Mob. 19.03.08 35 macio The

ФЕДЕРАЛЬНОЕ АГЕНТСТВО

ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

Hab. 05.01.119

Mul 21.09.15

P

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОСТ Р 8.611_

2005

Государственная система обеспечения единства измерений

ПРЕОБРАЗОВАТЕЛИ ТЕРМОЭЛЕКТРИЧЕСКИЕ ПЛАТИНОРОДИЙ-ПЛАТИНОВЫЕ И ПЛАТИНОРОДИЙ-ПЛАТИНОРОДИЕВЫЕ ЭТАЛОННЫЕ 1, 2 и 3-го РАЗРЯДОВ

Методика поверки

Издание официальное

ФБУ «Тульский ЦСМ»

Москва
ИПК Издательство стандартов
2005

nouvelessa g dos

УГУЛЬСКИЙ ЦСМ»

ФБУ «Уульа жий ЦСМ»

Предисловие

Задачи, основные принципы и правила проведения работ по государственной стандартизации в Российской Федерации установлены ГОСТ Р 1.0—92 «Государственная система стандартизации Российской Федерации. Основные положения» и ГОСТ Р 1.2—92 «Государственная система стандартизации Российской Федерации. Порядок разработки государственных стандартов»

Сведения о стандарте

- 1 РАЗРАБОТАН Федеральным государственным унитарным предприятием Уральским научно-исследовательским институтом метрологии (ФГУП УНИИМ)
- 2 ВНЕСЕН Управлением метрологии и надзора Федерального агентства по техническому регулированию и метрологии
- 3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 15 февраля 2005 г. № 21-ст

4 ВВЕДЕН ВПЕРВЫЕ

Информация об изменениях к настоящему стандарту публикуется в указателе «Национальные стандарты», а текст изменений — в информационных указателях «Национальные стандарты». В случае пересмотра или отмены настоящего стандарта соответствующая информация будет опубликована в информационном указателе «Национальные стандарты»

Содержание

1 Область применения	1
2 Нормативные ссылки	1
3 Термины и определения	1
4 Операции поверки	2
5 Средства поверки	2
6 Требования безопасности и требования к квалификации поверителя	3
7 Условия поверки	4
8 Подготовка к поверке	4
9 Проведение поверки	4
0 Обработка результатов измерений	8
1 Оформление результатов поверки	10
Приложение A (справочное) Формы протоколов <mark>поверки термопреобразователей</mark>	11
Приложение Б (справочное) Таблицы для вычисления значений ТЭДС платинородий-платин термопреобразователей, градуированных в реперных точках цинка (419,527° алюминия (660,323°C) и меди (1084,62°C)	°C),
алюминия (660,323 С) и меди (1004,62 С)	
лиминография	∠0

к ГОСТ Р 8.611—2005 Государственная система обеспечения единства измерений. Преобразователи термоэлектрические платинородий-платиновые и платинородий-платинородиевые эталонные 1, 2 и 3-го разрядов. Методика поверки

В каком месте	Напечатано	Должно быть
Наименование	Государственная система	Государственная система
стандарта	обеспечения единства из- мерений, Преобразователи	обеспечения единства из- мерений. Преобразователи
	термоэлектрические пла-	термоэлектрические пла-
	тинородий-платиновые и	тинородий-платиновые
	платинородий-платино-	эталонные 1, 2 и 3-го раз-
	родиевые эталонные 1, 2	рядов, Методика поверки
	и 3-то разрядов. Методика поверки	
Наименование	and platinumrhodium/	converters of the first, the
стандарта на анг-	platinumrhodium conver-	second and the third grades
лийском языке	ters of the first, second and third grades	
Раздел 1	Настоящий стандарт распространяется на термо- электрические платино- родий-платиновые и пла- тинородий-платинороди- еные эталонные преобра- зователи 1, 2 и 3-го раз- рядов типа ППО	Настоящий стандарт распространяется на термо- электрические платино- родий-платиновые эта- лонные преобразователи 1, 2 и 3-го разрядов типа ППО

(ИУС № 9 2005 г.)

