УТВЕРЖДАЮ

Директор ООО «ПК «ТЕСЕЙ»

А. В. Каржавин

04 » 06 2015 r

УТВЕРЖДАЮ

Заместитель директора — ФГУП «ВНИИМС»

В.Н. Яншин

с 04 жиюня 2015 г.

Датчики температуры ТППТ, ТПРТ, ТПВР, ТППТ Ex, ТПРТ Ex

МП 62293-15 Методика поверки

1 Введение

Настоящая методика поверки распространяется на датчики температуры ТППТ, ТПРТ, ТПВР, ТППТ Ех, ТПРТ Ех (далее по тексту – ДТ, выпускаемые ООО «ПК «ТЕСЕЙ» и устанавливает методику и последовательность проведения первичной и периодических поверок.

Поверка датчиков температуры ТППТ, ТПРТ, ТППТ Ех, ТПРТ Ех без измерительного преобразователя проводится по ГОСТ 8.338 — 2002 «ГСИ. Преобразователи термоэлектрические. Методика поверки» либо согласно пункта 4.1 настоящей методики.

Интервал между поверками – в соответствии с таблицей 1.

Таблица 1

Группа условий эксплуатации	Интервал между поверками (ИМП)
II	2 года
III	1 год
IV	Первичная поверка до ввода в эксплуатацию

Соответствие диапазона измерений и групп условий эксплуатации для датчиков температуры ТППТ, ТПРТ, ТПВР, ТППТ Ex, ТПРТ Ex приведено в таблице 2. Таблица 2

Тип датчика	Диапазон измерений ¹ , °C		Группа условий
температуры	ОТ	до	эксплуатации
	0	1100	II
	св. 1100	1200	III
ТППТ	св. 1200	1300	111
ТППТ Ех	св. 1300	1600	IV
	600	1200	II
ТПРТ	св. 1200	1400	III
ТПРТ Ех	св. 1400	1600	111
	св. 1600	1800	IV
ТПВР	600	1800	IV

Модификации и схема обозначения датчиков температуры приведены в приложении A.

Номинальная статическая характеристика (HCX) датчиков температуры ТППТ, ТПРТ, ТПВР, ТППТ Ex, ТПРТ Ex – в соответствии с ГОСТ Р 8.585-2001, а ТПВР (тип С) – в соответствии с ASTM E230/E230M-11e1. HCX ТПВР (тип С) приведена в приложении Б.

Датчик температуры (ДТ) состоит из двух конструктивно связанных элементов — первичного преобразователя (ПП) - преобразователя термоэлектрического и измерительного преобразователя (преобразователя сигнала от ПП в унифицированный или цифровой сигнал (ИП)).

Настоящая методика предусматривает совместную (комплектную) поверку и раздельную (отдельно первичного преобразователя и ИП) поверку ДТ.

2 Операции поверки

При проведении первичной и периодической поверки должны выполняться операции, указанные в таблице 3.

Таблица 3

1111				
	Номер	Обязательность проведения операции при		
Наименование операции	пункта	первичной	периодическ	ой поверке
	МΠ	поверке		
		раздельная	комплектная	раздельная
1 Внешний осмотр	6.1	да	да	да
2 Проверка электрического	6.2	да	да	да

сопротивления изоляции ДТ				
3 Определение погрешности	6.3	HOT	ПО	нот
ДТ при комплектной поверке		нет	да	нет
4 Определение погрешности	6.4			
ДТ при раздельной поверке				
4.1 Определение	6.4.1			
погрешности первичного		да	нет	да
преобразователя				
4.2 Определение	6.4.2	по	цат	по
погрешности ИП		да	нет	да
4.3 Определение погрешности	6.4.3			
внутренней автоматической		ПО	нот	по
компенсации температуры		да	нет	да
холодных концов термопары				

3 Средства поверкиПри проведении поверки применяют средства измерений, указанные в таблице 4.
Таблица 4

Наименование средств измерений	Характеристики
и оборудования 1 Термостаты переливные	Диапазон от минус 75 до плюс 300 °C,
прецизионные ТПП-1	нестабильность поддержания температуры не
прецизионные ттт-т	более ± 0,01 °C
2 Термостат с флюидизированной	Диапазон от 50 до 700 °C, нестабильность
средой FB-08	поддержания температуры не более ± 0.08 °C
3 Горизонтальная трубчатая печь МТП-	Диапазон от 100 до 1200 °С, нестабильность
2М-50-500	поддержания температуры не более ± 0.1
2141-30-300	поддержания температуры не облес ± 0,1 °С/мин
4 Высокотемпературная печь ВТП	Диапазон воспроизводимых температур от 300
1600-1	до 1600 °С, нестабильность поддержания
1000 1	температуры не более ± 0,4 °С/мин
5 Эталонные термометры	Диапазон измеряемой температуры от – 200
сопротивления ПТСВ, ЭТС 100	до + 660 °C, 3 разряд, согласно ГОСТ 8.558 -
	2009
6 Преобразователь термоэлектрический	Диапазон измеряемой температуры от 300 до
талонный ТППО	1200 °C, 2 разряд, согласно ГОСТ 8.558 - 2009
7 Преобразователь термоэлектрический	Диапазон измеряемой температуры от 600 до
платинородий платинородиевый	1600 °C, 2 разряд, согласно ГОСТ 8.558 - 2009
эталонный ПРО	
8 Измерители температуры	$\Delta t = \pm (0.004 + 10^{-5} \cdot t) ^{\circ}\text{C} - \text{для}$
многоканальные прецизионные МИТ 8	термопреобразователей сопротивления,
	$\Delta t = \pm 0.15$ °C — для термопар
9 Калибратор - измеритель	Пределы допускаемой основной погрешности
унифицированных сигналов эталонный	измерений: $\Delta I = \pm (10-4 \cdot I + 1)$ мкA, $\Delta U = \pm$
ИКСУ-2012	$(7.10-5 \cdot U + 3)$ мкВ
	воспроизведения: $\Delta U = \pm (7 \cdot 10 - 5 \cdot U + 3)$
	мкB, $\Delta R = \pm 0.025$ Ом
10 Источник питания постоянного тока	Диапазон напряжений от 0 до 30 В
11 Сосуд Дьюара с жидким азотом	Неравномерность распределения температуры
	не более ± 0,01 °C
12 Мегаомметр Ф4102/1	Диапазон измерений от 0 до 2000 МОм, КТ 1,5
13 HART коммуникатор	Комплекс с поддержкой протоколов HART,
	PROFIBUS-PA, FOUNDATION Fieldbus
14 USB-модем PR 5909	Модем для настройки параметров

