

ПРЕОБРАЗОВАТЕЛИ НАПРЯЖЕНИЯ ПОСТОЯННОГО И ПЕРЕМЕННОГО ТОКА MSV

Методика поверки

1.p.64806-16

Настоящая методика поверки распространяется на преобразователи напряжения постоянного и переменного тока MSV (далее преобразователи), изготавливаемые фирмой «Mors Smitt B.V.», Нидерланды, и устанавливает методы и средства первичной и периодической поверок.

На поверку представляется преобразователь, укомплектованный в соответствии с руководством по эксплуатации, и комплект следующей технической и нормативной документации:

- руководство по эксплуатации РЭ;
- методика поверки.

Интервал между поверками – 2 года.

1 НОРМАТИВНЫЕ ССЫЛКИ

РМГ 51-2002 «ГСИ. Документы на методики поверки средств измерений. Основные положения»;

Порядок проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке, утвержден Приказом Минпромторга России от 02.07.2015 г. № 1815;

ПР 50.2.012-94 «ГСИ. Порядок аттестации поверителей средств измерений»;

ГОСТ 32144-2013 «Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения»;

ГОСТ Р 8.736-2011 «ГСИ. Измерения прямые многократные. Методы обработки результатов измерений. Основные положения»;

ГОСТ 12.3.019-80 «Система стандартов безопасности труда. Системы вентиляционные. Методы аэродинамических испытаний»;

ГОСТ 12.2.007.0-75 «Система стандартов безопасности труда. Изделия электротехнические. Общие требования безопасности»;

«Правила по охране труда при эксплуатации электроустановок» 04.08.2014 г.;

«Правила эксплуатации электроустановок потребителей», утвержденных Главгосэнергонадзором.

2 ОПЕРАЦИИ ПОВЕРКИ

2.1 Поверка проводится в объеме и в последовательности, указанной в таблице 1.

Таблица 1 – Перечень операций при первичной и периодических поверках устройства

	Номер пункта методики по- верки	Проведение операции при		
Наименование операции		первичной поверке	периодической поверке	
1 Внешний осмотр	8.1	Да	Да	
2 Определение основной относительной по- грешности коэффициента масштабного преобразования	8.2	Да	Да	

3 СРЕДСТВА ПОВЕРКИ

3.1 При проведении поверки устройства должны применяться основные и вспомогательные средства, указанные в таблице 2.

Таблица 2 – Основные средства поверки

	Требуемые технические харак- теристики		Рекомен-	V	Номер пункта
Наименование	Диапазон из- мерения	Погрешность или класс точности	дуемый тип	Коли- чество	методики поверки
1	2	3	4	5	6
Универсальный ка- либратор	до 1000 В 0,5Гц 10 МГц	0,025% 0,0025%	Fluke 9100	1	8.2
Образцовый транс- форматор напряже- ния	до 40 кВ	±0,02 %	NVRD40	1	8.2
Делитель напряже- ния;	до 100 кВ	±0,1 %	ДН-400	1	8.2
Вольтметр универ- сальный цифровой	до 600 В до 100 мА	±0,012 % ±0,05 %	GDM- 78255A	1	8.2
Испытательный ап- парат	до 10 кВ	±3,0 %	АИД-70М	1	8.2

- 3.2 Для проведения поверки допускается применение других средств, не приведенных в таблице 2, при условии обеспечения ими необходимой точности измерений.
- 3.3 Контрольно-измерительная аппаратура и средства поверки, применяемые при поверке, должны обеспечивать требуемую точность и иметь действующие свидетельства о поверке или калибровке, или аттестаты.

4 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

- 4.1 К проведению поверки допускаются лица, аттестованные в качестве поверителей средств измерения электрических величин.
- 4.2 Поверитель должен пройти инструктаж по технике безопасности и иметь действующее удостоверение на право проведения работ в электроустановках с квалификационной группой по электробезопасности не ниже IV.

5 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

При проведении поверки должны соблюдаться требования ГОСТ 12.2.007.0-75, ГОСТ 12.3.019-80, «Правила по охране труда при эксплуатации электроустановок», «Правил эксплуатации электроустановок потребителей», утвержденных Главгосэнергонадзором.

