#### СОГЛАСОВАНО

Исполнительный директор OOO «EMT»



#### **УТВЕРЖДАЮ**

Первый заместитель генерального директора – заместитель по научной работе ФГУП «ВНИИФТРИ»

А.Н. Щипунов

«<u>О</u>4» <u>О</u>Z 2016 г.

М.п.

#### Инструкция

Модули измерительные KAD/ADC/136

> Методика поверки 651-16-02 МП

n.p.65228-16

### 1 Основные положения

- 1.1 Настоящая методика поверки распространяется на модули измерительные KAD/ADC/136 (далее модули), изготавливаемые фирмой «Curtiss-Wright Avionics & Electronics», Ирландия, и устанавливает порядок и средства их первичной и периодической поверок.
  - 1.2 Интервал между поверками 1 год.

#### 2 Операции поверки

2.1 При проведении поверки должны проводиться операции поверки, указанные в таблице 1.

Таблица 1 – Операции поверки

| таолица 1 – Операции поверки                                                                                                     |                  |                 |               |
|----------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------|---------------|
|                                                                                                                                  |                  | Проведение      | операции при  |
| Наименование операции                                                                                                            | Номер пункта     | первичной по-   | периодической |
|                                                                                                                                  | методики поверки | верке           | поверке       |
| 1 D                                                                                                                              |                  | (после ремонта) |               |
| 1 Внешний осмотр                                                                                                                 | 7.1              | да              | да            |
| 2 Опробование                                                                                                                    | 7.2              | да              | да            |
| 3 Идентификация программного обеспечения                                                                                         | 7.3              | да              | да            |
| 4 Определение метрологических характеристик                                                                                      | 7.4              | да              | да            |
| 5 Определение приведенной погрешности измерений напряжения постоянного тока                                                      | 7.4.1            | да              | да            |
| 6 Определение абсолютной погрешности измерений температуры при подключении термоэлектрических преобразователей (термопар типа К) | 7.4.2            | да              | да            |
| 7 Определение абсолютной погрешности измерений температуры при подключении термопреобразователей сопротивления (РТ100)           | 7.4.3            | да              | да            |
| 8 Определение приведенной погрешности воспроизведения напряжения постоянного тока                                                | 7.4.4            | да              | да            |
| 9 Определение приведенной погрешности воспроизведения силы постоянного тока (тока возбуждения)                                   | 7.4.5            | да              | да            |
| 10 Определение приведенной погрешности воспроизведения силы постоянного тока (тока балансировки)                                 | 7.4.6            | да              | да            |

- 2.2 Первичную поверку проводить в полном объеме для всех каналов модулей.
- 2.3 Периодическую поверку допускается проводить для тех каналов, и в тех режимах и диапазонах, которые используются при эксплуатации, по соответствующим пунктам настоящей методики.

При этом, соответствующая запись должна быть сделана в эксплуатационных документах и свидетельстве о поверке (при его наличии) на основании решения эксплуатанта.

#### 3 Средства поверки

- 3.1 Рекомендуемые средства поверки приведены в таблице 2. Допускается применение других средств поверки других средств поверки, обеспечивающих определение метрологических характеристик поверяемых средств измерений с требуемой точностью.
- 3.2 Все средства поверки должны быть исправны, применяемые при поверке средства измерений и рабочие эталоны должны быть поверены и иметь свидетельства о поверке или оттиск поверительного клейма с неистекшим сроком действия.

