Аппаратура геодезическая спутниковая
ЮГ С-82
Методика поверки

МП АПМ 74-15
г. Москва,
2015 г.

1. Методика поверки

Настоящая методика поверки распространяется на аппаратуру геодезическую спутниковую ЮГ С-82 (далее - аппаратура), производства «South Surveying \& Mapping Instrument CO., LTD», КНР и устанавливает методику её первичной и периодической поверки.

Интервал между поверками 1 год.

2. Операции поверки

При проведении поверки должны выполняться операции, указанные в таблице 1.
Таблица 1.

№№ пункта	Наименование операции		Проведение операций при	
		первичной поверке	периодической поверке	
8.1.	Внешний осмотр	Да	Да	
8.2.	Опробование	Да	Да	
8.3.	Определение абсолютной и средней квадратиче-	Да	Да	

	ской погрешностей измерений расстояний в ре- жимах «Статика», «Быстрая статика»		
8.4.	Определение абсолютной и средней квадратиче- ской погрешностей измерений расстояний в ре- жиме «Кинематика в реальном времени (RTK)»	Да	Да
8.5.	Определение абсолютной и средней квадратиче- ской погрешностей измерений расстояний в ре- жиме «Дифференциальные кодовые измерения (DGPS)"	Да	Да

3. Средства поверки

При проведении поверки должны применяться эталоны, приведённые в таблице 2.
Таблица 2.

№ пункта документа по поверке	Наименование эталонов и их основные метрологические и технические характеристики
8.1	Эталоны не применяются
8.2	Эталоны не применяются
$8.3-8.5$	Фазовый светодальномер (тахеометр электронный) 1 разряда по ГОСТ Р 8.750-2011
$8.3-8.4$	Рулетка РЗНЗК по ГОСТ 7502-98

Допускается применять другие средства поверки, обеспечивающие определение метрологических характеристик с точностью, удовлетворяющей требованиям настоящей методики поверки.

4. Требования к квалификации поверителей

К проведению поверки допускаются лица, изучившие эксплуатационные документы на аппаратуру, имеющие достаточные знания и опыт работы с ней.

5. Требования безопасности

При проведении поверки, меры безопасности должны соответствовать требованиям по технике безопасности согласно эксплуатационной документации на аппаратуру, поверочное оборудование, правилам по технике безопасности, которые действуют на месте проведения поверки и правилам по технике безопасности при производстве топографо-геодезических работ ПТБ-88 (У тверждены коллегией ГУГК при СМ СССР 09.02.1989 г., № 2/21).

6. Условия проведения поверки

При проведении поверки должны соблюдаться следующие нормальные условия измерений: - температура окружающей среды, ${ }^{\circ} \mathrm{C}$
(20 ± 5)

- относительная влажность воздуха,\% .

не более 80

- атмосферное давление, кПа (мм рт.ст.) \qquad $.84,0 . .106,7$ (630..800)

Полевые измерения (измерения на открытом воздухе) должны проводиться при отсутствии осадков и порывов ветра.

7. Подготовка к поверке

Перед проведением поверки должны быть выполнены следующие подготовительные работы:

- проверить наличие действующих свидетельств о поверке на средства поверки;
- аппаратуру и средства поверки привести в рабочее состояние в соответствии с их эксплуатационной документацией;

8. Проведение поверки

8.1. Внешний осмотр

При внешнем осмотре должно быть установлено соответствие аппаратуры следующим требованиям:

- отсутствие коррозии, механических повреждений и других дефектов, влияющих на эксплуатационные и метрологические характеристики аппаратуры;
- наличие маркировки и комплектности согласно требованиям эксплуатационной документации на аппаратуру.

8.2. Опробование

При опробовании должно быть установлено соответствие аппаратуры следующим требованиям:

- отсутствие качки и смещений неподвижно соединенных деталей и элементов аппаратуры;
- правильность взаимодействия с комплектом принадлежностей;
- работоспособность всех функциональных режимов;
- идентификационные данные программного обеспечения (далее - ПО) должны соответствовать данным, приведённым в таблице 3 .