Примечания:

- 1 Все средства измерений, применяемые при поверке, должны иметь действующие свидетельства о поверке.
- 2 Допускается применение других средств измерений с метрологическими характеристиками, не хуже указанных, и разрешенных к применению в Российской Федерации.

4 Требования безопасности

При проведении поверки необходимо соблюдать:

- требования безопасности, которые предусматривают «Правила технической эксплуатации электроустановок потребителей» и «Межотраслевые правила по охране труда (правила безопасности) при эксплуатации электроустановок» ПОТ РМ-016-2001;
- указания по технике безопасности, приведенные в эксплуатационной документации на эталонные средства измерений;
- указания по технике безопасности, приведенные в руководстве по эксплуатации поверяемого СИ.

К проведению поверки допускаются лица, ознакомленные с руководством по эксплуатации поверяемого СИ и прошедшие инструктаж по технике безопасности.

5 Условия поверки и подготовка к ней

При проведении поверки должны соблюдаться следующие условия:

– температура окружающего воздуха, °С от 15 до 25;

относительная влажность окружающего воздуха, %
 от 30 до 80;

- атмосферное давление, к Π а от 86 до 106,7;

- напряжение питания, B 24 ± 2 .

6 Проведение поверки

6.1 Внешний осмотр

Датчики температуры предоставляются на поверку в чистом виде с четко читаемой маркировкой и заводским номером, в комплекте с датчиками предоставляется паспорт и руководство по эксплуатации.

При внешнем осмотре проверяется:

- соответствие маркировки ДТ эксплуатационной документации на них;
- отсутствие внешних повреждений, которые могут повлиять на метрологические характеристики ДТ.

ДТ, не отвечающие перечисленным выше требованиям, дальнейшей поверке не подлежат.

6.2 Проверка электрического сопротивления изоляции ДТ

Проверку электрического сопротивления изоляции между электрическими цепями и корпусом производить мегомметром с рабочим напряжением 500~B- для ДТ взрывозащищенного исполнения (EX) и 100~B- для ДТ общепромышленного исполнения.

Отсчет показаний провести по истечении 1 мин после приложения напряжения между соединенными вместе контактами испытуемой цепи и корпусом.

Электрическое сопротивление изоляции токоведущих входных и выходных цепей ДТ относительно корпуса должно быть не менее 100 МОм, при температуре окружающего воздуха (25 ± 10) °C и относительной влажности от 30 до 80 %.

6.3 Определение погрешности ДТ при комплектной поверке

- 6.3.1 Поверка ДТ для температур от 0 до плюс 1800 °С проводятся в переливных термостатах, термостате с флюидизированной средой или в печах. При этом выбор средства поверки в соответствии с требованиями п.6.3.2.
- 6.3.2 ДТ с диаметром защитной арматуры более 10 мм необходимо вынуть из защитной арматуры перед проведением поверки. При проведении поверки ДТ необходимо соблюсти условия, указанные в таблице 5, а также указания по минимальной глубине погружения, приведённые в РЭ используемых оборудования и СИ.

Таблица 5

т иолици з		
	Длина погружаемой	Длина непогруженной
	части Lпогр	части
	> 15 · d	< 2 . I
Печь	< 30 · d	$< 2 \cdot L_{norp}$
	> 30 · d	Без ограничений
W	> 10 · d	< 2 I
Жидкостный термостат	< 20 · d	$< 2 \cdot L_{norp}$
Термостат с флюидизированной средой	> 20 · d	Без ограничений

 $[{]m d}$ – наружный диаметр погружаемой части ДT

6.3.3 Поверку ДТ ТППТ, ТПРТ, ТПВР, ТППТ Ex, ТПРТ Ex выполнять не менее чем при четырех значениях температуры, равноотстоящих друг от друга и перекрывающих диапазон измерений ДТ.

Согласно рекомендациям, ГОСТ 8.338-2002 допускается ограничивать значение верхней поверяемой точки величинами:

- TППТ, ТППТ Ex − 1200 °C;
- TПРТ, ТПРТ Ex − 1500 °C,

а также согласно требованиям использования высокотемпературной печи ВТП 1600-1:

- TΠBP − 1600 °C.

