

ООО Центр Метрологии «СТП»

Регистрационный № RA.RU.311229 выдан 30.07.2015 г.

«УТВЕРЖДАЮ»

Технический директор ООО Центр Метрологии «СТП» И.А. Яценко

2015

2015 г.

Государственная система обеспечения единства измерений

Комплексы измерительно-вычислительные «ОЗНА-ИВК»

МЕТОДИКА ПОВЕРКИ

МП 1612/1-311229-2015

1 p. 64582 - 16

СОДЕРЖАНИЕ

1 Введение	3
2 Операции поверки	3
3 Средства поверки	3
4 Требования техники безопасности и требования к квалификации поверителей	4
5 Условия поверки	4
6 Подготовка к поверке	5
7 Проведение поверки	5
8 Оформление результатов поверки	10
Приложение А	12

1 ВВЕДЕНИЕ

- 1.1 Настоящая методика поверки распространяется на комплексы измерительновычислительные «ОЗНА-ИВК» (далее ИВК), изготовленные ЗАО «ОЗНА Измерительные системы», г. Октябрьский, и устанавливает методику первичной поверки до ввода в эксплуатацию и после ремонта, а также методику периодической поверки в процессе эксплуатации.
- 1.2 ИВК предназначены для автоматизированного измерения массового расхода (массы) свободного нефтяного газа (далее газ) и объемного расхода (объема) газа, приведенного к стандартным условиям по ГОСТ 2939–63.
- 1.3 ИВК состоят из измерительных каналов (далее ИК), в которые входят следующие средства измерений (далее СИ):
- счетчики-расходомеры массовые Micro Motion (далее расходомеры Micro Motion) (Госреестр № 45115-10 или № 45115-16);
- преобразователи (датчики) давления измерительные ЕJ* (далее датчики ЕJ*)
 (Госреестр № 59868-15);
- термопреобразователи сопротивления Rosemount 0065 (далее Rosemount 0065) (Госреестр № 53211-13);
- преобразователи измерительные Rosemount 644, 3144P (далее Rosemount 644, 3144P) (Госреестр № 56381-14);
- комплексы измерительно-вычислительные расхода и количества жидкостей и газов «RISO» (далее вычислитель «RISO») (Госреестр № 47986-11).
- 1.4 Принцип действия ИВК основан на непрерывном измерении массового расхода (массы) газа, давления, температуры и вычислении по измеренным параметрам, а также введенному в вычислитель «RISO» значению плотности газа при стандартных условиях, объемного расхода (объема) газа, приведенного к стандартным условиям по ГОСТ 2939-63.
- 1.5 Монтаж и наладка ИВК осуществляются непосредственно на объекте эксплуатации в соответствии с эксплуатационными документами.
- 1.6 Интервал между поверками первичных измерительных преобразователей (СИ), входящих в состав ИВК в соответствии с описаниями типа на данные СИ.
 - 1.7 Интервал между поверками ИВК 2 года.

2 ОПЕРАЦИИ ПОВЕРКИ

При проведении поверки должны быть выполнены операции, приведенные в таблице 2.1.

Таблица 2.1 – Операции поверки

№ п/п	Наименование операции	Номер пункта методики поверки
1	Проверка технической документации	7.1
2	Внешний осмотр	7.2
3	Опробование	7.3
4	Определение метрологических характеристик	7.4
5	Оформление результатов поверки	8

3 СРЕДСТВА ПОВЕРКИ

3.1 При проведении поверки ИВК применяют эталоны и СИ, приведенные в таблице 3.1.

Таблица 3.1 – Основные эталоны и СИ

Номер пункта методики	Наименование и тип основного и вспомогательного средства поверки и метрологические и основные технические характеристики средства поверки					
5	Барометр-анероид M-67 с пределами измерений от 610 до 790 мм рт.ст., погрешность измерений ± 0,8 мм рт.ст., по ТУ 2504-1797-75.					
5	Психрометр аспирационный М34, пределы измерений влажности от 10 % до 100 %, погрешность измерений ± 5 %.					
5	Термометры лабораторные стеклянные ТЛС-4, диапазоны измерений от 0 °C до 55 °C по ГОСТ 28498-90. Цена деления шкалы 0,1°C.					
7.4	Калибратор многофункциональный MC5-R-IS (далее – калибратор): диапа:					

- 3.2 Допускается использование других эталонов и СИ по своим характеристикам не уступающим, указанным в таблице 3.1.
- 3.3 Все применяемые СИ должны иметь действующие поверительные клейма или свидетельства о поверке.

