УТВЕРЖДАЮ

Руководитель ИЦ ФГУП «ВНИИМС»

В.Н.Яншин

cenmalps 2015 r.

Гигрометр «AquaVolt»

Методика поверки

1.p63498-16

Настоящая инструкция распространяется на гигрометр «AquaVolt» (далее – гигрометр) и устанавливает методику его первичной и периодической поверки.

Интервал между поверками – 1 год.

1 ОПЕРАЦИИ И СРЕДСТВА ПОВЕРКИ

 При проведении поверки выполняют операции, указанные в таблице Таблица 1.

№ п/п	Наименование операции	Номер пункта методики
1	Внешний осмотр	6.1
2	Опробование	6.2
3	Определение метрологических характеристик: — определение приведенной и относительной погрешности измерений объемной доли влаги в газе.	6.3

2 СРЕДСТВА ПОВЕРКИ

- 2.1 При проведении поверки по определению приведенной и относительной погрешности измерений объемной доли влаги в газе применяют:
 - генератор влажного газа MG101;
- опорный гигрометр точки росы Michell Instruments модификации S4000 TRS, пределы допускаемой абсолютной погрешности измерений температуры точки росы \pm 0,2 °C;
 - азот газообразный особой чистоты по ГОСТ 9293-74.
- Допускается применение других средств измерений и оборудования с метрологическими и техническими характеристиками не хуже указанных.

Все используемые средства измерений должны иметь действующие свидетельства о поверке.

3 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

Требования безопасности должны соответствовать рекомендациям, изложенным в руководстве по эксплуатации на прибор.

4 УСЛОВИЯ ПОВЕРКИ

При проведении поверки соблюдают следующие условия:

температура окружающей среды, °С

от 15 до 30

относительная влажность воздуха, %

до 80.

5 ПОДГОТОВКА К ПОВЕРКЕ

Перед проведением поверки выполняют следующие подготовительные работы:

- гигрометр подготавливают к работе в соответствии с руководством по эксплуатации;
- устанавливают и подготавливают к работе средства поверки в соответствии с их технической документацией.

6 ПРОВЕДЕНИЕ ПОВЕРКИ

6.1 Внешний осмотр

При внешнем осмотре проверяют и устанавливают:

- отсутствие механических повреждений;
- соответствие комплектности и маркировки гигрометра требованиям руководства по эксплуатации.

6.2 Опробование

При опробовании проверяют функциональность гигрометра – исправность работы дисплея.

6.3 Определение метрологических характеристик.

Определение приведенной и относительной погрешности измерений объемной доли влаги в газе.

С помощью генератора влажного газа последовательно задают два значения объемной доли влаги в азоте в поддиапазоне от 1 до 10 млн⁻¹ и не менее трех значений, соответствующих началу, середине и концу поддиапазона от 10 до 1000 млн-1. Соответствующие выбранным точкам проверки значения температуры точки росы, которые необходимо задать на генераторе, определяют по приложению 1. Подают влажный азот на опорный и поверяемый гигрометр. После установления показаний отмечают измеренные значения объемной доли влаги в азоте в $млн^{-1}$ (ppm_V).

Вычисляют погрешность, приведенную к верхнему пределу поддиапазона измерений от 1 до 10 млн $^{-1}$, δ_{np} (%), по формуле:

$$\delta_{np} = \frac{C_i - C_0}{C_e} \cdot 100, \qquad (1)$$

где C_i — i-ое показание поверяемого гигрометра, млн⁻¹;

 C_0 – показание опорного гигрометра, млн⁻¹;

 C_{u} — значение объемной доли влаги соответствующее концу поддиапазона измерений, млн-1.

Вычисленные значения приведенной погрешности не должны превышать ± 5 %.

Относительную погрешность измерений в поддиапазоне от 10 до 1000 млн-1 объемной доли влаги в азоте определяют по формуле:

$$\delta = \frac{C_i - C_0}{C_0} \cdot 100. \tag{2}$$

Вычисленные значения относительной погрешности не должны превышать ± 5 %.

7 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 7.1 Результаты поверки гигрометра заносят в протокол.
- 7.2 Положительные результаты поверки гигрометра оформляют выдачей свидетельства о поверке.
- 7.3 Гигрометры, не удовлетворяющие требованиям настоящих рекомендаций, к эксплуатации не допускаются. Гигрометры изымаются из обращения. Свидетельство о поверке изымают и выдают извещение о непригодности с указанием причин.
 - 7.4 После ремонта гигрометры подвергают поверке.

Начальник сектора ФГУП «ВНИИМС», к.х.н.

О. Л. Рутенберг С. З. Карданов

Инженер 3-й кат. ФГУП «ВНИИМС»

приложение 1

Таблица 1. Значения объёмной доли влаги (млн $^{-1}$) и соответствующие им значения

температуры точки росы/инея (°С)											
°C	$MЛH^{-I}$	°C	$MЛH^{-I}$		°C	$MЛH^{-1}$		°C	$MЛH^{-I}$		
- 99	0,0169	– 69	2,9911		- 39	141,71		-9	2800		
- 98	0,0207	- 68	3,4635		- 38	158,46		- 8	3057		
- 97	0,0253	− 6 7	4,0049		– 37	177,02		- 7	3335		
- 96	0,0307	- 66	4,6245		- 36	197,58		-6	3636		
- 95	0,0373	- 65	5,3327		– 35	220,31		- 5	8962		
- 94	0,0452	- 64	6,1410		- 34	245,45		-4	4314		
- 93	0,0546	- 63	7,0427		- 33	273,20		– 3	4684		
- 92	0,0659	- 62	8,1114		- 32	303,81		- 2	5105		
- 91	0,0794	-61	9,3042		- 31	337,57		– 1	5548		
- 90	0,0954	- 60	10,659		- 30	374,74		0	6030		
- 89	0,1144	– 59	12,195		- 29	415,70		1	6483		
- 88	0,1369	- 58	13,935		- 28	460,70		2	6965		
- 87	0,1636	- 57	15,905		-27	510,1		3	7479		
- 86	0,1950	- 56	18,131		- 26	564,4		4	8027		
- 85	0,2331	- 55	20,642		- 25	623,9		5	8609		
- 84	0,2757	- 54	23,476		- 24	689,2		6	9230		
- 83	0,3270	- 53	26,667		- 23	760,7		7	9885		
- 82	0,3871	- 52	30,256		- 22	838,9		8	10586		
-81	0,4575	- 51	34,291		-21	924,5		9	11329		
- 80	0,5397	- 50	38,820		- 20	1018		10	12117		
– 79	0,6356	- 49	43,897		- 19	1120		11	12947		
- 78	0,7474	- 48	49,587		- 18	1232		12	13842		
– 77	0,8773	- 47	55,953		- 17	1353		13	14776		
- 76	1,0282	– 46	63,069		- 16	1486		14	15776		
-75	1,2032	- 45	71,017		- 15	1630		15	16830		
- 74	1,4057	- 44	79,884		- 14	1787		16	17934		
– 73	1,6397	- 43	89,766		- 13	1957		17	19151		
- 72	1,9098	- 42	100,76		- 12	2143		18	20386		
- 71	2,2212	-41	113,00		-11	2344		19	21634		
- 70	2,5794	- 40	126,61		- 10	2563		20	23080		