Таблица 2

| TT            |                                                                                                                                  |
|---------------|----------------------------------------------------------------------------------------------------------------------------------|
| Номер пункта  | Наименование рабочих эталонов или вспомогательных средств поверки; но-                                                           |
| методики      | мер документа, регламентирующего технические требования к рабочим эта-                                                           |
|               | лонам или вспомогательным средствам; разряд по государственной повероч-                                                          |
|               | ной схеме и (или) метрологические и основные технические характеристики                                                          |
|               | средств поверки                                                                                                                  |
| 7.2, 7.4.4,   | Источник питания постоянного тока Б5-75, диапазон стабилизированного                                                             |
| 7.4.5, 7.4.6  | напряжения на выходе (0-50) В, пределы допускаемой относительной по-                                                             |
|               | $  $ грешности напряжения на выходе $\pm 0.05 \%$                                                                                |
| 7.4.1, 7.4.2  | Калибратор универсальный 9100, диапазон воспроизведения напряжения пе-                                                           |
|               | ременного тока от 0 до 3,2 В, диапазон частот от 10 до 10·10 <sup>3</sup> Гц, пределы до-                                        |
| İ             | пускаемой абсолютной погрешности воспроизвеления                                                                                 |
|               | $\pm (0.0004 \cdot U_{\text{вых}} + 256 \text{ мкВ})$ , где $U_{\text{вых}}$ – воспроизводимое значение напряжения               |
|               | переменного тока, В; диапазон воспроизведения напряжения постоянного то-                                                         |
|               | ка от 0 до 3,20 В, пределы допускаемой абсолютной погрешности воспроиз-                                                          |
|               | ведения $\pm (0,00006 \cdot U_{\text{вых}} + 41,6 \text{ мкВ})$ , где $U_{\text{вых}}$ – воспроизводимое значение                |
|               | напряжения постоянного тока, В                                                                                                   |
| 7.4.3, 7.4.4, | Магазин сопротивления Р4831-М1, диапазон воспроизведения сопротивления                                                           |
| 7.4.5, 7.4.6  | постоянному току от $0$ до 99999,9 Ом, класс точности $0.1/5 \cdot 10^{-6}$                                                      |
| 7.4.2, 7.4.3, | Мультиметр цифровой Fluke 8846A, пределы допускаемой абсолютной по-                                                              |
| 7.4.4, 7.4.5, | грешности измерений напряжения постоянного тока: ±(0,005 % от ИВ +                                                               |
| 7.4.6         | $+ 0.35$ мВ) в поддиапазоне 100 мВ, $\pm (0.004 \% \text{ от ИВ} + 0.0007 \text{ В)}$ в поддиапа-                                |
|               | зоне 1 B, $\pm (0,0035 \% \text{ от } \text{ИВ} + 0,005 \text{ B})$ в поддиапазоне 10 B, $\pm (0,0045 \% \text{ от } \text{ИВ})$ |
|               | + 0,06 мВ) в поддиапазоне 100 В; пределы допускаемой абсолютной погреш-                                                          |
|               | ности измерений силы постоянного тока: $\pm (0.05 \% \text{ от ИВ} + 0.5 \text{ мкA})$ в пол-                                    |
|               | диапазоне 100 мкA, $\pm (0.05 \% \text{ от ИВ} + 0.005 \text{ мA})$ в поддиапазоне 1 мA.                                         |
|               | $\pm (0.05 \% \text{ от ИВ} + 0.2 \text{ мA})$ в поддиапазоне 10 мA, $\pm (0.05 \% \text{ от ИВ} + 0.5 \text{ мA})$ в            |
|               | поддиапазоне 100 мА; пределы допускаемой абсолютной погрешности изме-                                                            |
|               | рений сопротивления постоянному току: $\pm (0.01 \% \text{ от ИВ} + 0.4 \text{ Ом})$ в поллиа-                                   |
|               | пазоне 100 Ом, $\pm (0.01 \% \text{ от } \text{ИВ} + 0.001 \text{ кОм})$ в поддиапазоне 1 кОм, где                               |
|               | ИВ – измеряемая величина                                                                                                         |
| -             |                                                                                                                                  |

## 4 Требования безопасности при поверке

- 4.1 При проведении поверки должны быть соблюдены меры безопасности, указанные в соответствующих разделах эксплуатационной документации средств измерений, используемых при поверке.
- 4.2 К проведению поверки модулей допускается инженерно-технический персонал со среднетехническим или высшим образованием, ознакомленный с руководством по эксплуатации (РЭ) и документацией по поверке, допущенный к работе с электроустановками и имеющие право на поверку (аттестованными в качестве поверителей).

#### 5 Условия поверки

5.1 Поверку проводить при следующих условиях:

- температура окружающего воздуха, °С

- относительная влажность воздуха, %

- атмосферное давление, мм рт. ст.

- напряжение питания, В

- частота, Гц

 $20 \pm 5$ :

от 45 до 80;

от 626 до 795:

от 215 до 225;

от 49,5 до 50,5.

#### 6 Подготовка к поверке

6.1 Поверитель должен изучить РЭ поверяемого модуля и используемых средств поверки.