Допускается проводить поверку при трёх значениях температуры, если диапазон измерений не превышает 600 °C.

6.3.4 Значение температуры T_i , соответствующее измеренному аналоговому выходному сигналу $I_{\scriptscriptstyle GHX}^i$ рассчитывается по формуле 1.

$$T_{i} = \frac{I_{\text{GbLX}}^{i} - I_{\min}}{I_{\max} - I_{\min}} \cdot \left(T_{\max} - T_{\min}\right) + T_{\min} , \quad ^{\circ}\text{C}$$
 (1)

где $I_{\scriptscriptstyle 6blX}^{i}$ – результат измерений тока, соответствующий измеряемой температуре, мА;

 I_{\min} ; I_{\max} — нижний и верхний пределы диапазона преобразования выходного тока, мА; T_{\min} ; T_{\max} — нижний и верхний пределы диапазона преобразования ИП, °С.

6.3.5 Схемы подключения ДТ представлена на рисунках 1, 2.

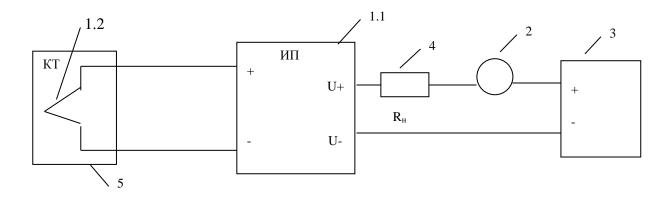


Рисунок 1 – Схема подключения ДТ ТППТ, ТПРТ, ТПВР, ТППТ Ех, ТПРТ Ех

- 1.1 Измерительный преобразователь (ИП);
- 1.2 Первичный преобразователь датчика температуры;
- 2 Мультиметр;
- 3 Источник питания постоянного тока;
- 4 Сопротивление нагрузки R_H = от 0,1 до $R_{\text{нагр}} = (U_{\text{питания}} 7,2)/0,23$;
- 5 Термостат (калибратор, печь).

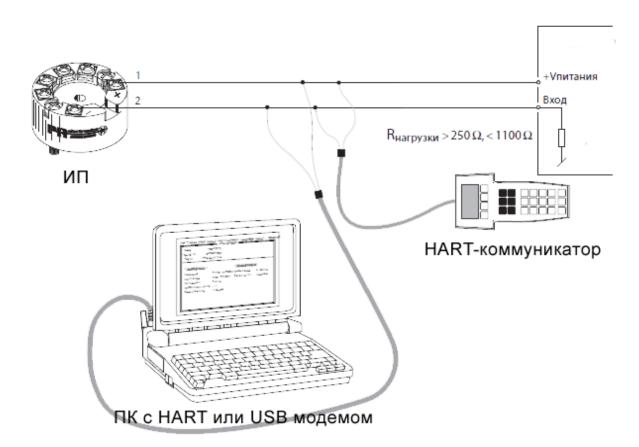


Рисунок 2 – Схема подключения ДТ с цифровым выходным сигналом.

6.3.6 Определение погрешности измерений температуры проводится следующим образом.

А) Поверка в термостате

Подготовить термостат к работе согласно его руководству по эксплуатации (РЭ). Установить в термостате значение температуры, соответствующее контрольной точке. Поместить эталонный термометр в термостат, согласно руководству по эксплуатации на эталонный термометр. Первичный преобразователь ДТ установить в термостат в вертикальном положении. После выхода термостата на заданный температурный режим и

достижении стабильного состояния, поверяемого ($t_{uзм}$) ДТ и эталонного ($t_{эm}$) термометра зафиксировать их показания. Провести пять отсчетов показаний в каждой контрольной точке и за результат измерений принять среднеарифметическое значение.

Вычислить погрешность измерений по формуле 2 п.6.3.6.В.

Б) Поверка в печи

Подготовить печь к работе согласно ее РЭ. Поместить эталонное средство измерений (СИ) и первичный преобразователь ДТ в рабочую зону печи, таким образом, чтобы чувствительные элементы эталонного СИ и первичного преобразователя поверяемого ДТ находились на одном уровне рабочей зоны печи. Установить в печи значение температуры, соответствующее контрольной точке. После выхода печи на заданный температурный режим и достижении стабильного состояния ДТ ($t_{изм}$) и эталонного СИ ($t_{эm}$) зафиксировать их показания. Провести пять отсчетов показаний в каждой контрольной точке и за результат измерений принять среднеарифметическое значение.

Примечание: Термоэлектроды ТПВР, находящиеся в рабочей зоне печи, защищены корундовым или лейкосапфировым чехлом, который заполнен инертным газом аргон.

Вычислить погрешность измерений по формуле 2 п.6.3.6.В.

В) Обработка результатов измерений Вычислить погрешность измерений по формуле 2.

$$\Delta_{\Pi T} = t_{u_{3M}} - t_{9m}, \, {}^{\circ}C$$
 (2)

Результаты поверки считаются положительными, если погрешность измерений, рассчитанная по формуле 2, в каждой точке не превышает значений, указанных в таблице 7. При невыполнении этого условия допускает проводить настройку общего сдвига ИП, согласно указаний в Руководстве по эксплуатации. После настройки необходимо повторить выполнение операций поверки.