Должны быть также обеспечены требования безопасности, указанные в эксплуатационных документах на средства поверки.

6 УСЛОВИЯ ПРОВЕДЕНИЯ ПОВЕРКИ

6.1 Поверка преобразователей должна проводиться в нормальных условиях согласно ГОСТ 22261:

• температура окружающей среды, °С

от 15 до 25;

• атмосферное давление, кПа

от 84 до 106;

• относительная влажность воздуха, %

от 30 до 80.

6.2 Напряжение питающей сети переменного тока частотой 50 Гц, действующее значение напряжения 220 В. Допускаемое отклонение от нормального значения при поверке ± 4,4 В. Коэффициент искажения синусоидальности кривой напряжения не более 5 %. Остальные характеристики сети переменного тока должны соответствовать ГОСТ 32144-2013.

7 ПОДГОТОВКА К ПОВЕРКЕ

- 7.1 Средства поверки должны быть подготовлены к работе согласно указаниям, приведенным в соответствующих эксплуатационных документах.
- 7.2 До проведения поверки поверителю надлежит ознакомиться с эксплуатационной документацией на преобразователь и входящих в его комплект компонентов.

8 МЕТОДЫ ПОВЕРКИ

8.1 Внешний осмотр

При проведении внешнего осмотра должно быть установлено соответствие поверяемого устройства следующим требованиям:

- комплектность должна соответствовать данным, приведенным в руководстве по эксплуатации;
- все разъемы, клеммы и измерительные провода не должны иметь повреждений, следов окисления и загрязнений;
- маркировка и функциональные надписи должны читаться и восприниматься однозначно;
- наружные поверхности корпуса, разъемы, соединительные кабели и органы управления не должны иметь механических повреждений и деформаций, которые могут повлиять на работоспособность прибора;

При несоответствии по вышеперечисленным позициям преобразователь бракуется и направляется в ремонт.

8.2 Определение основной относительной погрешности коэффициента масштабного преобразования

- 8.2.1 Измерения напряжения до 1000 В.
- 8.2.1.1 Соберите схему, приведенную на рис.1.

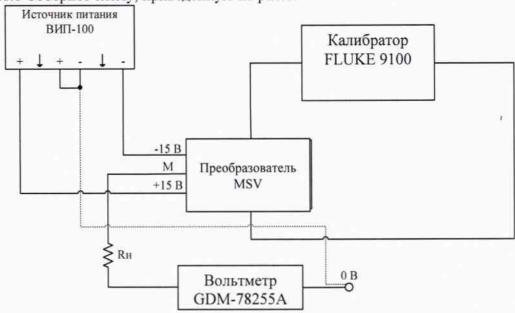


Рисунок 1 – Схема определения основной относительной погрешности коэффициента масштабного преобразования до 1000 В

- 8.2.1.2 Включите приборы. Установите на выходе источника питания ВИП-100 напряжение ±24 В. Калибратор FLUKE 9100 переведите в режим работы напряжения переменного тока.
- 8.2.1.3 Подайте последовательно с калибратора FLUKE 9100 напряжение, равное $0.1\cdot(U_{\text{ном}}),\ 0.25\cdot(U_{\text{ном}}),\ 0.5\cdot(U_{\text{ном}}),\ 0.75\cdot(U_{\text{ном}}),\ 1.0\cdot(U_{\text{ном}})$ или 1000 B, если какая то из ступеней напряжения превышаетнапряжение 1000 B.
- 8.2.1.4 Показания на выходе калибратора FLUKE 9100 (U_3) и преобразователя MSV (I_{MSV}) занесите в таблицу 3.
 - 8.2.1.5 Отключите высокое напряжение.
 - 8.2.1.6 Переведите калибратор FLUKE 9100 в режим работы постоянного напряжения.
 - 8.2.1.7 Повторите операции по п.п. 8.2.1.2 8.2.1.5.

