

ГОСУДАРСТВЕННАЯ СИСТЕМА ОБЕСПЕЧЕНИЯ ЕДИНСТВА ИЗМЕРЕНИЙ ИНСТРУКЦИЯ

ТЕПЛОСЧЕТЧИКИ МЕХАНИЧЕСКИЕ PROEXPERT МЕТОДИКА ПОВЕРКИ МЦКЛ.0214.МП

Настоящая методика поверки распространяется на теплосчетчики механические ProEXPERT (далее – теплосчетчики), серийно изготавливаемые обществом с ограниченной ответственностью «САРДОНИКС» (ООО «САРДОНИКС»), г. Санкт-Петербург.

Методика поверки устанавливает методы и средства первичной (при вводе в эксплуатацию и/или после ремонта) и периодической поверок.

Первичную и периодическую поверки осуществляют аккредитованные в установленном порядке в области обеспечения единства измерений юридические лица и индивидуальные предприниматели.

Интервал между поверками – шесть лет.

1 Операции поверки

1.1 При проведении поверки должны быть выполнены операции, приведенные в таблице 1.

Таблица 1 – Операции поверки

	Номер пункта	Проведение операций при	
Наименование операции	документа по поверке	первичной поверке	периодической поверке
1 Внешний осмотр	7.1	+-	+
2 Проверка идентификационных данных программного обеспечения (ПО)	7.2	+	+
3 Опробование	7.3	+	+
4 Определение метрологических характеристик (МХ)	7.4	+	+
5 Оформление результатов поверки	8	+	+

1.2 Поверка прекращается при получении отрицательных результатов при проведении хотя бы по одной из операций поверки, приведенных в таблице 1, и оформляются результаты поверки в соответствии с разделом 8.

2 Средства поверки

2.1 Перечень эталонов, средств измерений (СИ) и вспомогательного оборудования, применяемых при проведении поверки, приведены в таблице 2.

Таблица 2 – Перечень эталонов, средств измерений (СИ) и вспомогательного оборудования

Наименование	Тип (обозначение)	Метрологические характеристики
1 Установка поверочная	УП-65	диапазон воспроизведения расхода от 0,006 до 35 м 3 /ч, погрешностью измерений не более $\pm 0,5 \%$
2 Секундомер электронный	СЧЕТ-1М	диапазон измеряемых интервалов времени от 0,01 до 99999,9, с; пределы допускаемой абсолютной погрешности измерений интервалов времени ±(6·10-5·T+C) с, где Т – измеренное значение интервала времени, с; С – дискретность измерений в данном интервале: 0,001 с на интервалах от 0,001 до 999,999 с; 0,01 на интервалах от 1000,00 до 9999,99 с; 0,1 на интервалах от 10000,0 до 99999,9 с
3 Универсальная пробойная установка	УПУ-5М	-
4 Мегаомметр	ЭС0202/2-Г	диапазон измерений электрического сопротивления от 0 до 1000 МОм, выходное напряжение на зажимах (500±50) В
5 Термостат переливной прецизионный	ТПП-1.0	нестабильность не более ±0,01 °C
6 Термостат переливной прецизионный	ТПП-1.1	нестабильность не более ±0,01 °C
7 Термометр сопротивления платиновый вибропрочный	ТСПВ-1	пределы допускаемой абсолютной погрешности $\pm (0.02+0.0005\cdot t)$ °C, где t — измеряемое значение температуры, °C

Продолжение таблицы 2

Наименование	Обозначение	Метрологические характеристики	
8 Измеритель температуры многоканальный прецизионный	МИТ 8-10М	диапазон измерений от минус 200 до плюс 962 °C, предел допускаемой абсолютной погрешности ± (0,003+10 ⁻⁵ ·t) °C, где t – измеряемая температура.	
7 Термогигрометр	ИВА-6Н-КП-Д.	диапазон измерений температуры от 0 °С до плюс 60 °С, основная допускаемая погрешность измерения температуры ± 0.3 °С, диапазон измерения относительной влажности, % от 0 до 98, допускаемая основная абсолютная погрешность: при 23 °С в диапазоне от 0 до 90 % ± 2 %, в диапазоне от 90 до 98 %, не более ± 3 %; диапазон измерения атмосферного давления, гПа 7001100, ПГ ± 2.5 гПа	