Идентификационное наименование ПО	«HeziCode»	«GIStar»	«InStar»
Номер версии (идентификационный номер ПО), не ниже	1.05	1.02 .150612	1.0

Для идентификации ПО «НеziCode», установленного в приемник, необходимо включить приемник,

пооклочиться посреоством оеспровоонои связи (виртуальныи сил-порт) к оекооеру. ноявится информауия о загрузке. В появивиемся диалоговом окне загрузчика отображается наименование и версия ПО.

Для идентификации ПО «GIStar», установленного на контроллер, необходимо перейти во вкладку «Abоит». В появивиемся окне программы отображается наименование и версия ПО.

Для идентификации ПО «InStar», установленного на ПК, необходимо перейти во вкладку «Abоиt». В появивиемся диалоговом окне программы отображается наименование и версия ПО.
8.3. Определение абсолютной и средней квадратической погрешностей измерений расстояний в режимах «Статика», «Быстрая статика»
Абсолютная и средняя квадратическая погрешности измерений расстояний в режимах «Статика», «Быстрая статика» определяется измерением не менее двух линий линейного базиса, действительные длины которых расположены в диапазоне ($0,1-3,0$) км.

Установить образцы аппаратуры над центрами пунктов эталонного базиса, и привести спутниковые антенны образцов к горизонтальной плоскости. Измерить высоту установки аппаратуры над центрами пунктов с помощью рулетки.

Включить аппаратуру и настроить её на сбор данных (измерений) в соответствующем режиме измерений, согласно требованиям руководства по эксплуатации.
Убедиться в нормальном ее функционировании и отсутствии помех приему сигналов со спутников. При наличии помех устранить их.
Провести одновременные измерения на образцах аппаратуры при условиях, указанных в таблице 4. Выключить аппаратуру согласно требованиям руководства по эксплуатации.
Выполнить обработку наблюдений с использованием штатного ПО к аппаратуре.
Абсолютная и средняя квадратическая погрешности измерений расстояний в режимах «Статика», «Быстрая статика» вычисляется по формуле:

$$
\Delta_{1 j}=S_{j}-S_{0 j}, \text { где }
$$

$\Delta_{l /}$ - значение абсолютной погрешности измерений расстояний, мм;
$S_{0 j} \quad$ - эталонное (действительное) значение ј-й линии, мм;
S_{j} - измеренное значение ј-й линии, мм;

Полученное значение $\Delta_{l j}$ не должно превышать значений абсолютной погрешности и удвоенных значений средней квадратической погрешности, указанных в описании типа.
8.4. Определение абсолютной и средней квадратической погрешностей измерений расстояний в режиме «Кинематика в реальном времени (RTK)"
Абсолютная погрешность измерений расстояний в режиме «Кинематика в реальном времени (RTK)" определяется не менее чем 10 -и кратным измерением линии линейного базиса, действительная длина которой расположена в диапазоне $(0,1-3,0)$ км.

Установить образцы аппаратуры над центрами пунктов эталонного базиса, и привести спутниковые антенны образцов к горизонтальной плоскости. Измерить высоту установки аппаратуры над центрами пунктов с помощью рулетки.
Включить аппаратуру и настроить её на сбор данных (измерений) в соответствующем режиме измерений согласно требованиям руководства по эксплуатации.
Убедиться в нормальном ее функционировании и отсутствии помех приему сигналов со спутников. При наличии помех устранить их.
Провести одновременные измерения на образцах аппаратуры при условиях, указанных в таблице 4. Выключить аппаратуру согласно требованиям руководства по эксплуатации.

Абсолютная погрешность измерений расстояний в режиме «Кинематика в реальном времени (RTK)» вычисляется по формуле:

$$
\Delta_{2 j}=S_{j}-S_{0 j}, \text { где }
$$

$\Delta_{2 j}$ - значение абсолютной погрешности измерений расстояний, мм;
$S_{0 j}$ - эталонное (действительное) значение ј-й линии, мм;
$S_{j} \quad$ - измеренное значение ј-й линии, мм;
За окончательный результат принять наибольшее из полученных значений $\Delta_{2 j}$.