Таблица 3 - Результаты измерения

U ₃ , B	I_{MSV} , MA	$\delta_{\rm MSV}$, %
П	еременное напрях	кение
П	остоянное напряж	кение

Где:

U₂ – показания на выходе калибратора FLUKE 9100, В;

I_{MSV} - показания на выходе испытываемого преобразователя MSV;

 δ_{MSV} - основная относительной погрешности коэффициента масштабного преобразования испытываемого преобразователя MSV, вычисляемая по формуле:

$$\delta_{MSV} = 100 \cdot (U_3 \cdot M_k / I_{MSV} - U_{HOM50\Gamma u} / 50) / (U_{HOM50\Gamma u} / 50)$$
 (1)

где M_{κ} – масштабный коэффициент преобразования образцового оборудования, при работе с калибратором он равен 1.

- 8.2.2 Измерения напряжения свыше 1000 В.
- 8.2.2.1 Соберите схему, приведенную на рис.2.

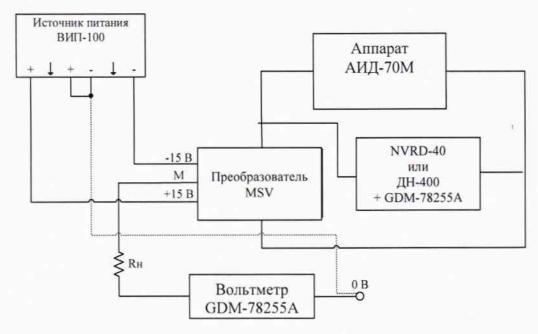


Рисунок 2 — Схема определения основной относительной погрешности коэффициента масштабного преобразования свыше 1000 В

8.2.2.2 Включите приборы. Установите на выходе источника питания ВИП-100 напряжение ± 24 В. Аппарат АИД-70М переведите в режим работы напряжения переменного тока.

- 8.2.2.3 Подайте последовательно с аппарата АИД-70М напряжение, равное $0,1\cdot(U_{\text{ном}})$, $0,25\cdot(U_{\text{ном}})$, $0,5\cdot(U_{\text{ном}})$, $0,75\cdot(U_{\text{ном}})$, $1,0\cdot(U_{\text{ном}})$.
- 8.2.2.4 Показания на выходе трансформатора напряжения NVRD-40 (U_3) и преобразователя MSV (I_{MSV}) занесите в таблицу 3.
 - 8.2.2.5 Отключите высокое напряжение.
 - 8.2.2.6 Переведите аппарат АИД-70М в режим постоянного напряжения.
- 8.2.2.7 Вместо трансформатора NVRD-40 используйте делитель напряжения ДН-400. Повторите операции по п.п. 8.2.2.2 - 8.2.2.5.
- 8.3 Результаты испытаний считаются удовлетворительными, если $\delta_{MSV} \leq \pm 0.7$ %, для преобразователей с основной относительной погрешностью коэффициента масштабного преобразования ± 0.7 %, и если $\delta_{MSV} \leq \pm 1.0$ %, для преобразователей с основной относительной погрешностью коэффициента масштабного преобразования ± 1.0 %.

9 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 9.1 Положительные результаты поверки оформляются свидетельством о поверке согласно требованиям нормативных документов (НД) Федерального агентства по техническому регулированию и метрологии.
- 9.2 Допускается вместо оформления свидетельства о поверке на корпус устройства наносить оттиск поверительного клейма (пломбы) таким образом, чтобы гарантировалась невозможность вскрытия корпуса без нарушения целостности оттиска, а в паспорте в разделе «Поверка изделия в эксплуатации» наносить подпись поверителя и оттиск поверительного клейма.
- 9.3 При отрицательных результатах свидетельство о поверке не выдается, ранее выданное свидетельство о поверке аннулируется, запись о поверке в паспорте на устройство гасится и выдается извещение о непригодности согласно требованиям НД Федерального агентства по техническому регулированию и метрологии.

Начальник отдела 206.1 ФГУП «ВНИИМС»

Научный сотрудник отдела 206.1 ФГУП «ВНИИМС» Киселев В.В.

Леонов А.В.