6.2 Поверяемый модуль должен быть выдержан в помещении, где проводится поверка, не менее 2-х часов.

## 7 Проведение поверки

#### 7.1 Внешний осмотр

При проведении внешнего осмотра проверяется:

- отсутствие внешних механических повреждений;
- исправность и чистота коаксиальных разъёмов.

Результаты поверки считать положительными, если отсутствуют внешние механические повреждения; разъёмы исправны и отсутствует их загрязнение.

Модули, имеющие дефекты бракуются и направляются в ремонт.

#### 7.2 Опробование

- 7.2.1 Подготовить модуль к работе:
- установить модуль в блок базовый;
- подключить блок базовый к источнику питания постоянного тока Б5-75;
- подключить блок базовый к ПЭВМ (требования к ПЭВМ приведены в таблице 3) при помощи двух кабелей, подключенных последовательно (CON/DEC/001/B/00 и ACC/ASY/022/00);

Таблица 3 – Требования к ПЭВМ

| Операционная система                    | Windows 2000 SP4 или Windows XP SP3 |
|-----------------------------------------|-------------------------------------|
| Процессор                               | 2.8GHz Intel Pentium 4              |
| Доступная память жесткого диска, GB, не | 80                                  |
| менее                                   |                                     |
| Оперативная память, МВ, не менее        | 1024                                |
| Дополнительные устройства               | клавиатура, мышь, монитор           |
| Разрешение экрана, не менее             | 1024 x 768                          |

- запустить приложение «kDiscover» из состава ПО KSM-500, при этом на экране монитора должно появиться окно, приведенное на рисунке 1;



Рисунок 1 – Окно программы kDiscover из состава ПО KSM-500

- в строке Report File открывшегося окна указать имя генерируемого файла с отчетом. После имени файла указать расширение файла «.html». По завершении ввода информации нажать кнопку ОК;
- после окончания работы программы открыть составленный программой файл и произвести идентификацию подключенного модуля (файл «.html», в котором указаны все подключенные модули (серийный номер, наименование модуля, включающее в себя информацию о версии прошивки модуля) в системной установке KAM-500);
  - запустить приложение «kWorkbench» из состава ПО KSM-500;
  - 7.2.2 Убедиться в возможности установки режимов работы модуля:
- используя приложение «kWorkbench» установить режим работы модуля в программе "kSetup". Открыть файл с настройками системы. Выбрать соответствующий модуль ADC/135 в структуре модулей. Открыть окно для настройки параметров измерительных каналов модуля: входной диапазон, частоту дискретизации АЦП, частоту среза фильтров и название параметра для каждого канала модуля (рисунок 2).