4 ТРЕБОВАНИЯ К ТЕХНИКЕ БЕЗОПАСНОСТИ И ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

- 4.1 При проведении поверки должны соблюдаться следующие требования:
- корпуса применяемых СИ должны быть заземлены в соответствии с их эксплуатационной документацией;
- ко всем используемым СИ должен быть обеспечен свободный доступ для заземления, настройки и измерений;
- работы по соединению вспомогательных устройств должны выполняться до подключения к сети питания;
- обеспечивающие безопасность труда, производственную санитарию и охрану окружающей среды;
- предусмотренные «Правилами технической эксплуатации электроустановок потребителей» и эксплуатационной документацией оборудования, его компонентов и применяемых средств поверки.
 - 4.2 К работе по поверке должны допускаться лица:
 - достигшие 18-летнего возраста;
- прошедшие специальную подготовку и имеющие удостоверения на право проведения поверки;
 - прошедшие инструктаж по технике безопасности в установленном порядке;
- изучившие эксплуатационную документацию на ИВК, СИ, входящие в состав ИВК, и средства поверки.

5 УСЛОВИЯ ПОВЕРКИ

При проведении поверки должны соблюдаться следующие условия:

– температура окружающего воздуха, °С (20±5)

- относительная влажность, %от 30 до 80

– атмосферное давление, кПа от 84 до 106

6 ПОДГОТОВКА К ПОВЕРКЕ

Перед проведением поверки выполняют следующие подготовительные операции:

- проверяют заземление СИ, работающих под напряжением;
- эталонные СИ и вычислитель «RISO» ИВК выдерживают при температуре указанной в разделе 5 не менее 3-х часов, если время их выдержки не указано в инструкции по эксплуатации;
- эталонные СИ и вычислитель «RISO» ИВК устанавливают в рабочее положение с соблюдением указаний эксплуатационной документации;
- осуществляют соединение и подготовку к проведению измерений эталонных СИ и вычислителя «RISO» ИВК в соответствии с требованиями эксплуатационной документации.

7 ПРОВЕДЕНИЕ ПОВЕРКИ

7.1 Проверка технической документации

- 7.1.1 При проведении проверки технической документации проверяют:
- наличие руководства по эксплуатации на ИВК;
- наличие паспорта на ИВК;
- наличие свидетельства о предыдущей поверке ИВК (при периодической поверке);
- наличие паспортов СИ, входящих в состав ИВК.
- 7.1.2 Результаты проверки считают положительными при наличии всей технической документации по п. 7.1.1.

7.2 Внешний осмотр

- 7.2.1 При проведении внешнего осмотра ИВК контролируют выполнение требований технической документации к монтажу СИ, измерительно-вычислительных и связующих компонентов ИВК.
- 7.2.2 При проведении внешнего осмотра ИВК устанавливают состав и комплектность ИВК. Проверку выполняют на основании сведений, содержащихся в паспорте на ИВК. При этом контролируют соответствие типа СИ, указанного в паспортах на СИ, записям в паспорте на ИВК.
- 7.2.3 Результаты проверки считают положительными, если монтаж СИ, измерительновычислительных и связующих компонентов ИВК, внешний вид и комплектность ИВК соответствуют требованиям технической документации.

7.3 Опробование

7.3.1 Подтверждение соответствия программного обеспечения ИВК

- 7.3.1.1 Подлинность программного обеспечения (далее ПО) ИВК проверяют сравнением идентификационных данных ПО с соответствующими идентификационными данными, зафиксированными при испытаниях в целях утверждения типа и отраженными в описании типа ИВК.
- 7.3.1.2 Проверку идентификационных данных ИВК проводят в следующей последовательности:
 - на информационном дисплее ИВК выбирают пункт меню «Настройки»;
 - выбирают вкладку «Система»;
- полученные идентификационные данные сравнивают с исходными, которые представлены в таблице 7.1 и заносят в протокол.

