Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт метрологии имени Д.И. Менделеева» ФГУП «ВНИИМ им. Д.И. Менделеева»

УТВЕРЖДАЮ

Заместитель директора

ФГУП «ВНИИМ им. Д.И. Менделеева»

Е.П. Кривцов

М. п. «08» августа 2017 г.

Государственная система обеспечения единства измерений

Счётчики частиц в жидкости AvCount 2

Методика поверки

МП 242-2152-2017

Руководитель научно-исследовательского отдела государственных эталонов в области физикохимических измерений

Ю. А. Кустиков

Руководитель лаборатории государственных эталонов и научных исследований в области измерений параметров дисперсных сред

Д. Н. Козлов

Научный сотрудник лаборатории государственных эталонов и научных исследований в области измерений параметров дисперсных сред

Ю. А. Крамаренко

Санкт-Петербург 2017 Настоящая методика поверки распространяется на вновь изготавливаемые/ввозимые счётчики частиц в жидкости AvCount 2 (далее – поверяемый счётчик).

Интервал между поверками – 1 год.

При пользовании настоящей методикой поверки целесообразно проверить действие ссылочных документов по соответствующему указателю стандартов, составленному по состоянию на «01» января текущего год и по соответствующим информационным указателям, опубликованным в текущем году. Если ссылочный документ заменён (изменён), то при пользовании настоящей методикой следует руководствоваться заменяющим (изменённым) документом. Если ссылочный документ отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

1. ОПЕРАЦИИ ПОВЕРКИ

1.1. При проведении поверки должны быть выполнены следующие операции, указанные в таблице 1.

Таблица 1

Наименование операции	Номер пункта методики поверки	Обязательность операции при проведении поверки	
	мстодики поверки	Первичной	Периодической
Внешний осмотр	6.1	Да	Да
Подтверждение соответствия программного обеспечения	6.2	Да	Да
Опробование	6.3	Да	Да
Определение метрологических характеристик	6.4	Да	Да

1.2. Если при проведении той или иной операции поверки получен отрицательный результат, дальнейшая поверка прекращается.

2. СРЕДСТВА ПОВЕРКИ

2.1. При проведении поверки должны быть применены средства, указанные в таблице 2.

Таблица 2

Номер пункта методики поверки	Наименование средства измерений или вспомогательного средства поверки, номер документа, регламентирующего технические требования, основные технические и (или) метрологические характеристики	
4.1	Прибор комбинированный Testo 622, диапазон измерений температуры от минус 10 до плюс 60 °C, абсолютная погрешность $\pm 0,4$ °C; диапазон измерений относительной влажности от 10 до 95 %, относительная погрешность ± 3 %; диапазон измерений абсолютного давления от 300 до 1200 гПа, абсолютная погрешность ± 5 гПа.	
6.4, 6.5	Государственный рабочий эталон единицы счётной концентрации частиц в масле в диапазоне от $1\cdot10^2$ до $2,4\cdot10^4$ частиц/см ³ с размерами от 1 до 400 мкм (рег. номер 3.1.ZZB.0099.2015), относительная погрешность ± 8 %, или стандартный образец счётной концентрации частиц в масле МПМ-1, ГСО 10763-2016, относительная погрешность ± 10 % (в диапазоне от 4 до 14 мкм) и ± 15 % (в диапазоне свыше 14 до 25 мкм).	

2.2. Средства поверки, указанные в таблице 2, должны быть поверены (аттестованы) в установленном порядке и иметь действующие свидетельства о поверке (свидетельства об

аттестации). Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемого счётчика с требуемой точностью.