| Chassi<br>KAM/I |      | /13U              | Slot<br>9 | Mo:<br>KAI | dule<br>D/ADC/13 | 35  |                | Serial Num        | nber               | ٦           |                         |                        |                                        |          |             |
|-----------------|------|-------------------|-----------|------------|------------------|-----|----------------|-------------------|--------------------|-------------|-------------------------|------------------------|----------------------------------------|----------|-------------|
| Parame          | ders |                   | ******    |            |                  |     |                |                   |                    | _           |                         |                        |                                        |          |             |
| Chan            | •    | Parameter<br>Name | Ma        | x(V)       | Min(V)           |     | Filter<br>Mode | Filter<br>Cut Off | Excitation<br>Mode |             | Excitation<br>Amplitude | Balance<br>Applied (A) | Half Bridge<br>Completion<br>Resistors | Packages | Comme       |
|                 | ľ    | * 7               |           | *          | . 7              | *   | •              | × <b>v</b>        | *                  | <b>▼</b> .× | ▼                       | × 1                    |                                        | . w      | *           |
| )               |      | ADC135_0_J9_Ch0   | 2.5       |            | -2.5             | IIR |                | Fs/4              | Voltage(V)         | 0.          | 5                       | 0                      | Disabled                               | None     | <del></del> |
|                 |      | ADC135_0_J9_Ch1   | 2.5       |            | -2.5             | IIR |                | Fs/4              | Voltage(V)         | 0.          | 5                       | 0                      | Disabled                               | None     |             |
| ?               |      | ADC135_0_J9_Ch2   | 25        |            | -2.5             | IIR |                | Fs/4              | Voltage(V)         | 0.          | 5                       | 0                      | Disabled                               | None     |             |
| }               |      | ADC135_0_J9_Ch3   | 2.5       |            | -2.5             | IIR |                | Fs/4              | Voltage(V)         | 0.          | 5                       | Z                      | Disabled                               | None     |             |
|                 |      | ADC135_0_J9_Ch4   | 2.5       |            | -2.5             | IIR |                | Fs/4              | Voltage(V)         | 0.          | 5                       | 0                      | Disabled                               | None     |             |
|                 |      | ADC135_0_J9_Ch5   | 2.5       |            | -2.5             | ИR  | 1              | Fs/4              | Voltage(V)         | 0.          | 5                       | 0                      | Disabled                               | None     |             |
|                 |      | ADC135_0_J9_Ch6   | 2.5       |            | -2.5             | IIR | 1              | Fs/4              | Voltage(V)         | 0           | 5                       | 0                      | Disabled                               | None     |             |
|                 |      | ADC135_0_J9_Ch7   | 2.5       |            | -2.5             | IIR | 1              | Fs/4              | Voltage(V)         | 0.9         | 5                       | 0                      | Disabled                               | None     |             |
|                 |      | ADC135_0_J9_Ch8   | 2.5       |            | -2.5             | IIR |                | Fs/4              | Voltage(V)         | 0.9         | 5                       | 0                      | Disabled                               | None     |             |
|                 |      | ADC135_0_J9_Ch9   | 2.5       |            | 2.5              | IIR | ı              | Fs/4              | Voltage(V)         | 0.9         | 5                       | 0                      |                                        | None     |             |
| 0               |      | ADC135_0_J9_Ch10  | 2.5       |            | -2.5             | IIR | F              | Fs/4              | Voltage(V)         | 0.5         | 5                       | 0                      |                                        | None     |             |
| 1               |      | ADC135_0_J9_Ch11  | 2.5       |            | -2.5             | IIR | F              | -s/4              | Voltage(V)         | 0.5         | 5                       | 0                      |                                        | None     |             |

**Внимание!** При настройке параметров рекомендуется выбирать их наименования длиною не более 20 латинских символов, без пробелов, без выделения жирным шрифтом или курсивом, без следующих пяти символов ", /, >, <,  $\setminus$ .

- настройка параметров измерительных каналов модуля производится в соответствии с таблицей 4;

Таблица 4 – Настройка параметров измерительных каналов модуля

| Настраиваемые<br>параметры | Допустимые зна-<br>чения                                                                                           | По умолчанию/ пример | Примечания                                                                                                                                                                                                                                                                                 |
|----------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Имя                        | ACRA<br>CONTROL                                                                                                    | ACRA<br>CONTROL      | Имя изготовителя                                                                                                                                                                                                                                                                           |
| Настройки                  | •                                                                                                                  | -                    | -                                                                                                                                                                                                                                                                                          |
| Analog(11:0)               | -                                                                                                                  | -                    | Настройка измерительных каналов и каналов воспроизведения                                                                                                                                                                                                                                  |
| «Filter Mode»              | IIR (БИХ — фильтр с бесконечной импульсной характеристикой) FIR (КИХ фильтр с конечной импульсной характеристикой) | IIR                  | Режим работы фильтра. Специальный режим работы фильтра для специального канала. БИХ – БИХ-фильтр Баттерворта 8го порядка, КИХ – окно Кайзера 15-го порядка                                                                                                                                 |
| «FilterCutoff»             | 0,25<br>0,5<br>1<br>2<br>4<br>8<br>16                                                                              | 0,25                 | Частота среза фильтра. Используется цифровой фильтр с полосой пропускания по уровню минус 6 дБ от 0,25 fд до 16 fд, (fд — частота дискретизации). В случае увеличения частоты дискретизации более 0,25 fд уменьшается задержка фильтра, но метрологические характеристики не гарантируются |
| «Excitation Mode»          | Current                                                                                                            | Voltage              | Режим воспроизведения напряжения/силы постоянно-го тока (тока возбуждения)                                                                                                                                                                                                                 |
| «Excitation<br>Amplitude»  | от 1,0 до 5,1 V<br>от 0 до 30·10 <sup>-3</sup> A                                                                   | 1,0 V                | Установка воспроизводимого значения напряжения/силы постоянного тока (тока возбуждение). Возбуждение симметричное (5В на входе соответствует 10В моста)                                                                                                                                    |
| «Balance.Type»             | CurrentShunt                                                                                                       | CurrentShunt         | Тип балансировки                                                                                                                                                                                                                                                                           |
| «Balance Applied»          | от минус 100·10 <sup>-6</sup><br>до 100·10 <sup>-6</sup> А                                                         | 0 A                  | Установка воспроизводимого значения силы постоянного тока (тока балансировки)                                                                                                                                                                                                              |
| «Max(v)»                   | от минус 2,5 до<br>2,5                                                                                             | 2,5                  | Верхняя граница диапазона измерений напряжения                                                                                                                                                                                                                                             |
| «Min(v)»                   | от минус 2,5 до<br>2,5                                                                                             | минус 2,5            | Нижняя граница диапазона измерений напряжения                                                                                                                                                                                                                                              |