Средняя квадратическая погрешность измерений расстояний в режиме «Кинематика в реальном времени (RTK)" определяется по формуле:

$$
m_{2 j}=\sqrt{\frac{\sum\left(S_{j}-S_{0 j}\right)^{2}}{n}}, 2 \partial e
$$

$m_{2 j}$ - значение средней квадратической погрешности измерений расстояний, мм;
$S_{0,}$ - эталонное (действительное) значение ј-й линии, мм;
S_{j} - измеренное значение ј-й линии, мм;
$n \quad$ - количество измерений j -й линии.
Полученное значение $\Delta_{2 j}$ не должно превышать значений абсолютной погрешности, указанных в описании типа.
Полученное значение $m_{2 j}$ не должно превышать удвоенных значений средней квадратической погрешности, указанных в описании типа.
8.5. Определение абсолютной и средней квадратической погрешностей измерений расстояний в режиме «Дифференциальные кодовые измерения (DGPS)"
Абсолютная и средняя квадратическая погрешности измерений расстояний в режиме «Дифференциальные кодовые измерения (DGPS)» определяется не менее чем 10 -и кратным измерением линии линейного базиса, действительная длина которой расположена в диапазоне ($0,1-3,0$) км.

Установить образцы аппаратуры над центрами пунктов эталонного базиса, и привести спутниковые антенны образцов к горизонтальной плоскости. Измерить высоту установки аппаратуры над центрами пунктов с помощью рулетки.
Включить аппаратуру и настроить её на сбор данных (измерений) в режиме «Дифференциальные кодовые измерения (DGPS)» согласно требованиям руководства по эксплуатации.
Убедиться в нормальном ее функционировании и отсутствии помех приему сигналов со спутников. При наличии помех устранить их.
Провести одновременные измерения на образцах аппаратуры при условиях, указанных в таблице 4 Выключить аппаратуру, согласно требованиям руководства по эксплуатации
Выполнить обработку наблюдений по штатному ПО к аппаратуре.
Абсолютная погрешность измерений расстояний в режиме «Дифференциальные кодовые измерения (DGPS)» вычисляется по формуле:

$$
\Delta_{3 j}=S_{j}-S_{0 j} \text {, где }
$$

Δ_{3} - значение абсолютной погрешности измерений расстояний, мм;

- эталонное (действительное) значение j-й линии, мм;
$S_{j} \quad$ - измеренное значение ј-й линии, мм;
За окончательный результат принять наибольшее из полученных значений $\Delta_{3 j}$.
Средняя квадратическая погрешность измерений расстояний в режиме «Дифференциальные кодовые измерения (DGPS)» вычисляется по формуле:

$$
m_{3 j}=\sqrt{\frac{\sum\left(S_{j}-S_{0 j}\right)^{2}}{n}}, z \partial e
$$

$m_{3 j}$ - значение средней квадратической погрешности измерений расстояний, мм;
$S_{0,}$ - эталонное (действительное) значение ј-й линии, мм;
$S_{j} \quad$ - измеренное значение ј-й линии, мм;
n - количество измерений j -й линии.

Полученное значение $\Delta_{3 /}$ не должно превышать значений абсолютной погрешности, указанных в описании типа.
Полученное значение $m_{3 j}$ не должно превышать удвоенных значений средней квадратической погрешности, указанных в описании типа.

Таблица 4

Режим измерений	Кол-во спутников, шт	Время измерений, мин	Интервал между эпохами, с.
Статика	≥ 6	30*60	1
Быстрая статика		$5 \div 15$	1
Кинематика в реальном времени (RTK)		0,05 $\div 0,20$	1
Дифференциальные кодовые измерения (DGPS)»			

* - Поверка проводится при устойчивом закреплении аппаратуры над пунктами, открытом небосводе, отсутствии электромагнитных помех и многолучевого распространения сигналов спутников, а также при хорошей конфигурации спутниковых группировок.