Таблица 7.1 – Идентификационные данные ПО ИВК

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	RISO
Номер версии (идентификационный номер) ПО	1.0
Цифровой идентификатор ПО	B5972274
Алгоритм вычисления цифрового идентификатора ПО	CRC32

- 7.3.1.3 Проверяют возможность несанкционированного доступа к ПО ИВК и наличие авторизации (введение логина и пароля), возможность обхода авторизации, проверка реакции ПО ИВК на неоднократный ввод неправильного логина и (или) пароля (аутентификация).
- 7.3.1.4 Результаты опробования считают положительными, если идентификационные данные ПО ИВК совпадают с идентификационными данными, которые приведены в таблице 7.1, а также исключается возможность несанкционированного доступа к ПО ИВК и обеспечивается аутентификация.

7.3.2 Проверка работоспособности ИВК

- 7.3.2.1 Приводят ИВК в рабочее состояние в соответствии с технической документацией предприятия-изготовителя. Проверяют прохождение сигналов калибратора, имитирующих измерительные сигналы. Проверяют на информационном дисплее ИВК показания по регистрируемым в соответствии с конфигурацией ИВК параметрам технологического процесса.
- 7.3.2.2 Результаты опробования считаются положительными, если при увеличении/уменьшении значения входного сигнала соответствующим образом изменяются значения измеряемой величины на информационном дисплее ИВК.

Примечание — Допускается проводить проверку работоспособности одновременно с определением метрологических характеристик по п. 7.4 данной методики поверки.

7.4 Определение метрологических характеристик

При определении метрологических характеристик должны быть выполнены операции, приведенные в таблице 7.2.

Таблица 7.2 - Операции определения метрологических характеристик ИВК

№ п/п	Наименование операции	Ссылка на пункт методики испы- таний
1	Определение метрологических характеристик первичных СИ, входящих в состав ИВК	7.4.1
2	Определение основной приведенной погрешности ИВК при преобразовании входных аналоговых сигналов силы постоянного тока (от 4 до 20 мА)	7.4.2
3	Определение основной приведенной погрешности измерительного канала давления ИВК	7.4.3
4	Определение основной приведенной погрешности измерительного канала температуры ИВК	7.4.4
5	Определение основной абсолютной погрешности ИВК при преобразовании входных импульсных сигналов	7.4.5
6	Определение основной относительной погрешности измерительного канала массы (массового расхода) ИВК	7.4.6
7	Определение относительной погрешности вычисления объемного расхода (объема) газа, приведенного к стандартным условиям	7.4.7
8	Определение основной относительной погрешности ИВК при определении объемного расхода (объема) газа, приведенного к стандартным условиям ¹	7.4.8
	1) Без учета погрешности определения плотности газа при стандартных условиях.	

7.4.1 Определение метрологических характеристик СИ, входящих в состав ИВК.

7.4.1.1 Определение метрологических характеристик СИ, входящих в состав ИВК, проводят в соответствии с нормативными документами на поверку данных СИ (проводится в случае отсутствия действующих свидетельств о поверке СИ) приведенными в таблице 7.3.