- установка коэффициента усиления производится путем установки диапазона измерений АЦП каждого измерительного канала в колонках Max(v) и Min(v) (рисунок 2) в соответствии с таблицей 5.

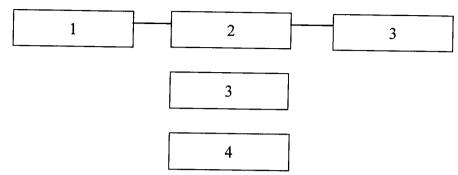
Таблица 5

| Max (v), B | Min (v), B  | Коэффициент усиления (Gain) |
|------------|-------------|-----------------------------|
| 2,5        | -2,5        | 1                           |
| 1,25       | -1,25       | 2                           |
| 0,625      | -0,625      | 4                           |
| 0,3125     | -0,3125     | 8                           |
| 0,15625    | -0,15625    | 16                          |
| 0,078125   | -0,078125   | 32                          |
| 0,0390625  | -0,0390625  | 64                          |
| 0,01953125 | -0,01953125 | 128                         |

- используя приложение «kWorkbench» проверить правильность установки режимов работы (правильность конфигурации файла XidML), нажав кнопку "Program".
- 7.2.3 Результаты опробования считать положительными, если модуль идентифицирован программным обеспечением и после установки режимов работы модулей программным обеспечением не выявлено ошибок.

В противном случае – модули признаются непригодными к применению.

## 7.3 Идентификация программного обеспечения


- 7.3.1 Для проведения идентификации необходимо на ПЭВМ запустить программное обеспечение (ПО) в соответствии с РЭ на него, ознакомиться с отображением на дисплее.
  - 7.3.2 Результаты поверки считать положительным, если:
- идентификационное название и версия ПО, отображаемые в главном окне программы соответствуют данным приведенным в таблице 6;
- ПО осуществляет функции, указанные в эксплуатационной документации. Таблица 6

| Идентификационные данные (признаки)                             | Значение                                                    |
|-----------------------------------------------------------------|-------------------------------------------------------------|
| Идентификационное наименование ПО                               | Программа управления и настройки KSM-500 (или DAS Studio 3) |
| Номер версии (идентификационный номер) ПО                       | KSM-500.1.14 и выше или DAS<br>Studio 3                     |
| Цифровой идентификатор ПО (контрольная сумма исполняемого кода) | -                                                           |

# 7.4 Определение метрологических характеристик

7.4.1 Определение приведенной погрешности измерений напряжения постоянного тока проводить в следующей последовательности:

- собрать схему, представленную на рисунке 3



- $1 \Pi \ni BM$ ;
- 2 блок базовый KAM/CHS с установленным управляющим модулем и установленным модулем KAD/ADC/136;
  - 3 коммутационная плата JIG/UNI/001/C/00/VA3005;
  - 4 калибратор универсальный 9100;
  - 5 источник питания постоянного тока Б5-75

#### Рисунок 3

- установить на калибраторе универсальном 9100 значение напряжения постоянного тока минус 10 В;

где  $\Delta U = 20 B$ :

 $k_i$  – цифровой код значения, измеренного i-м измерительным каналом;

 $\Delta U$  – диапазон измерений напряжения;

65536 - максимальное число отсчётов.

