СОГЛАСОВАНО

УТВЕРЖДАЮ

Президент

Кооператива техники связи

ELEKTRONIKA

Аттила Лукач

ИП

09 2016 г.

М.п.

Генеральный директор ФГУП ЦНИИС

Мосты для определения места повреждения кабеля EFL 10 методика поверки

Настоящая методика устанавливает методы и средства первичной и периодической поверки мостов для определения места повреждения кабеля EFL 10, далее приборов, выпускаемых кооперативом техники связи ELEKTRONIKA, Венгрия.

Методика разработана в соответствии с рекомендацией РМГ 51-2002 ГСИ Документы на методики поверки средств измерений. Основные положения.

Поверку приборов осуществляют один раз в два года метрологические службы организаций, которые аккредитованы в системе Росаккредитации на данные виды работ.

Требования настоящей методики поверки обязательны для метрологических служб юридических лиц независимо от форм собственности.

1 ОПЕРАЦИИ ПОВЕРКИ

При проведении поверки должны быть выполнены следующие операции поверки, указанные в табл. 1.1.

No		Пункт	Проведение операции при	
Π/Π	Наименование операции	методики	Первичной	Периодической
			поверке	поверке
1	Внешний осмотр	7.1	Да	Да
2	Опробование	7.2	Да	Да
3	Определение погрешности измерения	7.3	Да	Да
	напряжения переменного и постоянного тока			
4	Определение погрешности измерения	7.4	Да	Да
	электрического сопротивления шлейфа			
5	Определение погрешности измерения	7.5	Да	Да
	электрического сопротивления изоляции			
6	Определение погрешности измерения	7.6	Да	Да
	электрической емкости			

2 СРЕДСТВА ПОВЕРКИ

При проведении поверки EFL 10 должны применяться средства измерений (СИ), указанные в Таблице 2.1.

Таблица 2.1

Номер пункта методики поверки	Наименование и тип средства поверки, метрологические характеристики	
7.3	Калибратор-вольтметр универсальный В1-28	
7.4, 7.5	Магазин сопротивлений P4831 0,01 Ом - 110 кОм, класс 0,1 Магазин сопротивлений P40103 0,1 МОм – 1 ГОм, класс 0,1	
7.6	Магазин емкостей P5025 100 пФ – 100 мкФ, класс 0,1	

Примечания

¹ Вместо указанных эталонных средств измерений разрешается применять другие средства, обеспечивающие измерение соответствующих параметров с требуемой точностью.

² Эталонные средства измерений должны быть исправны, поверены и иметь свидетельства о поверке.

3 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ

- 3.1 К проведению поверки допускаются лица:
- прошедшие обучение на поверителей электрических и магнитных величин;
- изучившие эксплуатационную документацию приборов и рабочих эталонов;
- имеющие квалификационную группу по технике безопасности не ниже III.

4 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

4.1 При поверке должны выполняться меры безопасности, указанные в руководствах и инструкциях по эксплуатации поверяемого прибора и средств поверки. Убедиться, что все провода, щупы и зажимы находятся в рабочем состоянии, их изоляция не повреждена.

5 УСЛОВИЯ ПОВЕРКИ

- 5.1 При проведении поверки должны соблюдаться следующие условия:
- температура окружающей среды (20+5)□С;
- относительная влажность воздуха (65+15) %;
- атмосферное давление (100+8) кПа.;
- напряжение сети питания (220+11) В;
- частота промышленной сети (50+0,5) Гц.

6 ПОДГОТОВКА К ПОВЕРКЕ

- 6.1 Перед проведением поверки следует проверить наличие эксплуатационной документации и срок действия свидетельств о поверке на средства поверки.
- 6.2 Включают средства поверки и прогревают их в течение времени, указанного в инструкции по эксплуатации. Подготавливают поверяемый прибор к работе в соответствии с руководством по эксплуатации. Аккумуляторная батарея поверяемого прибора должна быть полностью заряжена.

7 ПРОВЕДЕНИЕ ПОВЕРКИ

7.1 Внешний осмотр

При внешнем осмотре должно быть установлено соответствие прибора следующим требованиям:

- комплектность должна соответствовать требованиям формуляра;
- все надписи на приборе должны быть четкими и ясными;
- прибор не должен иметь механических повреждений на корпусе и присоединительных клеммах.

7.2 Опробование

- 7.2.1 Сначала выполняют подготовку прибора к работе в соответствии с руководством по эксплуатации. Проверяют возможность подключения к электросети, включения прибора. Включают прибор. Сначала появится вводный экран производителя ELEKTRONIKA. После этого появится экран, где будет показан процент заряда батареи или рекомендация о необходимости зарядки батареи. После проведения зарядки батареи проводят самокалибровку, нажав клавишу ST/SP. Она продолжается 60 с, и после ее окончания появляется ГЛАВНОЕ МЕНЮ.
- 7.2.2 Проверяют номер версии встроенного программного обеспечения (ПО), высвечиваемый в строке SW на странице СОСТОЯНИЕ, ВЕРСИЯ, переходя на нее из страницы ГЛАВНОЕ МЕНЮ. Номер версии должен быть не ниже 3.9.