- 2.3. Для определения метрологических характеристик поверяемого счётчика допускается применять стандартные образцы счётной концентрации частиц в жидкости утверждённого типа, относительная погрешность аттестованного значения не более ± 15 %, или рабочие эталоны единицы счётной концентрации частиц в жидкости в соответствии с ГОСТ Р 8.606-2012 «ГСИ. Государственная поверочная схема для средств измерений дисперсных параметров аэрозолей, взвесей и порошкообразных материалов», относительная погрешность не более ± 10 %.
- 2.4. В случае применения рабочего эталона для проведения поверки необходимо осуществить приготовление контрольных образцов (далее КО) согласно приложению Б к настоящей методике поверки. Материалы и оборудование, применяемые при приготовлении КО, приведены в таблице Б.1.
- 2.5. В случае применения стандартного образца для проведения поверки следует руководствоваться инструкцией по приготовлению и применению на данный стандартный образец. Стандартный образец должен иметь паспорт установленного образца. Запрещается использовать стандартные образцы с истекшим сроком годности.
- 2.6. Допускается проведение периодической поверки счётчика в отдельных поддиапазонах измерений по письменному заявлению владельца с обязательным указанием об этом в свидетельстве о поверке согласно приказу Минпромторга России от «02» июля 2015 г. № 1815 «Об утверждении Порядка проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке»

3. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 3.1. При проведении поверки должны соблюдаться требования безопасности, изложенные в эксплуатационной документации (далее ЭД) на средства поверки и поверяемый счётчик, а также требования правил техники безопасности при работе с напряжением до 250 В.
- 3.2. К проведению поверки допускаются лица, ознакомленные с ГОСТ Р 52931-2008, ГОСТ Р 8.606-2012, ЭД на поверяемый счётчик, имеющие квалификацию не ниже инженера и прошедшие инструктаж по технике безопасности.

4. УСЛОВИЯ ПОВЕРКИ

4.1. При проведении поверки должны быть соблюдены следующие условия:

- температура окружающего воздуха, °C (20 \pm 5) - относительная влажность воздуха, % от 30 до 80 - атмосферное давление, кПа от 90,6 до 104,8

— напряжение питания переменного тока частотой (50 ± 1) Γ ц, В (230 ± 23)

5. ПОДГОТОВКА К ПОВЕРКЕ

- 5.1. Выдержать поверяемый счётчик в помещении при температуре, соответствующей условиям поверки, не менее 8 часов. В случае, если поверяемый счётчик находился при температуре ниже 0 °C, время выдержки должно быть не менее 24 часов.
- 5.2. Подготовить средства поверки и поверяемый счётчик к работе в соответствии с их ЭД.

6. ПРОВЕДЕНИЕ ПОВЕРКИ

6.1. Внешний осмотр

6.1.1. При внешнем осмотре должно быть установлено отсутствие внешних повреждений, влияющих на работоспособность поверяемого счётчика.

- 6.1.2. Поверяемый счётчик должен иметь комплектность и маркировку в соответствии с требованиями ЭД.
- 6.1.3. Поверяемый счётчик должен иметь исправные органы управления и настройки.

Результаты внешнего осмотра считаются положительными, если поверяемый счётчик соответствует требованиям π п. 6.1.1-6.1.3.

6.2. Подтверждение соответствия программного обеспечения

6.2.1. Включить электрическое питание поверяемого счётчика. Номер версии программного обеспечения (далее – ПО) будет отображаться в нижней части экрана.

Результаты подтверждения соответствия ПО считаются положительными, если номер версии ПО соответствует требованиям описания типа.

6.3. Опробование

- 6.3.1. Осуществить настройку параметров измерений поверяемого счётчика согласно рекомендациям п. Б.1.3.
- 6.3.2. В случае применения рабочего эталона при проведении поверки приготовить КО № 1 согласно приложению Б настоящей методики поверки. Провести поверяемым счётчиком измерение счётной концентрации частиц в КО № 1.
- 6.3.3. В случае применения стандартного образца при проведении поверки провести измерение счётной концентрации частиц во флаконе с чистым маслом из комплекта стандартного образца счётной концентрации частиц в масле МПМ-1.

Результаты опробования считаются положительными, если по окончанию измерений получены показания счётной концентрации частиц в масле и отсутствуют сообщения об ошибках, влияющих на работоспособность поверяемого счётчика.