Таблица 6 – Метрологические характеристики ДТ ТППТ, ТПРТ, ТПВР, ТППТ Ех, ТПРТ Ех с выходным сигналом постоянного тока и (или) цифровым сигналом по протоколам HART, PROFIBUS-PA, FOUNDATION Fieldbus.

Тип датчика температуры	Вид выходного сигнала и условное обозначение точности датчика температуры с ИП согласно приложению А	Диапазон измерений t_n , ${}^{\circ}$ С	Пределы допускаемой основной погрешности , °C
	H30, F30, P30, W30	от 100 до 650	± 2,0 °C
		от 650 до 1600	$\pm 0.3 \% \cdot t_n$
	H15, F15, P15	от 100 до 1000	± 1,5 °C
ТППТ		от 1000 до 1600	\pm 0,15 % · t_n
ТППТ Ех	T40	от 100 до 650	± 2,5 °C
		от 650 до 1600	$\pm 0.4 \% \cdot t_n$
	T25	от 100 до 900	± 2,3 °C
		от 900 до 1600	$\pm 0,25 \% \cdot t_n$
ТПРТ	H60, F60, P60, W60	от 100 до 700	± 4,5 °C

ТПРТ Ех		от 700 до 1800	$\pm 0.6\% \cdot t_n$
	H30, F30, P30, W30	от 100 до 700	± 2,0 °C
		от 700 до 1800	$\pm 0.3 \% \cdot t_n$
	T60	от 100 до 750	± 4,5 °C
		от 750 до 1800	$\pm 0.6 \% \cdot t_n$
	T40	от 100 до 650	± 2,5 °C
		от 650 до 1800	$\pm 0.4 \% \cdot t_n$
	H100, F100, P100	от 100 до 700	± 7,0 °C
ТПВР		от 700 до 1800	\pm 1,0 % · t_n
	T100	от 100 до 1000	± 10,0 °C
		от 1000 до 1800	\pm 1,0 % · t_n

Примечания:

$$t_n = t_{max} - t_{min}, \, ^{\circ}\mathbf{C} \tag{1}$$

где t_{max} и t_{min} — верхний и нижний пределы диапазона измерений (указан в паспорте и приводится на шильдике датчика).

6.4 Определение погрешности ДТ при раздельной поверке

6.4.1 Определение погрешности первичного преобразователя

Перед началом поверки необходимо выполнить требования п.6.3.1 и п.6.3.2.

Поверку ПП ТППТ, ТПРТ, ТПВР, ТППТ Ех, ТПРТ Ех выполнять не менее чем при четырех значениях температуры, равноотстоящих друг от друга и перекрывающих диапазон измерений ДТ. Допускается определять ТЭДС КТ при трёх значениях температуры, если диапазон измерений не превышает 600 °C.

Согласно рекомендациям ГОСТ 8.338-2002 допускается ограничивать значение верхней поверяемой точки величинами:

- TППТ, ТППТ Ex − 1200 °C;
- TПРТ, ТПРТ Ex − 1500 °C;

а также согласно требованиям использования высокотемпературной печи ВТП 1600-1:

- TΠBP − 1600 °C.

Формула расчета и схемы подключения – по п.6.3.4 и п.6.3.5.

Методы измерений – по п. 6.3.6.

Результаты поверки считаются положительными, если погрешность измерений, рассчитанная по формуле 2, в каждой точке не превышает значений, указанных в таблице 7.

Таблица 7 – Метрологические характеристики кабельного преобразователя

термоэлектрического ТППТ, ТПРТ, ТПВР, ТППТ Ех, ТПРТ Ех, ТПВР Ех.

Тип датчика температуры	Условное обозначение НСХ	, ,	пазон ний ¹ , °С до	Класс лопуска первичного преобразователя	Пределы допускаемых отклонений ТЭДС от НСХ, °С
	1107	0	+1100	1	± 1,0
ТППТ		+ 1100	+ 1600	1	$\pm (1,0+0,003 (t-1100)$
ТППТ Ех	S, R	0	+ 600	2	± 1,5
TITITI LX		+ 600	+ 1600	2	$\pm 0,0025 t$
ТПРТ		+ 600	+ 1800	2	$\pm 0,0025 t$
1111 1	В	+ 600	+ 800	3	± 4,0
ТПРТ Ех		+ 800	+ 1800	3	$\pm 0,005 t$
	С	600	1800	3	± 0,01 t
ТПВР	A-1, A-2, A-3	1000	1800	2	± 0,005 t
		1000	1800	3	± 0,007 t

Указаны предельные значения, конкретный диапазон, в зависимости от конструктивной модификации и наличия ИП, указан в паспорте и приводится на шильдике датчика.

6.4.2 Определение основной погрешности ИП

Основную абсолютную погрешность ИП определить методом сравнения измеренного и расчетного значений выходного сигнала в точках, соответствующих 0, 50, 100 % диапазона измерительного преобразователя.

ИП подключить к калибратору сигналов, согласно технической документации.

Для ИП, настроенных на использование с КТ, отключить внутреннюю автоматическую компенсацию температуры свободных (холодных) концов термопары (АКТС), используя персональный компьютер и программное обеспечение (ПО) для ИП.

ПО PREset, для управления всеми видами используемых ИП, можно скачать с сайта производителя www.tesey.com.

Модели ИП с HART протоколом могут быть настроены любым HART коммуникатором, либо через HART-модем HART совместимым ПО, например PACTWARE.