- 2.2 Допускается применение других средств измерений и оборудования, не указанных в таблице 2, с метрологическими характеристиками, обеспечивающими определение метрологических характеристик поверяемого СИ с требуемой точностью.
- 2.3 Все средства измерений (рабочие эталоны) должны быть поверены в установленном порядке.

3 Требования к квалификации поверителей

3.1 К выполнению поверки допускают лиц, достигших 18 лет, прошедших обучение и проверку знаний требований охраны труда в соответствии с ГОСТ 12.0.004-90, годных по состоянию здоровья, и изучивших настоящую методику поверки, эксплуатационную документацию (ЭД) на: теплосчетчики, средства поверки и прошедшие инструктаж по технике безопасности.

4 Требования безопасности

4.1 При подготовке и проведении поверки необходимо соблюдать требования безопасности, установленные в нормативно-методической, нормативно-технической документации и ЭД на применяемые средства поверки.

5 Условия поверки

- 5.1 При проведении поверки должны соблюдаться следующие условия:
- диапазон температуры окружающей среды, °C

 $20 \pm 5;$

- диапазон относительной влажности окружающей среды, %
- от 30 до 80;

- диапазон атмосферного давления, кПа

- от 84 до 106.
- отсутствие внешних электрических и магнитных полей, кроме геомагнитного.
- отсутствие механической вибрации, тряски и ударов, влияющих на работу теплосчетчиков;
 - температура воды (далее поверочная среда), °C

 20 ± 5 ;

- изменение температуры поверочной среды, °С/ч, не более

3

6 Подготовка к поверке

- 6.1 Первичная поверка и периодическая поверка
- 6.1.1 Проверяют наличие ЭД на теплосчетчик.
- 6.1.2 Подготавливают к работе средства измерений, применяемые при поверке теплосчетчика, в соответствии с их ЭД.
- 6.1.3 Подготавливают теплосчетчик к работе в соответствии с указаниями, изложенными в ЭД на него.

7 Проведение поверки и обработка результатов измерений

- 7.1 Внешний осмотр
- 7.1.1 При внешнем осмотре устанавливают:
- соответствие комплектности теплосчетчика комплектности, указанной в ЭД;
- соответствие маркировки теплосчетчика маркировке, указанной в ЭД;
- заводской номер теплосчетчика соответствует указанному в ЭД;

- отсутствие механических и иных повреждений, влияющих на работоспособность теплосчетчика;
- отсутствие дефектов, препятствующих правильному считыванию показаний с индикаторного устройства теплосчетчика.
 - 7.1.2 Проверка идентификационных данных программного обеспечения (ПО)
- 7.1.2.1 Проверку идентификационных данных ПО производить путем сличения идентификационных данных ПО отображаемых на индикаторном устройстве теплосчетчика с идентификационными данными ПО, указанными в таблице 4. Отображение идентификационных данных ПО на индикаторном устройстве теплосчетчика производится согласно разделу 5 паспорта.

Таблица 4 – Идентификационные данные ПО

Идентификационные данные (признаки)	Значение			
Идентификационное наименование ПО	EU_ V1001264.0			
Номер версии (идентификационный номер) ПО, не ниже	P0071540			
Цифровой идентификатор ПО	_*			
* Данные недоступны, так как данное ПО не может быть модифицировано, загружено или прочитано через какой-либо интерфейс после опломбирования.				