Таблица 7.3 – Нормативные документы

Габлица 7.3 – Нормативные документы						
Наименование СИ	Нормативные документы					
Счетчики-расходомеры массовые	МИ 3272-2010 «Государственная система					
Micro Motion (Γοcpeecτp № 45115-10)	обеспечения единства измерений. Счетчики-					
	расходомеры массовые. Методика поверки на месте					
	эксплуатации компакт-прувером в комплекте с					
	турбинным преобразователем расхода и поточным					
	преобразователем плотности»;					
	«Рекомендация. Государственная система					
	обеспечения единства измерений. Счетчики-					
	расходомеры массовые Micro Motion. Методика					
	поверки», утвержденная ВНИИМС 25.07.2010 г.					
Счетчики-расходомеры массовые	МП 45115-16 «Государственная система					
Micro Motion (Γοсреестр № 45115-16)	обеспечения единства измерений. Счетчики-					
	расходомеры массовые Micro Motion. Методика					
	поверки», утвержденная ФГУП «ВНИИМС»					
	27 октября 2015 г.;					
	МИ 3272-2010 «Государственная система					
	обеспечения единства измерений. Счетчики-					
	расходомеры массовые. Методика поверки на месте					
	эксплуатации компакт-прувером в комплекте с					
	турбинным преобразователем расхода и поточным					
	преобразователем плотности»;					
	МИ 3151-2008 «Государственная система					
	обеспечения единства измерений. Преобразователи					
	массового расхода. Методика поверки на месте					
	эксплуатации трубопоршневой поверочной					
	установкой в комплекте с поточным					
	преобразователем плотности»					
Преобразователи (датчики) давления	МП 59868-15 «Преобразователи (датчики) давления					
измерительные EJ*	измерительные EJ*. Методика поверки», утвержден					
	ФГУП «ВНИИМС» 14 апреля 2014 г.					
Термопреобразователи сопротивления	ГОСТ 8.461-2009 «Государственная система					
Rosemount 0065	обеспечения единства измерений.					
	Термопреобразователи сопротивления из платины,					
	меди и никеля. Методика поверки»					
Преобразователи измерительные	12.5314.000.00 МП «Преобразователи					
Rosemount 644, 3144P	измерительные Rosemount 644, Rosemount 3144P.					
	Методика поверки», утвержден ГЦИ СИ ФБУ					
	«Челябинский ЦСМ» в декабре 2013 г.					

- 7.4.1.2 Результаты поверки считаются положительными, если на СИ, входящие в состав ИВК, есть действующие свидетельства о поверке.
- 7.4.2 Определение основной приведенной погрешности ИВК при преобразовании входных аналоговых сигналов силы постоянного тока (от 4 до 20 мА).
- 7.4.2.1 Отключают первичный измерительный преобразователь (СИ) измерительного канала и к соответствующему каналу подключают калибратор, установленный в режим имитации сигналов силы постоянного тока (от 4 до 20 мА), в соответствии с инструкцией по эксплуатации.
- 7.4.2.2 С помощью калибратора устанавливают электрический сигнал силы постоянного тока. В качестве реперных точек принимаются точки соответствующие 1 %, 25 %, 50 %, 75 % и 99 % диапазона входного аналогового сигнала (силы постоянного тока от 4 до 20 мА).
 - 7.4.2.3 С информационного дисплея ИВК считывают значение входного сигнала и в

каждой реперной точке вычисляют приведенную погрешность измерений, ү, %, по формуле

$$\gamma_{\rm I} = \frac{I_{\rm M3M} - I_{\rm 3T}}{I_{\rm max} - I_{\rm min}} \cdot 100\%, \tag{1}$$

где I_{xx} – показание калибратора в *i*-ой реперной точке, мА;

I_{max}, I_{min} — максимальное и минимальное значения границы диапазона входного аналогового сигнала силы постоянного тока, мА;

 $I_{_{\rm изм}}$ — значение тока, соответствующее показанию измеряемого параметра ИВК в *i*-ой реперной точке, мА, вычисляемое по формуле (2) (при линейной функции преобразования)

$$I_{_{\text{M3M}}} = \frac{I_{_{\text{max}}} - I_{_{\text{min}}}}{X_{_{\text{max}}} - X_{_{\text{min}}}} \cdot (X_{_{\text{M3M}}} - X_{_{\text{min}}}) + I_{_{\text{min}}}$$
(2)

где X_{max} — максимальное значение измеряемого параметра, соответствующее максимальному значению границы диапазона входного аналогового сигнала силы постоянного тока (от 4 до 20 мА);

X_{min} – минимальное значение измеряемого параметра, соответствующее минимальному значению границы диапазона входного аналогового сигнала силы постоянного тока (от 4 до 20 мА);

 $X_{_{uзм}}$ — значение измеряемого параметра, соответствующее задаваемому входному аналоговому сигналу силы постоянного тока (от 4 до 20 мА). Считывают с информационного дисплея ИВК.