Допускается проводить поверку ИП, настроенных на использование с КТ, без отключения АКТС. В этом случае необходимо расположить термометр сопротивления класса АА вблизи клемм ИП и фиксировать температуру клемм.

С помощью калибратора сигналов на вход ИП подать сигнал в мВ либо в Ом, соответствующий расчётному сигналу 0, 50, 100 % диапазона преобразования ИП, одновременно измеряя и записывая выходной токовый сигнал. В случае работы без отключения АКТС, подаваемый сигнал уменьшают на пересчитанную в мВ величину температуры клемм ИП.

Значение температуры, соответствующее измеренному аналоговому выходному сигналу $I_{\rm gaz}^i$ рассчитывают по формуле 1.

Результаты поверки считаются положительными, если погрешность измерений, рассчитанная по формуле 2, в каждой точке не превышает значений, в случае отключенной АКТС, указанных в таблице 8.

Таблица 8 — Метрологические характеристики измерительного преобразователя (ИП), в зависимости от вида выходного сигнала и условного обозначения точности датчиков температуры ТППТ, ТПРТ, ТПВР, ТППТ Ex, ТПРТ Ex

Условное обозначение точности датчика температуры согласно приложению А	Диапазон измерений t_n , °C	Пределы допускаемой основной погрешности $\Delta_{\text{ИП}}$, °C
T100, T60, T40, T25	от 100 до 1800	± 2,0
H100, F100, P100, H60, F60, P60, W60, H30, F30, P30, W30, H15, F15, P15	от 100 до 1800	± 1,0

При условии поверки с включенной АКТС, погрешность измерений ИП, рассчитанная по формуле 2 должна быть не более значений, указанных в таблице 9. Таблица 9

Условное обозначение точности датчика температуры с ИП согласно приложения А	Диапазон измерений <i>tn</i> , °C	Пределы допускаемой основной погрешности $\Delta_{\text{ИП}}$, °C
T100, T60, T40, T25	от 100 до 1800	± 2,9
H100, F100, P100, H60, F60, P60, W60, H30, F30, P30, W30, H15, F15, P15	от 100 до 1800	± 1,6

6.4.3 Определение погрешности внутренней автоматической компенсации температуры холодных концов КТ

Выполняется в случае определения основной погрешности ИП с отключённой АКТС.

Включить внутреннюю автоматическую компенсацию температуры свободных (холодных) концов термопары, используя персональный компьютер и программное обеспечение для ИП.

Подключить эталонный термометр сопротивления к измерителю температуры (для определения Тэт), а ИП – к калибратору, согласно технической документации.

Поместить ИП и эталонный термометр в пассивный термостат.

С помощью калибратора на вход ИП подать 0 мВ и измерить выходной токовый сигнал.

По формуле 1 вычислить температуру ИП T_i .

Абсолютную погрешность внутренней автоматической компенсации температуры свободных (холодных) концов рассчитать по формуле:

$$\Delta_{\text{\tiny KOMB}} = T_i - T_{\text{\tiny SM}} \tag{3}$$

Результаты поверки считаются положительными, если погрешность автоматической компенсации температуры холодных концов не превышает значений, указанных в таблице 10.

Таблица 10 — Пределы допускаемой абсолютной погрешности внутренней автоматической компенсации температуры свободных (холодных) концов термопары $\Delta_{\text{комп}}$ ИП ДТ ТППТ, ТПРТ, ТПВР, ТППТ Ex, ТПРТ Ex.

Вид выходного сигнала и условное обозначение	Пределы допускаемой
точности датчика температуры с ИП согласно	погрешности $\Delta_{\text{комп}}$, °C
приложению А	
T25, T40, T60, T100, H100, F100, P100, H60, F60, P60,	- 0.5 °C
W60, H30, F30, P30, W30, H15, F15, P15	± 0,5 °C

6 Оформление результатов поверки

Датчики температуры, прошедшие поверку с положительным результатом, признаются годными и допускаются к применению. На них оформляется свидетельство о поверке в соответствии с ПР 50.2.006, с указанием диапазона измерений. Интервал до следующей поверки указывается в соответствии с требованиями таблиц 1 – 2.

При отрицательных результатах поверки, в соответствии с ПР 50.2.006, оформляется извещение о непригодности.

Зам. директора ООО «ПК «ТЕСЕЙ»

В.А. Каржавин

Начальник лаборатории ФГУП «ВНИИМС»:

А.А. Игнатов

№ поля	Описание поля	Код поля	Расшифрові	ca			
1	Тип датчика	TIIIIT, TIIPT, TIIBP, TIIIIT Ex, TIIPT Ex	Термопреобразователь, <u>тип</u>				
	y cy	Не заполнено R	ΠΠ(S) πο ΓΟСТ P 8.585- 2001 ΠΠ(R) πο ΓΟСТ P 8.585- 2001	ТППТ			
2	НСХ первичного преобразователя (ПП)	Не заполнено	ПР(В) по ГОСТ Р 8.585- 2001	ТПРТ			
		Не заполнено	Тип C по ASTM E230 ВР(A-1), ВР(A-2), ВР(A-3) по ТПП				
	10	A1, A2, A3	FOCT P 8.585-2001				
3	Конструктивная модификация						
4	Кабельный ввод	Согласно руководст	ва по эксплуатациі	ı (PЭ)			
5	Узел коммутации						
<i>6 7</i>	Диаметр термоэлектродов	1 2 2					
//	Класс допуска ПП	1, 2, 3	Сигнал ТЭЛС в	1 3			
		Не заполняется	Сигнал ТЭДС в соответствие с НСХ				
		T	4 – 20 mA				
	Вид выходного сигнала	<i>H</i>	4 – 20 мА + HART				
8	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	P	Profibus				
		F	Fieldbus				
		W	Wireless HART				
9	Условное обозначение точности датчика температуры с ИП	15 – 100	Согласно таблицы 4				
	Исполнение рабочего спая		Изолированный спай				
10	ПП	И, О	Открытый спай только для 01.01				
	16	Не заполнено	Один первичный				
11	Количество ПП в одном		преобразователь				
11	изделии	N	N первичных преобразователей				
12	Материал наружной оболочки		1 Propassarione				
13	Наружный диаметр рабочей части d, мм						
14	Монтажная длина датчика, мм	Согласно РЭ					
15	Вспомогательный размер, мм						
16	Характерный геометрический параметр						