- 7.1.2.2 Результаты поверки по п. 7.1.2 считаются положительными, если идентификационные данные ПО отображаемые на индикаторном устройстве поверяемого теплосчетчика, соответствуют 1001264.0.
 - 7.2 Проверка сопротивления изоляции
- 7.2.1 Сопротивление между каждым контактом разъёма и корпусом следует измерять при напряжении постоянного тока от 10 до 500 В. Полярность напряжения необходимо изменять. Во всех случаях сопротивление должно быть не менее 100 МОм.
 - 7.3 Опробование
- 7.3.1 Термопреобразователи сопротивления помещаются в термостаты. Теплосчетчик устанавливают в измерительную линию поверочной установки и производят его наработку в течение 10 мин в диапазоне объемного расхода жидкости от $0.2 \cdot q_{max}$ до $0.5 \cdot q_{max}$.
 - 7.3.2 Результаты опробования считаются положительными если:
 - счетчик функционирует в соответствии с ЭД;
 - на дисплее отображаются результаты измерений;
- при наличии интерфейсов и (или) каналов беспроводной связи (радиоканал) осуществляется передача результатов измерений через них.

7.4 Определение МХ

Для определения MX необходимо войти в режим поверки теплосчетчика в соответствии с паспортом на теплосчетчик.

Определение МX производят на каждом из следующих диапазонов расхода q и разности температур Δt :

- при измерении количества тепловой энергии:
 - a) $\Delta t_{min} \leq \Delta t \leq 1, 2 \cdot \Delta t_{min}$ и 0,9 $\cdot q_{max} \leq q \leq q_{max}$;
 - б) 10 °C $\leq \Delta t \leq 20$ °C и 0,1 $\cdot q_{max} \leq q \leq 0,11 \cdot q_{max}$;
 - в) Δt_{max} 5 °C $\leq \Delta t \leq \Delta t_{max}$ и $q_{min} \leq q \leq 1, 1 \cdot q_{min}$.
- 7.4.1 Определение относительной погрешности измерений объемного расхода (объема) теплоносителя

Значение относительной погрешности измерения объемного расхода определяют по формуле

$$\delta \mathbf{q} = \frac{\mathbf{q_a} - \mathbf{q_a}}{\mathbf{q_a}} \cdot \mathbf{100} \, \%, \tag{1}$$

где $\mathbf{q_{x}}$ – объемный расход жидкости, измеренный теплосчетчиком, $\mathbf{m}^{3}/\mathbf{q}$;

 \mathbf{q}_{s} – объем расход жидкости, измеренный средствами поверки, $\mathbf{M}^{3}/\mathbf{q}$.

Значение относительной погрешности измерения объема определяют по формуле

$$\delta V = \frac{V_{\text{N}} - V_{\text{p}}}{V_{\text{s}}} \cdot 100 \, \%, \tag{2}$$

где $V_{\mathbf{x}}$ – объемный расход жидкости, измеренный теплосчетчиком, м³;

 V_3 – объем расход жидкости, измеренный средствами поверки, M^3 .

Результаты поверки по п. 7.4.1 считаются положительными, если относительная погрешность результатов измерений объемного расхода (объема) не более: $\pm (2+0.02 \cdot q_{max}/q)$ %.

7.4.2 Определение абсолютной погрешности измерений температуры

Значение абсолютной погрешности измерения температуры определяют для каждого датчика температуры по формуле

$$\Delta t = t_{H} - t_{s}, \tag{3}$$

где t_{w} – значение температуры в термостате измеренное теплосчетчиком, °C;

t₃ – значение температуры в термостате измеренное средствами поверки, °С.

Результаты поверки по п. 7.4.2 считаются положительными, если абсолютная погрешность результатов измерений температуры не более: $\pm (0,6+0,004 \cdot t)$, °C, где t - измеряемое значение температуры.

7.4.3 Определение значения относительной погрешности измерения разности температур определяют по формуле

$$\Delta t_{\Delta} = \frac{\Delta t_{m} - \Delta t_{s}}{\Delta t_{s}} \times 100 \%, \tag{4}$$

где Δt_{m} – значение разпости температур измеренное теплосчетчиком, °C.