6.4. Определение метрологических характеристик (с применением рабочего эталона)

- 6.4.1. Осуществить настройку параметров измерений рабочего эталона согласно рекомендациям п. Б.1.3.
- 6.4.2. Приготовить КО № 2 согласно приложению Б.
- 6.4.3. Провести поверяемым счётчиком и рабочим эталоном измерения счётной концентрации частиц в КО № 2.
- 6.4.4. Записать полученные значения счётной концентрации частиц в протокол поверки, где:
 - Cu (частиц/см³) измеренное значение счётной концентрации частиц в жидкости, полученное поверяемым счётчиком;
 - $C\partial$ (частиц/см³) действительное значение счётной концентрации частиц в жидкости, полученное на рабочем эталоне.
- 6.4.5. Относительную погрешность поверяемого счётчика δ (%) рассчитать по формуле (1):

$$\delta = \frac{Cu - C\partial}{C\partial} \cdot 100 \tag{1}$$

Относительная погрешность не должна превышать ± 30 %.

6.5. Определение метрологических характеристик (с применением стандартного образца)

6.5.1. Подготовить стандартный образец согласно его инструкции по применению. Провести поверяемым счётчиком измерение счётной концентрации частиц в стандартном образце.

- 6.5.2. Записать полученные значения счётной концентрации частиц в протокол поверки, где:
 - Cu (частиц/см³) измеренное значение счётной концентрации частиц в жидкости, полученное поверяемым счётчиком;
 - $C\partial$ (частиц/см³) аттестованное значение счётной концентрации частиц в жидкости, указанное в паспорте на стандартный образец.
- 6.5.3. Относительную погрешность поверяемого счётчика δ (%) рассчитать по формуле (1). Относительная погрешность не должна превышать ± 30 %.

7. ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 7.1. Результаты поверки вносят в протокол, форма которого приведена в приложении А.
- 7.2. Счётчик, удовлетворяющий требованиям настоящей методики поверки, признается годным, и на него выдаётся свидетельство о поверке по форме, установленной приказом Минпромторга России от «02» июля 2015 г. № 1815. Знак поверки наносится на свидетельство о поверке.
- 7.3. Счётчик, не удовлетворяющий требованиям настоящей методики поверки, к дальнейшей эксплуатации не допускается, и на него выдаётся извещение о непригодности к применению по форме, установленной приказом Минпромторга России от «02» июля 2015 г. № 1815.

ПРИЛОЖЕНИЕ А

(рекомендуемое)

ПРОТОКОЛ ПОВЕРКИ

Наименование прибора, тип:

Заводской номер:

Дата выпуска:

Рег. номер в Федеральном информационном фонде по обеспечению единства измерений:

Владелец:

Серия и номер знака предыдущей поверки:

Дата предыдущей поверки:

Вид текущей поверки:

Наименование нормативного документа при поверке:

Основные средства поверки:

Условия поверки:

- температура окружающей среды
- относительная влажность воздуха
- атмосферное давление

Результаты поверки:

- 1. Результаты внешнего осмотра
- 2. Результаты подтверждения соответствия программного обеспечения
- 3. Результаты опробования
- 4. Результаты определения метрологических характеристик

Таблица А.1

D, мкм	Cu, частиц/см ³	$C\partial$, частиц/см ³	δ, %

В таблице А.1:

- *D* (мкм) канал регистрации размеров частиц;
- Cu (частиц/см³) измеренное значение счётной концентрации частиц в масле, полученное поверяемым счётчиком;
- − С∂ (частиц/см³) действительное значение счётной концентрации частиц в масле, полученное на рабочем эталоне, или аттестованное значение счётной концентрации частиц в масле, указанное в паспорте на стандартный образец;
- $-\delta$ (%) относительная погрешность поверяемого счётчика.