Номинальная статическая характеристика (HCX) датчиков температуры ТПВР в соответствии с ASTM E230/E230M-11e1.

Значения ТЭДС для термопары типа С (вольфрам -5 % рений / вольфрам - 26 %рений)											
ТЭДС в мВ при температуре свободного конца 0 °C											
Темп-ра											
рабочего конца, °С	0	1	2	3	4	5	6	7	8	9	10
600	10,609	10,628	10,648	10,667	10,687	10,706	10,726	10,746	10,765	10,785	10,804
610	10,804	10,824	10,843	10,863	10,882	10,902	10,921	10,941	10,960	10,980	10,999
620	10,999	11,019	11,038	11,058	11,077	11,097	11,117	11,136	11,156	11,175	11,195
630	11,195	11,214	11,234	11,253	11,273	11,292	11,312	11,331	11,351	11,370	11,390
640	11,390	11,409	11,429	11,448	11,468	11,487	11,507	11,526	11,546	11,565	11,585
650	11,585	11,604	11,624	11,643	11,663	11,682	11,702	11,721	11,741	11,760	11,780
660	11,780	11,799	11,818	11,838	11,857	11,877	11,896	11,916	11,935	11,955	11,974
670	11,974	11,994	12,013	12,033	12,052	12,072	12,091	12,111	12,130	12,150	12,169
680	12,169	12,189	12,208	12,228	12,247	12,267	12,286	12,306	12,325	12,344	12,364
690	12,364	12,383	12,403	12,422	12,442	12,461	12,481	12,500	12,520	12,539	12,559
700	12,559	12,578	12,597	12,617	12,636	12,656	12,675	12,695	12,714	12,734	12,753
710	12,753	12,772	12,792	12,811	12,831	12,850	12,870	12,889	12,908	12,928	12,947
720	12,947	12,967	12,986	13,006	13,025	13,044	13,064	13,083	13,103	13,122	13,141
730	13,141	13,161	13,180	13,200	13,219	13,238	13,258	13,277	13,297	13,316	13,335
740	13,335	13,355	13,374	13,393	13,413	13,432	13,452	13,471	13,490	13,510	13,529
750	13,529	13,548	13,568	13,587	13,606	13,626	13,645	13,665	13,684	13,703	13,723
760	13,723	13,742	13,761	13,781	13,800	13,819	13,839	13,858	13,877	13,896	13,916
770	13,916	13,935	13,954	13,974	13,993	14,012	14,032	14,051	14,070	14,089	14,109
780	14,109	14,128	14,147	14,167	14,186	14,205	14,224	14,244	14,263	14,282	14,301
790	14,301	14,321	14,340	14,359	14,378	14,398	14,417	14,436	14,455	14,475	14,494
800	14,494	14,513	14,532	14,551	14,571	14,590	14,609	14,628	14,647	14,667	14,686
810	14,686	14,705	14,724	14,743	14,763	14,782	14,801	14,820	14,839	14,858	14,878
820	14,878	14,897	14,916	14,935	14,954	14,973	14,993	15,012	15,031	15,050	15,069
830	15,069	15,088	15,107	15,126	15,146	15,165	15,184	15,203	15,222	15,241	15,260
840	15,260	15,279	15,298	15,317	15,336	15,356	15,375	15,394	15,413	15,432	15,451
850	15,451	15,470	15,489	15,508	15,527	15,546	15,565	15,584	15,603	15,622	15,641
860	15,641	15,660	15,679	15,698	15,717	15,736	15,755	15,774	15,793	15,812	15,831
870	15,831	15,850	15,869	15,888	15,907	15,926	15,945	15,964	15,983	16,002	16,021
880	16,021	16,040	16,058	16,077	16,096	16,115	16,134	16,153	16,172	16,191	16,210
890	16,210	16,229	16,248	16,266	16,285	16,304	16,323	16,342	16,361	16,380	16,398
900	16,398	16,417	16,436	16,455	16,474	16,493	16,511	16,530	16,549	16,568	16,587
910	16,587	16,606	16,624	16,643	16,662	16,681	16,699	16,718	16,737	16,756	16,775
920	16,775	16,793	16,812	16,831	16,850	16,868	16,887	16,906	16,924	16,943	16,962
930	16,962	16,981	16,999	17,018	17,037	17,055	17,074	17,093	17,111	17,130	17,149
940	17,149	17,167	17,186	17,205	17,223	17,242	17,261	17,279	17,298	17,317	17,335
950	17,335	17,354	17,373	17,391	17,410	17,428	17,447	17,465	17,484	17,503	17,521
960	17,521	17,540	17,558	17,577	17,595	17,614	17,633	17,651	17,670	17,688	17,707
970	17,707	17,725	17,744	17,762	17,781	17,799	17,818	17,836	17,855	17,873	17,892