7.4.2.4 Результаты поверки считаются положительными, если основная приведенная погрешность ИВК при преобразовании входных аналоговых сигналов силы постоянного тока (от 4 до 20 мA) в каждой реперной точке не выходит за пределы ± 0.1 %.

7.4.3 Определение основной приведенной погрешности измерительного канала давления ИВК.

7.4.3.1 После проведения каждой операции по п.7.4.2.1 — 7.4.2.3 настоящей методики поверки в каждой реперной точке вычисляют основную приведенную погрешность измерительного канала давления ИВК, $\gamma_{\text{ИК(p)}}$, %, по формуле

$$\gamma_{\text{MK}(p)} = \pm \sqrt{\gamma_{\text{mr}}^2 + \gamma_{\text{I}}^2} \tag{3}$$

где $\gamma_{\Pi\Pi}$ – пределы допускаемой основной приведенной погрешности измерения давления датчика EJ*, %;

основная приведенная погрешность ИВК при преобразовании входных аналоговых сигналов силы постоянного тока (от 4 до 20 мА), определенная по формуле (1), %.

7.4.3.2 Результаты поверки считаются положительными, если основная приведенная погрешность измерительного канала давления ИВК не выходит за пределы ± 0.25 %.

7.4.4 Определение основной приведенной погрешности измерительного канала температуры ИВК.

7.4.4.1 После проведения каждой операции по п.7.4.2.1 — 7.4.2.3 настоящей методики поверки в каждой реперной точке вычисляют основную приведенную погрешность измерительного канала температуры ИВК, $\gamma_{NK(T)}$, %, по формуле

$$\gamma_{MK(T)} = \pm \sqrt{\left(\frac{\Delta t_1}{t_{e1} - t_{n1}} \cdot 100\right)^2 + \left(\frac{\Delta t_2}{t_{e1} - t_{n1}} \cdot 100 + \gamma_{\Pi\Pi}\right)^2 + \gamma_I^2}$$
 (4)

где t_{n1}, t_{e1} — нижний и верхний пределы измерений (калибровки) СИ температуры, °С;

- Δt_1 максимальный предел допускаемого отклонения от HCX Rosemount 0065, °C;
- ∆t₂ пределы допускаемой основной абсолютной погрешности измерения и преобразования в температуру сигналов от термопреобразователей сопротивления Rosemount 644, 3144P, °C;
- $\gamma_{\Pi\Pi}$ основная приведенная погрешность преобразования цифрового сигнала в унифицированный электрический выходной сигнал постоянного тока, Rosemount 644, 3144P, %;
- γ_I основная приведенная погрешность ИВК при преобразовании входных аналоговых сигналов силы постоянного тока (от 4 до 20 мА), определенная по формуле (1), %.
- 7.4.4.2 Результаты поверки считаются положительными, если основная приведенная погрешность измерительного канала температуры ИВК не выходит за пределы $\pm 0,45$ %.
- 7.4.5 Определение основной абсолютной погрешности ИВК при преобразовании входных импульсных сигналов.
- 7.4.5.1 Отключают первичный измерительный преобразователь (СИ) и к соответствующему каналу подключают калибратор, установленный в режим генерации импульсов, в соответствии с инструкцией по эксплуатации.
- 7.4.5.2 С помощью калибратора фиксированное количество раз (не менее трех) подают импульсный сигнал (10000 импульсов), предусмотрев синхронизацию начала счета импульсов.
- 7.4.5.3 С информационного дисплея ИВК считывают значение входного сигнала и вычисляют абсолютную погрешность преобразования входных импульсных сигналов ИВК, Δ_n , имп., по формуле

$$\Delta_{n} = n_{\text{HSM}} - n_{\text{SAII}}, \tag{5}$$

где п.... – количество импульсов, подсчитанное ИВК, имп.;

 ${\bf n}_{_{{\bf 2}\!{\bf 2}\!{\bf J}}}$ — количество импульсов, заданное калибратором, имп.