Δt, – значение разности температур измеренное средствами поверки, °С;

Результаты поверки по п. 7.4.3 считаются положительными, если относительная погрешность результатов измерения разности температур не более: $\pm (0.5+3\cdot\Delta t_{min}/\Delta t)$ %.

- 7.4.4 Определение относительной погрешности измерений количества энергии (тепловой мощности)
- 7.4.4.1 Значение относительной погрешности измерения количества энергии определяют по формуле

$$\delta E = \frac{E_{ii} - E_{ji}}{E_{ji}} \cdot 100 \%, \tag{5}$$

где $\mathbf{E}_{\mathbf{n}}$ – количество энергин, измеренное теплосчетчиком, кал;

Е, – количество тепловой энергии, рассчитанной в соответствии с разделом 8 ГОСТ Р ЕН 1434-1-2011, Гкал, при условно постоянном значении избыточного давления, указанного в ЭД на теплосчетчик.

7.4.4.2 Результаты поверки по 7.4.4. считаются положительными, если относительная погрешность результатов измерения количества энергии не более: $\pm (3+4\cdot\Delta t_{min}/\Delta t+0,02\cdot q_{max}/q)$ %.

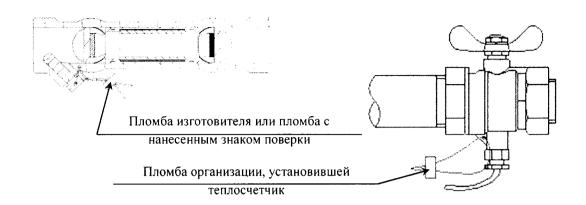
7.4.4.3 Результаты определения погрешности измерения тепловой мощности считаются положительными если выполняется условие по 7.4.4.2.

- 7.4.5 Определение относительной погрешности измерений времени работы
- 7.4.5.1 В соответствии с ЭД на теплосчетчик вывести на индикаторное устройство теплосчетчика показания времени работы. В момент смены наименьшего разряда показаний времени работы включить секундомер.
- 7.4.5.2 Значение относительной погрешности измерений текущего времени определяют по формуле

$$\delta T = \frac{T_{\text{MSM}} - T_{\text{3}}}{T_{\text{3}}} \cdot 100\%, \tag{6}$$

где

Т_{изм} – интервал времени, измеренный теплосчетчиком, с;


Т, – интервал времени, измеренный секундомером, с.

- 7.4.5.3 Определение значения относительной погрешности измерений интервалов времени производится не менее двух раз, время измерений не менее 1 ч.
- 7.4.5.4 Результаты поверки по 7.4.6 считаются положительными, если относительная погрешность результатов измерения времени работы не более: ±0,05, %.

8 Оформление результатов поверки

- 8.1 Результаты поверки оформляют протоколами произвольной формы.
- 8.2 Знак поверки наносится на пломбы теплосчетчика в соответствии с рисунком А.1 Приложении А, а также на бланк свидетельства о поверке.
- 8.3 В целях предотвращения доступа к узлам регулировки и (или) элементам конструкции производят пломбировку теплосчетчика. Схема пломбировки теплосчетчика представлена на рисунке А.1 Приложения А.
- 8.4 При отрицательных результатах поверки теплосчетчик к применению не допускают, свидетельство о поверке аннулируют и выписывают извещение о непригодности к применению в установленном порядке, а теплосчетчик направляют в ремонт или для настройки (регулировки) изготовителю или авторизованной сервисной организации.

ПРИЛОЖЕНИЕ А (обязательное) Схема пломбировки теплосчетчиков

- а) схема пломбировки термопреобразователя сопротивления на датчике расхода
- б) схема пломбировки термопреобразователя сопротивления на обратном трубопроводе

в) схема пломбировки вычислителя

Рисунок 1 – Схема пломбировки теплосчетчика