- определить значение приведенной погрешности измерений напряжения по формуле

$$\delta = \frac{U_{usm} - U_{\kappa anu6p}}{20} \cdot 100\% \qquad , \qquad (2)$$

где  $U_{\text{изм}}$  - значение напряжения постоянного тока, измеренное модулем (В).

 $U_{\text{калибр}}$ , - значения силы постоянного тока установленное на калибраторе (B). Данные измерений и расчетов занести в таблицу 7.

- последовательно подавая с калибратора напряжение постоянного тока в соответствии с таблицей 7 повторить предыдущие операции.

Таблица 7

(2):

| Значение напряжения,, установленное на калибраторе, В | Значение напряженияка, измеренное модулем, В | Приведенная погрешность измерений напряжения, % |
|-------------------------------------------------------|----------------------------------------------|-------------------------------------------------|
| минус 10                                              |                                              |                                                 |
| минус 5                                               |                                              |                                                 |
| плюс5                                                 |                                              |                                                 |
| плюс 10                                               |                                              |                                                 |

Результаты поверки считать положительными, если значения приведенной погрешности измерений напряжения постоянного тока находятся в пределах  $\pm 0.08$  %.

- 7.4.2 Определение абсолютной погрешности измерений температуры при подключении термоэлектрических преобразователей (термопар типа К) проводить в следующей последовательности:
- собрать схему, представленную на рисунке 4. Установить на модуле диапазон выходного сигнала (0-20) мА, температуру холодного спая 0 °C;

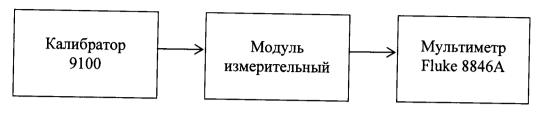



Рисунок 4

- установить на модуле режим измерения температуры с помощью термоэлектрических преобразователей типа K;
- последовательно подавая с калибратора напряжение постоянного тока, соответствующее значениям температуры, в соответствии с таблицей 8 измерить силу тока  $I_{\text{Вых}}$  на выходе модуля с помощью мультиметра;

Таблина 8

| Температура, <sup>0</sup> С | Значение напряжения постоянного тока на выходе калибратора             |
|-----------------------------|------------------------------------------------------------------------|
|                             | соответствующее термо-ЭДС при температуре холодного спая $0^{0}$ С, мВ |
| минус 200                   | минус 5,891                                                            |
| минус 100                   | минус 3,554                                                            |
| 100                         | 4,096                                                                  |
| 200                         | 8,138                                                                  |
| 400                         | 16,397                                                                 |
| 600                         | 24,905                                                                 |
| 800                         | 33,275                                                                 |
| 1000                        | 41,276                                                                 |
| 1200                        | 48,938                                                                 |
| 1372                        | 54,886                                                                 |

- определить температуру соответствующею выходному сигнала модуля по формуле (3):

$$t_{u_{3M}} = -200 + \frac{I_{B_{bix}}}{20} \cdot 1572 \tag{3}$$

- определить значение абсолютной погрешности измерения по формуле (4):


$$\Delta = t_{u_{3M}} - t_{Meps} \tag{4}$$

где t<sub>изм</sub> - значение температуры, измеренное модулем (°C).

 $t_{\text{меры}}$ ,-значения температуры, эквивалентное напряжению постоянного тока (°C).

Результаты поверки считать положительными, если значения абсолютной погрешности измерений температуры при подключении термоэлектрических преобразователей (термопар типа K) в диапазоне от минус 50 до 150 °C не более 6 °C и в диапазоне от минус 200 до 1372 °C не более 7 °C.

- 7.4.3 Определение абсолютной погрешности измерений температуры при подключении термопреобразователей сопротивления (РТ100) проводить в следующей последовательности:
  - собрать схему, представленную на рисунке 5



- установить на модуле режим измерения температуры с помощью термопреобразователей сопротивления Pt100 и диапазон выходного сигнала модуля (0-20) мА;
- сформировать, при помощи магазина сопротивления на входе измерительного модуля сопротивление постоянному току величиной 18,52 Ом, соответствующее температуре минус  $200~^{\circ}$ C;
- измерить силу тока на выходе модуля с помощью мультиметра. Определить температуру, соответствующую выходному сигналу модуля по формуле (5):

$$t_{u_{3M}} = -200 + \frac{I_{Bblx}}{20} \cdot 860 \qquad , \quad (5)$$

- определить значение абсолютной погрешности измерения по формуле (6):

$$\Delta = t_{u_{3M}} - t_{Mepbi} \qquad , \tag{6}$$

где  $t_{u_{3M}}$  - значение температуры, измеренное модулем ( °C ).