- 7.4.5.4 Результаты поверки считаются положительными, если абсолютная погрешность ИВК при преобразовании входных импульсных сигналов не выходит за пределы ± 1 импульс на 10000 импульсов.
- 7.4.6 Определение основной относительной погрешности измерительного канала массы (массового расхода) ИВК.
- 7.4.6.1 После проведения каждой операции по п.7.4.5.1 7.4.5.3 настоящей методики поверки в каждой реперной точке вычисляют основную относительную погрешность измерительного канала массы (массового расхода) ИВК, $\delta_{\text{ИК(M)}}$, %, по формуле

$$\delta_{\text{MK(M)}} = \pm \sqrt{\delta_{\text{nn}}^2 + \left(\frac{\Delta_{\text{n}}}{n_{\text{M3M}}} \cdot 100\%\right)^2}$$
 (6)

где δ_{mn} — относительная погрешность измерений массы (массового расхода) газа расходомера Micro Motion, %.

- 7.4.6.2 Результаты поверки считаются положительными, если относительная погрешность измерительного канала массы (массового расхода) ИВК не выходит за пределы:
- $-\pm0.5$ % при применении в составе ИВК расходомера Micro Motion с относительной погрешностью измерений массы (массового расхода) газа не более ±0.5 %;
- $-\pm0.7$ % при применении в составе ИВК расходомера Micro Motion с относительной погрешностью измерений массы (массового расхода) газа не более ±0.7 %.

Определение относительной погрешности вычисления объемного расхода (объема) газа, приведенного к стандартным условиям.

- 7.4.6.3 В соответствии с инструкцией по эксплуатации приводят вычислитель «RISO» в режим установки значений постоянных параметров.
- 7.4.6.4 Задают значение плотности газа при стандартных условиях и не менее трех значений массы (массового расхода) газа, равномерно распределенных по всему диапазону измерений.
- 7.4.6.5 С информационного дисплея ИВК считывают вычисленное значение объемного расхода (объема) газа, приведенного к стандартным условиям, и вычисляют относительную погрешность вычисления объемного расхода (объема) газа, приведенного к стандартным условиям, $\delta_{\text{выц}}$, %, по формуле

$$\delta_{\text{BMY}} = \frac{Q_{\text{изм}} - Q_{\text{pacy}}}{Q_{\text{pacy}}} \cdot 100\% \tag{7}$$

где $Q_{_{\text{изм}}}$ — объемный расход газа, приведенный к стандартным условиям, по показаниям ИВК, м 3 /ч;

Q_{расч} – значение объемного расхода газа, приведенного к стандартным условиям, рассчитанное по алгоритму расчета, реализованного в вычислителе «RISO», м³/ч.

- 7.4.6.6 Результаты поверки считаются положительными, если относительная погрешность вычисления объемного расхода (объема) газа, приведенного к стандартным условиям, не выходит за пределы ± 0.01 %.
- 7.4.7 Определение основной относительной погрешности ИВК при определении объемного расхода (объема) газа, приведенного к стандартным условиям.
- 7.4.7.1 Пределы допускаемой основной относительной погрешности ИВК при определении объемного расхода (объема) газа, приведенного к стандартным условиям, $\delta_{\rm V}$, %, вычисляют по формуле

$$\delta_{\rm V} = \pm \sqrt{\delta_{\rm HK(M)}^2 + \delta_{\rm BM4}^2} \tag{8}$$

где $\delta_{\text{ИК(M)}}$ – пределы допускаемой основной относительной погрешности измерительного канала массы (массового расхода) ИВК, %;

 $\delta_{\text{выч}}$ — пределы допускаемой относительной погрешности вычисления объемного расхода (объема) газа, приведенного к стандартным условиям, %.

Примечание — пределы допускаемой основной относительной погрешности ИВК при определении объемного расхода (объема) газа, приведенного к стандартным условиям, без учета погрешности определения плотности газа при стандартных условиях.