Значения ТЭДС для термопары типа С (вольфрам -5 % рений / вольфрам - 26 %рений)											
ТЭДС в мВ при температуре свободного конца 0 °C											
Темп-ра рабочего конца, °С	0	1	2	3	4	5	6	7	8	9	10
980	17,892	17,910	17,929	17,947	17,966	17,984	18,002	18,021	18,039	18,058	18,076
990	18,076	18,095	18,113	18,131	18,150	18,168	18,187	18,205	18,223	18,242	18,260
1000	18,260	18,279	18,297	18,315	18,334	18,352	18,370	18,389	18,407	18,425	18,444
1010	18,444	18,462	18,480	18,499	18,517	18,535	18,553	18,572	18,590	18,608	18,62
1020	18,627	18,645	18,663	18,681	18,700	18,718	18,736	18,754	18,773	18,791	18,80
1030	18,809	18,827	18,845	18,864	18,882	18,900	18,918	18,936	18,955	18,973	18,99
1040	18,991	19,009	19,027	19,045	19,064	19,082	19,100	19,118	19,136	19,154	19,17
1050	19,172	19,190	19,208	19,227	19,245	19,263	19,281	19,299	19,317	19,335	19,35
1060	19,353	19,371	19,389	19,407	19,425	19,443	19,461	19,479	19,497	19,515	19,53
1070	19,533	19,551	19,569	19,587	19,605	19,623	19,641	19,659	19,677	19,695	19,71
1080	19,713	19,731	19,749	19,767	19,785	19,803	19,821	19,839	19,856	19,874	19,892
1090	19,892	19,910	19,928	19,946	19,964	19,982	19,999	20,017	20,035	20,053	20,07
1100	20,071	20,089	20,106	20,124	20,142	20,160	20,178	20,195	20,213	20,231	20,24
1110	20,249	20,267	20,284	20,302	20,320	20,338	20,355	20,373	20,391	20,409	20,42
1120	20,426	20,444	20,462	20,479	20,497	20,515	20,532	20,550	20,568	20,585	20,60
1130	20,603	20,621	20,638	20,656	20,674	20,691	20,709	20,727	20,744	20,762	20,77
1140	20,779	20,797	20,815	20,832	20,850	20,867	20,885	20,902	20,920	20,938	20,95
1150	20,955	20,973	20,990	21,008	21,025	21,043	21,060	21,078	21,095	21,113	21,13
1160	21,130	21,148	21,165	21,183	21,200	21,218	21,235	21,253	21,270	21,287	21,30
1170	21,305	21,322	21,340	21,357	21,375	21,392	21,409	21,427	21,444	21,461	21,47
1180	21,479	21,496	21,514	21,531	21,548	21,566	21,583	21,600	21,618	21,635	21,65
1190	21,652	21,670	21,687	21,704	21,721	21,739	21,756	21,773	21,790	21,808	21,82
1200	21,825	21,842	21,859	21,877	21,894	21,911	21,928	21,946	21,963	21,980	21,99
1210	21,997	22,014	22,032	22,049	22,066	22,083	22,100	22,117	22,135	22,152	22,16
1220	22,169	22,186	22,203	22,220	22,237	22,254	22,271	22,289	22,306	22,323	22,34
1230	22,340	22,357	22,374	22,391	22,408	22,425	22,442	22,459	22,476	22,493	22,51
1240	22,510	22,527	22,544	22,561	22,578	22,595	22,612	22,629	22,646	22,663	22,68
1250	22,680	22,697	22,714	22,731	22,748	22,765	22,782	22,799	22,815	22,832	22,84
1260	22,849	22,866	22,883	22,900	22,917	22,934	22,950	22,967	22,984	23,001	23,01
1270	23,018	23,035	23,052	23,068	23,085	23,102	23,119	23,136	23,152	23,169	23,18
1280	23,186	23,203	23,219	23,236	23,253	23,270	23,286	23,303	23,320	23,337	23,35
1290	23,353	23,370	23,387	23,403	23,420	23,437	23,453	23,470	23,487	23,503	23,52
1300	23,520	23,537	23,553	23,570	23,587	23,603	23,620	23,636	23,653	23,670	23,68
1310	23,686	23,703	23,719	23,736	23,753	23,769	23,786	23,802	23,819	23,835	23,85
1320	23,852	23,868	23,885	23,901	23,918	23,934	23,951	23,967	23,984	24,000	24,01
1330	24,017	24,033	24,050	24,066	24,083	24,099	24,116	24,132	24,148	24,165	24,18
1340	24,181	24,198	24,214	24,230	24,247	24,263	24,280	24,296	24,312	24,329	24,34
1350	24,345	24,361	24,378	24,394	24,410	24,427	24,443	24,459	24,476	24,492	24,50
1360	24,508	24,524	24,541	24,557	24,573	24,590	24,606	24,622	24,638	24,655	24,67
1370	24,671	24,687	24,703	24,719	24,736	24,752	24,768	24,784	24,800	24,817	24,83
1380	24,833	24,849	24,865	24,881	24,897	24,913	24,930	24,946	24,962	24,978	24,99
1390	24,994	25,010	25,026	25,042	25,058	25,075	25,091	25,107	25,123	25,139	25,15
1400	25,155	25,171	25,187	25,203	25,219	25,235	25,251	25,267	25,283	25,299	25,313

