись о непригодности стенда к эксплуатации, клеймо предыдущей поверки гасят и аннулируют свидетельство о поверке.

На стенд выдают извещение о непригодности.

7.3 Поверка стенда производится не реже одного раза в год при его эксплуатации, а также после ремонта и длительных перерывов в работе.

Ведущий специалист	
ГЦИ СИ «ВНИИМ им. Менделеева»	В.Л. Жутовский