Поверитель:

Дата:

ПРИЛОЖЕНИЕ Б

(обязательное)

Методика приготовления контрольных образцов при проведении поверки счётчиков частиц в жидкости AvCount 2

- Б.1.1. Настоящая методика описывает процедуру приготовления контрольных образцов (далее КО) при проведении поверки счётчиков частиц в жидкости AvCount 2.
- Б.1.2. Каналы регистрации размеров частиц настраиваются изготовителем при выпуске из производства в соответствии с ГОСТ Р ИСО 11171-2012 «Гидропривод объёмный. Калибровка автоматических счётчиков частиц в жидкости». Под регистрируемым размером частицы следует понимать эквивалентный сферический диаметр. При проведении измерений настройки каналов регистрации у поверяемого счётчика и рабочего эталона должны быть идентичны. В данной методике следует считывать показания с канала «более 4 мкм».
- Б.1.3. Рекомендуемые настройки проведения измерений для поверяемого счётчика и рабочего эталона:
 - канал регистрации размеров частиц, индицирующий показания после проведения измерений «более 4 мкм»;
 - объём предварительной прокачки пробы не менее 30 см³.
 - объём анализируемой пробы не менее 30 см³;
- Б.1.4. Материалы и оборудование, применяемые при приготовлении КО, а также требования к ним приведены в таблице Б.1. Допускается применение других материалов и оборудования с аналогичными характеристиками.

Таблица Б.1

№	Наименование материала или оборудования, номер документа, регламентирующего технические требования	Требования, предъявляемые к материалу или оборудованию, основные технические и (или) метрологические характеристики
	Доломит молотый марки ДМ-20-0,10 по ГОСТ 23672-79	Средний диаметр частиц (10 – 15) мкм
2	Масло индустриальное И-20А по ГОСТ 20799-88	Допускается применение масла, счётная концентрация частиц к котором не превышает 1000 частиц/см ³ по каналу регистрации размеров частиц «более 4 мкм». Контроль осуществляется рабочим эталоном.
3	Стаканы лабораторные термостойкие по ГОСТ 25336-82	Объём не менее 50 см ³
4	Цилиндры по ГОСТ 1770-74	Класс точности не хуже 2
5	Ванна ультразвуковая ВУ-09-«Я- ФП»-03	Рабочая частота ультразвукового преобразователя (40±2) кГц
6	Мешалка электромагнитная US-1500	Диапазон задания скоростей вращения (0 – 1500) об/мин; диапазон задания температур нагрева (20 – 340) °C

- Б.1.5. КО № 1 готовится на основе масла без добавления доломита и предназначен для проведения опробования поверяемого счётчика.
- Б.1.6. КО № 2 готовится добавлением доломита в масло. Масса доломита и объём масла подбираются в таком соотношении, чтобы счётная концентрация частиц в приготовленном КО по каналу регистрации размеров частиц «более 4 мкм» составляла (60 90) % от верхнего

предела диапазона измерений поверяемого счётчика. Оценку КО № 2 осуществлять поверяемым счётчиком.

- Б.1.7. В случае, если верхний предел измерений поверяемого счётчика выше, чем у используемого рабочего эталона, КО № 2 необходимо приготовить с таким условием, чтобы счётная концентрация частиц в приготовленном КО по каналу регистрации размеров частиц «более 4 мкм» составляла (60-90) % от верхнего предела диапазона измерений используемого рабочего эталона. Оценку КО № 2 осуществлять рабочим эталоном.
- Б.1.8. При приготовлении КО перемешивание и нагрев осуществлять магнитной мешалкой на средней скорости вращения якоря и температуре (30-40) °C. Дегазацию КО проводить с помощью ванны ультразвуковой. Допускается проводить дегазацию с помощью устройств вакуумирования аналитических проб. Подготовку КО к применению проводить согласно рекомендациям ГОСТ 31247-2004 «Чистота промышленная. Определение загрязнения пробы жидкости с помощью автоматических счётчиков частиц».