Значения ТЭДС для термопары типа С (вольфрам - 5 % рений / вольфрам - 26 %рений) ТЭДС в мВ при температуре свободного конца 0 °С											
Т		7	ГЭДС в м	В при те	мператур	ре свобод	ного кон	ца 0 °C			
Темп-ра рабочего конца, °С	0	1	2	3	4	5	6	7	8	9	10
1410	25,315	25,331	25,347	25,363	25,379	25,395	25,411	25,427	25,443	25,459	25,47
1420	25,475	25,490	25,506	25,522	25,538	25,554	25,570	25,586	25,602	25,618	25,63
1430	25,633	25,649	25,665	25,681	25,697	25,713	25,729	25,744	25,760	25,776	25,79
1440	25,792	25,808	25,823	25,839	25,855	25,871	25,886	25,902	25,918	25,934	25,94
1450	25,949	25,965	25,981	25,997	26,012	26,028	26,044	26,060	26,075	26,091	26,10
1460	26,107	26,122	26,138	26,154	26,169	26,185	26,201	26,216	26,232	26,248	26,26
1470	26,263	26,279	26,294	26,310	26,326	26,341	26,357	26,372	26,388	26,403	26,41
1480	26,419	26,435	26,450	26,466	26,481	26,497	26,512	26,528	26,543	26,559	26,57
1490	26,574	26,590	26,605	26,621	26,636	26,652	26,667	26,683	26,698	26,714	26,72
1500	26,729	26,744	26,760	26,775	26,791	26,806	26,822	26,837	26,852	26,868	26,88
1510	26,883	26,899	26,914	26,929	26,945	26,960	26,975	26,991	27,006	27,021	27,03
1520	27,037	27,052	27,067	27,083	27,098	27,113	27,128	27,144	27,159	27,174	27,19
1530	27,190	27,205	27,220	27,235	27,250	27,266	27,281	27,296	27,311	27,327	27,34
1540	27,342	27,357	27,372	27,387	27,403	27,418	27,433	27,448	27,463	27,478	27,49
1550	27,493	27,509	27,524	27,539	27,554	27,569	27,584	27,599	27,614	27,629	27,64
1560	27,645	27,660	27,675	27,690	27,705	27,720	27,735	27,750	27,765	27,780	27,79
1570	27,795	27,810	27,825	27,840	27,855	27,870	27,885	27,900	27,915	27,930	27,94
1580	27,945	27,960	27,975	27,990	28,005	28,020	28,034	28,049	28,064	28,079	28,09
1590	28,094	28,109	28,124	28,139	28,154	28,169	28,183	28,198	28,213	28,228	28,24
1600	28,243	28,258	28,272	28,287	28,302	28,317	28,332	28,346	28,361	28,376	28,39
1610	28,391	28,406	28,420	28,435	28,450	28,465	28,479	28,494	28,509	28,524	28,53
1620	28,538	28,553	28,568	28,582	28,597	28,612	28,626	28,641	28,656	28,670	28,68
1630	28,685	28,700	28,714	28,729	28,744	28,758	28,773	28,787	28,802	28,817	28,83
1640	28,831	28,846	28,860	28,875	28,890	28,904	28,919	28,933	28,948	28,962	28,97
1650	28,977	28,991	29,006	29,020	29,035	29,049	29,064	29,078	29,093	29,107	29,12
1660	29,122	29,136	29,151	29,165	29,180	29,194	29,209	29,223	29,237	29,252	29,26
1670	29,266	29,281	29,295	29,309	29,324	29,338	29,353	29,367	29,381	29,396	29,41
1680	29,410	29,424	29,439	29,453	29,467	29,482	29,496	29,510	29,525	29,539	29,55
1690	29,553	29,567	29,582	29,596	29,610	29,625	29,639	29,653	29,667	29,681	29,69
1700	29,696	29,710	29,724	29,738	29,753	29,767	29,781	29,795	29,809	29,823	29,83
1710	29,838	29,852	29,866	29,880	29,894	29,908	29,922	29,937	29,951	29,965	29,97
1720	29,979	29,993	30,007	30,021	30,035	30,049	30,063	30,077	30,091	30,106	30,12
1730	30,120	30,134	30,148	30,162	30,176	30,190	30,204	30,218	30,232	30,246	30,26
1740	30,260	30,274	30,288	30,302	30,315	30,329	30,343	30,357	30,371	30,385	30,39
1750	30,399	30,413	30,427	30,441	30,455	30,469	30,482	30,496	30,510	30,524	30,53
1760	30,538	30,552	30,565	30,579	30,593	30,607	30,621	30,635	30,648	30,662	30,67
1770	30,676	30,690	30,704	30,717	30,731	30,745	30,759	30,772	30,786	30,800	30,81
1780	30,813	30,827	30,841	30,855	30,868	30,882	30,896	30,909	30,923	30,937	30,95
1790	30,950	30,964	30,978	30,991	31,005	31,019	31,032	31,046	31,059	31,073	31,08
1800	31,087	,		<u> </u>	<u> </u>	<u> </u>	· · · · · · · · · · · · · · · · · · ·		<u> </u>	<u> </u>	, , -