9. Оформление результатов поверки

9.1. Результаты поверки оформляются протоколом, составленным в виде сводной таблицы результатов поверки по каждому пункту раздела 8 настоящей методики поверки с указанием числовых значений результатов измерений и их оценки по сравнению с допускаемыми значениями. Рекомендуемый образец протокола поверки приведен в Приложении.
9.2. При положительных результатах поверки аппаратура признается годной к применению, и на неё выдается свидетельство о поверке установленной формы с указанием фактических результатов определения метрологических характеристик. Знак поверки наносится на свидетельство о поверке в виде наклейки, и (или) оттиска поверительного клейма.
9.3. При отрицательных результатах поверки аппаратура признается непригодной к применению, и на неё выдается извещение о непригодности установленной формы с указанием основных причин.

ПРОТОКОЛ №

Дата и время проведения поверки:
Условия проведения поверки:

Внешний осмотр:

Требования	Результаты поверки
отсутствие коррозии, механических повреждений и дру- гих дефектов, влияющих на эксплуатационные и метро- логические характеристики аппаратуры	
наличие маркировки и комплектности согласно требова- ниям эксплуатационной документации на аппаратуру	

Опробование:

Требования	Результаты поверки
отсутствие качки и смещений неподвижно соединенных деталей и элементов аппаратуры	
правильность взаимодействия с комплектом принадлеж- ностей	
работоспособность всех функциональных режимов	
наименование ПО, номер его версии	

Результаты поверки в режиме «Статика»:
Результаты поверки в режиме «Статика»:

	\ldots	\ldots	Заявляемое тре-	Заявляемое требо- вание vлвпенной

Эталонн ние баз	езачеиса, мм	Результат измерений, мм		І Іогрешность измерений, мм		бование абсолютной погрешности, не более, мм		средней квадратической погрешности, не более, мм	
в плане	по высоте	в плане	$\begin{gathered} \text { по } \\ \text { высоте } \\ \hline \end{gathered}$	в плане	$\begin{gathered} \text { по } \\ \text { высоте } \end{gathered}$	в плане	$\begin{gathered} \text { по } \\ \text { высоте } \end{gathered}$	в плане	$\begin{gathered} \text { по } \\ \text { высоте } \end{gathered}$

Результаты поверки в режиме «Быстрая статика»:									
Эталон чение ба	ое зна- иса, мм	Результат измерений, мм		Погрешность измерений, мм		Заявляемое требование абсолютной погрешности, не более, мм		Заявляемое требование удвоенной средней квадратической погрешности, не более, мм	
в плане	$\begin{gathered} \text { по } \\ \text { высоте } \end{gathered}$	в плане	по высоте						

Результаты поверки в режиме «Кинематика в реальном времени»:

Эталонное значение базиса, мм	Результат измере- ний, мм	Погрешность измере- ний, мм	Заявляемое требование аб- солютной погрешности, не

						более, мм	
в плане	$\begin{gathered} \text { по } \\ \text { высоте } \\ \hline \end{gathered}$	в плане	$\begin{gathered} \text { по } \\ \text { высоте } \\ \hline \end{gathered}$	в плане	ПО высоте	в плане	по высоте

Средняя квадратическая погрешность измерений, в плане, мм - ...
Заявляемое требование удвоенной средней квадратической погрешности, в плане, мм - ...
Средняя квадратическая погрешность измерений, по высоте, мм - ...
Заявляемое требование удвоенной средней квадратической погрешности, по высоте, мм $-\ldots$
Результаты испытаний в режиме «Дифференциальные кодовые измерения (DGPS)»:

Эталонное значение базиса, мм		Результат измерений, мм		Погрешность измерений, мм		Заявляемое требование абсолютной погрешности, не более, мм	
в плане	по высоте	в плане	$\begin{gathered} \text { по } \\ \text { высоте } \\ \hline \end{gathered}$	в плане	$\begin{gathered} \text { по } \\ \text { высоте } \end{gathered}$	в плане	$\begin{gathered} \text { по } \\ \text { высоте } \\ \hline \end{gathered}$

[^0]
[^0]: Средняя квадратическая погрешность измерений, в плане, мм - ...
 Заявляемое требование удвоенной средней квадратической погрешности, в плане, мм - ...
 Средняя квадратическая погрешность измерений, по высоте, мм - ...
 Заявляемое требование удвоенной средней квадратической погрешности, по высоте, мм - ...