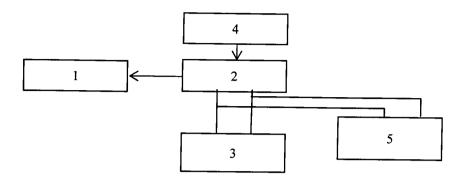

- $t_{\text{меры}}$  значения температуры, эквивалентное сопротивлению, установленному на магазине сопротивлений (°C);
- последовательно устанавливая сопротивление магазина в соответствии с таблицей 9, повторить измерения и определить значения абсолютной погрешности;

Таблица 9

| Температура, <sup>0</sup> С | Эквивалентное сопротивление, Ом |
|-----------------------------|---------------------------------|
| минус 200                   | 18,52                           |
| минус 100                   | 60,26                           |
| 0                           | 100                             |
| 100                         | 138,51                          |
| 200                         | 175,86                          |
| 400                         | 247,09                          |
| 600                         | 313,71                          |

Результаты поверки считать положительными, если значения абсолютной погрешности измерений температуры, при подключении термопреобразователей сопротивления (РТ100) в диапазоне от минус 200 до 660 °C не более 12 °C и в диапазоне от 0 до 200 °C не более 5 °C.

- 7.4.4 Определение приведённой погрешности воспроизведения напряжения постоянного тока проводить в следующей последовательности:
  - собрать схему, представленную на рисунке 6



- $1 \Pi ЭВМ:$
- 2 блок базовый KAM/CHS с установленным управляющим модулем и установленным модулем KAD/ADC/136;
  - 3 магазин сопротивления Р4831-М1;
  - 4 источник питания постоянного тока Б5-75;
  - 5 мультиметр цифровой Fluke 8846A.

Рисунок 6 — Схема определения воспроизводимых значений напряжения/силы постоянного тока

- установить режим воспроизведения напряжения постоянного тока «Voltage» для каждого канала, используя настройки параметров каналов модуля согласно процедуре приведенной в п. 7.2;
- установить значение напряжения возбуждения 5,1 В (воспроизводимое напряжение 10,2 В) используя настройки параметров каналов модуля согласно процедуре, приведенной в п. 7.2.2;
- установить на мультиметре цифровом Fluke 8846A режим измерений напряжения постоянного тока;
- установить на магазине сопротивления P4831-M1 значение сопротивления нагрузки 350 Ом;
- провести измерения воспроизводимых значений напряжения постоянного тока канала воспроизведения напряжения постоянного тока между клеммами «EXCITATION(0)+» и «EXCITATION(0)-», в соответствии с разводкой выводов разъема каналов воспроизведения напряжения постоянного тока;
- повторить измерения для каналов 1-7, подключая их поочередно в соответствии с разводкой выводов разъема каналов воспроизведения напряжения постоянного тока;
- рассчитать приведенную погрешность воспроизведения напряжения постоянного тока для каждого канала по формуле (7), за нормирующее значение принять диапазон воспроизводимых значений напряжения:

$$\delta = \frac{U_{\text{ном}} - U_{\text{мультиметр}}}{10.2} \cdot 100\% \quad , \quad (7)$$

где  $U_{\text{ном}}$  - значение напряжения постоянного тока, воспроизводимое модулем (B).  $U_{\text{мультиметр}}$  - значения напряжения постоянного тока, измеренное с помощью мультиметра (B).

- повторить измерения при значениях напряжения возбуждения каждого канала 2,5 В (воспроизведение напряжения 5 В) и 0,5 В (воспроизведение напряжения 1 В).

Результаты поверки считать положительными, если значения приведенной погрешности воспроизведения напряжения постоянного тока находятся в пределах  $\pm$  0,2 %.

В противном случае – модули признаются непригодными к применению.