- 7.4.7.2 Результаты поверки считаются положительными, если относительная погрешность ИВК при определении объемного расхода (объема) газа, приведенного к стандартным условиям, не выходит за пределы:
- $-\pm0.5$ % при применении в составе ИВК расходомера Micro Motion с относительной погрешностью измерений массы (массового расхода) газа не более ±0.5 %;
- $-\pm0.7$ % при применении в составе ИВК расходомера Micro Motion с относительной погрешностью измерений массы (массового расхода) газа не более ±0.7 %.

8 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

8.1 Результаты поверки ИВК оформляют протоколом с указанием даты и места проведения поверки, условий поверки, применяемых эталонов, результатов расчета погрешности. Форма протокола приведена в приложении А.

- 8.2 При положительных результатах поверки оформляют свидетельство о поверке ИВК в соответствии с приказом Минпромторга России от 2 июля 2015 г. №1815 «Об утверждении Порядка проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке».
- 8.3 Отрицательные результаты поверки ИВК оформляют в соответствии с приказом Минпромторга России от 2 июля 2015 г. №1815 «Об утверждении Порядка проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке». При этом выписывается извещение о непригодности к применению ИВК с указанием причин непригодности.

Приложение А

(рекомендуемое)

Форма протокола поверки

Дата:

Наименование поверяемого средства измерений:

Тип, модель:

Заводской номер:

Владелец:

Поверитель: (наименование и адрес организации)

Место проведения поверки:

Поверка проведена в соответствии с документом: (наименование документа)

Наименование эталонов и вспомогательных средств: (с указанием заводского номера и свидетельства о поверке)

Условия проведения поверки:

температура окружающего воздуха, °С атмосферное давление, кПа относительная влажность окружающего воздуха, %

Результаты поверки

- 1. Проверка технической документации: соответствует (не соответствует)
- 2. Внешний осмотр: соответствует (не соответствует) требованиям п. 7.2 методики поверки.
- 3. Опробование: соответствует (не соответствует) требованиям п. 7.3 методики поверки.
- 3.1 Подтверждение соответствия программного обеспечения.

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	
Номер версии (идентификационный номер) ПО	
Цифровой идентификатор ПО	
Алгоритм вычисления цифрового идентификатора ПО	

- 3.2 Проверка работоспособности: исправна (неисправна)
- 4. Определение метрологических характеристик.
- 4.1 Определение метрологических характеристик первичных СИ, входящих в состав ИВК.

№ п/п	Наименование средства измерений	Заводской	№ свидетельства о
J\2 11/11		номер	поверке

4.2 Определение основной приведенной погрешности ИВК при преобразовании входных аналоговых сигналов силы постоянного тока (от 4 до 20 мА).

№ канала	Эталонное значение, мА	Нижний предел диапазона измерений	Верхний предел диапазона измерений	Ед. изм	Показания ИВК, мА	Погрешность $\gamma_{_{\rm I}},\%$
	4,2 8					

№ канала	Эталонное значение, мА	Нижний предел диапазона измерений	Верхний предел диапазона измерений	Ед. изм	Показания ИВК, мА	Погрешность $\gamma_{_{\rm I}}, \%$
	12					
	16]				
	19,8					

4.3 Определение основной приведенной погрешности измерительных каналов давления и температуры ИВК.

№ канала	Погрешность у, %	Погрешность $\gamma_{HK(p)}$, %	Погрешность $\gamma_{\mathit{UK}(T)}$, %

4.4 Определение основной абсолютной погрешности ИВК при преобразовании входных импульсных сигналов и основной относительной погрешности измерительного канала массы (массового расхода) ИВК.

№ канала	значение, подсчитан		Погрешность Δ_n , имп.	Погрешность $\delta_{\text{ик}(M)}$,
	10000			
	10000			
	10000			

4.5 Определение относительной погрешности вычисления объемного расхода (объема) газа, приведенного к стандартным условиям и основной относительной погрешности ИВК при определении объемного расхода (объема) газа, приведенного к стандартным условиям.

Значение массового расхода, кг/ч	Значение плотности, кг/ м ³	Значение Q _{расч} , м ³ /ч	Показание ИВК Q _{изм} , м ³ /ч	Погрешность δ _{выч} , %	Погрешность $\delta_{\rm v}$,

Поверитель		/	/
МП	подпись	расшифровка подписи	•