7.2.3 Проверяют работоспособность. При работе, в основном, нужно следовать инструкциям, появляющимся на каждом экране во всех режимах измерений. В большинстве случаев, измерение, установка и редактирование выбирается с помощью оперативной системы, управляемой меню. Для выбора следует пользоваться клавишами вертикального курсора, нажимая затем ENTER.

Работоспособность проверяют при выполнении некоторых измерительных функций, пользуясь руководством по эксплуатации, а именно следующих: напряжения переменного и сопротивления.

При успешной проверке работоспособности приступают к определению метрологических характеристик.

7.3 Определение погрешности измерения напряжения переменного и постоянного тока

Погрешность измерения напряжения (постоянного и переменного) определяют в режиме НАПРЯЖЕНИЕ методом прямых измерений, пользуясь инструкциями, появляющимися на экране, с использованием в качестве рабочего эталона калибраторавольтметра универсального В1-28.

- 7.3.1 Для определения погрешности измерения напряжения постоянного тока на калибраторе-вольтметре B1-28 последовательно устанавливают значения постоянного напряжения $U_{=}$: 10; 50, 100 B. Прибор признают годным, если погрешность измерения для каждого значения $U_{=}$ (VDC)не превышает $\pm (0,01\cdot U_{\sim} + 0,1)$ B.
- 7.3.2 Для определения погрешности измерения напряжения переменного тока на калибраторе-вольтметре B1-28 устанавливают частоту напряжения переменного тока 30 Γ ц и затем последовательно устанавливают значения напряжения переменного тока: U₋: 10; 50, 100 В. Измеряют установленные значения, считывая результат U₋и. Повторяют измерения при частоте 100 и 300 Γ ц. Прибор признают годным, если погрешность измерения для каждого значения U₋ (ADC)не превышает \pm (0,01·U₋ +0,1) В.
 - 7.4 Определение погрешности измерения электрического сопротивления

Погрешность измерения электрического сопротивления по шлейфу определяют методом прямых измерений с помощью магазина сопротивлений.

Прибор устанавливают в режим СОПРОТИВЛЕНИЕ ШЛЕЙФА/2-ПРОВ. Между зажимами A и B подключают магазин сопротивлений и устанавливают последовательно несколько значений сопротивления в диапазоне от 100 Ом до 10 кОм и записывают показание для каждого установленного значения сопротивления RL=Ra+Rb.

Прибор признают годным, если погрешность измерения для каждого значения сопротивления RL, Ом, не превышает: ±(0,002 RL+0,1) Ом

7.5 Определение погрешности измерения сопротивления изоляции

Погрешность измерения сопротивления изоляции между жилами A и B, а также между каждой из жил относительно земли определяют в режиме СОПРОТИВЛЕНИЕ ИЗОЛЯЦИИ/2-ПРОВ. и СОПРОТИВЛЕНИЕ ИЗОЛЯЦИИ/2-ПРОВ.+ЗЕМЛЯ, подключая между выводами A и B, а затем между A и E и B и E магазины сопротивлений, обеспечивающие установку сопротивлений 0,1; 10; 100 и 300 МОм, 1 ГОм. Записывают показания Fab, Fa0 и Fb0.

Прибор признают годным, если погрешность измерения для каждого значения Riso (установленное на магазине сопротивление в МОм) не превышает соответственно для установленных значений Riso: ± 0.01 ; ± 0.2 ; $\pm 30 \pm 300$ МОм.

7.6 Определение погрешности измерения электрической емкости

Погрешность определяют в режиме ЕМКОСТЬ.

Сначала прибор устанавливают в режим 2-ПРОВ, подключив между зажимами A и B магазин емкостей. Устанавливают 3-5 значений емкости в диапазоне от 10 до 10000 нФ и считывают значение Cab.

Затем измеряют емкости жил относительно земли в режиме 2-ПРОВ + 3ЕМЛЯ, устанавливая на магазине несколько значений, в сумме составляющих значение от 10 до 10000 нФ. Считывают значения Ca0 и Cb0 и сравнивают их с установленными на магазинах.

Затем магазин емкостей подключают сначала между зажимами A и E, затем B и E. Проводят два измерения и считывают значения Ca0 и Cb0 по очереди, сравнивая их с установленными на магазине.

Прибор признают годным, если погрешность результата измерений Cab, Ca0 и Cb0 не превышает $\pm (0,005\text{C н}\Phi + 1\ \text{цифра})$.

8 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 8.1 Если анализатор по результатам поверки признан непригодным к применению, то «Свидетельство о поверке» аннулируется, выписывается «Извещение о непригодности к применению» установленной формы и ее эксплуатация запрещается.
- 8.3 Формы «Свидетельство о поверке» и «Извещение о непригодности к применению» оформляются в соответствии с документом "Порядок проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке", утвержденным Приказом Минпромторга России № 1815 от 02.07.2015 г. зарегистрированным в Минюсте России, регистрационный № 38822 от 04.09.2015 г.

Ведущий научный сотрудник ФГУП ЦНИИС

Helly -

Н.Ф. Мельникова