- 7.4.5 Определение приведённой погрешности воспроизведения силы постоянного тока (тока возбуждения) проводить в следующей последовательности:
- установить режим воспроизведения напряжения постоянного тока «Current» для каждого канала, используя настройки параметров каналов модуля;
- установить воспроизводимое значение силы постоянного тока (тока возбуждения) каждого канала модуля равное 30 мА, используя настройки параметров каналов модуля;
  - собрать схему, представленную на рисунке 6;
- установить на мультиметре цифровом Fluke 8846A режим измерений силы постоянного тока;
  - установить на магазине сопротивления Р4831-М1 значение сопротивления 350 Ом;
- с помощью мультиметра цифрового Fluke 8846A провести измерения воспроизводимого значения силы постоянного тока между клеммами «EXCITATION(0)+» и «EXCITATION(0)-» каждого канала, в соответствии с разводкой выводов разъема каналов воспроизведения силы постоянного тока;
- повторить измерения для каналов 1-7, подключая их поочередно в соответствии с разводкой выводов разъема каналов воспроизведения силы постоянного тока (тока возбуждения);
- рассчитать приведенную погрешность воспроизведения силы постоянного тока (тока возбуждения) для каждого канала по формуле (8), за нормирующее значение принять диапазон воспроизводимых значений силы постоянного тока (тока возбуждения);

$$\gamma = \frac{I_{\text{hom}} - I_{\text{мультиметр}}}{I_{\text{hopm}}} \cdot 100\% \quad , \quad (8)$$

где Іном - значение силы постоянного тока, воспроизводимое модулем (В);

 $I_{\text{мультиметр}}$  - значения силы постоянного тока, измеренное с помощью мультиметра (B);

 $I_{\text{норм}}$  – нормированное значение силы постоянного тока.

- повторить измерения при значениях силы постоянного тока (тока возбуждения) модуля 2 мА и 0.5 мА.

Результаты поверки считать положительными, если значения приведенной погрешности воспроизведения силы постоянного тока (тока возбуждения), при значениях сопротивления нагрузки 350 Ом, находятся в пределах  $\pm 0.2$  %.

- 7.4.6 Определение приведённой погрешности воспроизведения силы постоянного тока (тока балансировки) проводить в следующей последовательности:
- установить воспроизводимое значение силы постоянного тока (тока балансировки) в разделе «Balance Applied» каждого канала модуля равное 100 мкА, используя настройки параметров каналов модуля;
  - собрать схему, представленную на рисунке 6;
- установить на мультиметре цифровом Fluke 8846A режим измерений силы постоянного тока;
  - установить на магазине сопротивления Р4831-М1 значение сопротивления 175 Ом;
- с помощью мультиметра цифрового Fluke 8846A провести измерения воспроизводимого значения силы постоянного тока между клеммами «ANALOG(0)+» и «GND» каждого

канала, в соответствии с разводкой выводов разъема каналов воспроизведения силы постоянного тока (тока балансировки);

- повторить измерения для каналов 1-7, подключая их поочередно в соответствии с разводкой выводов разъема каналов воспроизведения силы постоянного тока (тока балансировки);
- рассчитать приведенную погрешность воспроизведения силы постоянного тока (тока балансировки) для каждого канала по формуле (8), за нормирующее значение принять диапазон воспроизводимых значений силы постоянного тока (тока балансировки);
- повторить измерения при значениях силы постоянного тока (тока балансировки)
   0 и минус 100 мкА.

Результаты поверки считать положительными, если значения приведенной погрешности воспроизведения силы постоянного тока (тока балансировки), при значении сопротивления нагрузки 175 Ом, находятся в пределах  $\pm 0.3$  %.

В противном случае – модули признаются непригодными к применению.

## 8 Оформление результатов поверки

- 8.1 Положительные результаты поверки оформить установленным порядком.
- 8.2 При поверке модуля результаты измерений и расчетов заносятся в протокол произвольной формы на бумажном носителе.
- 8.3 В случае отрицательных результатов поверки модуля к дальнейшему применению не допускается. На него выдается извещение об его непригодности к дальнейшей эксплуатации с указанием причин непригодности.
- 8.4 Информация, обязательная к занесению в протокол измерений: данные об атмосферном давлении, влажности и температуре воздуха в помещении в момент проведения измерений, дата и время проведения измерений.

Инженер НИО-6 ФГУП «ВНИИФТРИ»

Н.М. Юстус