Государственная система обеспечения единства измерений

ПРЕОБРАЗОВАТЕЛИ ТЕРМОЭЛЕКТРИЧЕСКИЕ ПЛАТИНОРОДИЙ-ПЛАТИНОВЫЕ И ПЛАТИНОРОДИЙ-ПЛАТИНОРОДИЕВЫЕ ЭТАЛОННЫЕ 1, 2 и 3-го РАЗРЯДОВ

Методика поверки

State system for ensuring the uniformity of measurements. Standard thermoelectric platinumrhodium/platinum and platinumrhodium/platinumrhodium converters of the first, second and third grades. Verification procedure

Дата введения — 2005—07—01

1 Область применения

Настоящий стандарт распространяется на термоэлектрические платинородий-платиновые и платинородий-платинородиевые эталонные преобразователи 1, 2 и 3-го разрядов типа ППО (далее — термопреобразователи), предназначенные для передачи размера единицы температуры в диапазоне от 300 °C до 1200 °C по ГОСТ 8.558 и ГОСТ Р 52314, и устанавливает методику их первичной и периодической поверок.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ 8.338—2002 Государственная система обеспечения единства измерений. Преобразователи термоэлектрические. Методика поверки

ГОСТ 8.558—93 Государственная система обеспечения единства измерений. Государственная поверочная схема для средств измерений температуры

ГОСТ 10821—75 Проволока из платины и платинородиевых сплавов для термоэлектрических преобразователей. Технические условия

ГОСТ 18389—73 Проволока из платины и ее сплавов. Технические условия

ГОСТ 21007—75 Проволока из платины для термопреобразователей сопротивления. Технические условия

ГОСТ Р 52314—2005 Преобразователи термоэлектрические платинородий-платиновые и платинородий-платинородиевые эталонные 1, 2 и 3-го разрядов. Общие технические требования

П р и м е ч а н и е — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов по указателю «Национальные стандарты», составленному по состоянию на 1 января текущего года, и по соответствующим информационным указателям, опубликованным в текущем году. Если ссылочный документ заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться замененным (измененным) документом. Если ссылочный документ отменен без замены, то положение, в котором дана ссылка на него, применяют в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применены термины по [1], а также следующие термины с соответствующими определениями:

- 3.1 **нестабильность термопреобразователя**: Изменение первоначальной градуировочной характеристики термопреобразователя после отжига или в эксплуатации за межповерочный интервал.
- 3.2 **неоднородность термопреобразователя**: Расхождение значений термоэлектродвижущей силы (далее ТЭДС), возникающее между отдельными участками термоэлектродов термопреобразо-

вателя, имеющими неодинаковые физико-химические свойства по длине, при попадании их в неоднородное температурное поле.

3.3 показатель чистоты платинового термоэлектрода термопреобразователя: Отношение электрического сопротивления одного и того же участка платинового термоэлектрода термопреобразователя при температуре 100 °C к его электрическому сопротивлению при температуре 0 °C.

4 Операции поверки

4.1 При проведении поверки термопреобразователей выполняют операции, указанные в таблице 1. Знак «+» в таблице 1 указывает, что проведение операции обязательно, знак «—» — необязательно.

Таблица 1 — Операции поверки

Наименова ние оп ерации	Номер пункта настоящего	Проведение операции при поверке	
	стандарта	первичной	периодической
Внешний осмотр	9.1	+	+
Определение метрологических характеристик термопреобразователей:			
- нестабильности	9.2	+	+
- неоднородности	9.3	+	+
- показателя чистоты платинового термоэлектрода термопре- образователя	9.4	+	_
Определение градуировочной характеристики термопреобразо-			
вателя:			
- 1-го разряда	9.5	+	+
- 2-го или 3-го разряда	9.6	+	+

- 4.2 Межповерочный интервал должен быть не более:
- двух лет термопреобразователей 1-го разряда:
- одного года термопреобразователей 2-го и 3-го разрядов.

5 Средства поверки

- 5.1 При проведении поверки должны быть использованы следующие эталонные и рабочие средства измерений и вспомогательное оборудование:
- 5.1.1 Установки для реализации реперных точек металлов Международной температурной шкалы МТШ-90 [2], в которые входят:
- ампула реперной точки затвердевания цинка [419,527 °C (перепад температуры по длине ампулы реперной точки: 0,2 °C; среднее квадратическое отклонение (далее СКО) результата воспроизведения температуры затвердевания цинка: не более 2·10—3 °C)];
- ампула реперной точки затвердевания алюминия [660,323 °C (перепад температуры по длине ампулы реперной точки: 0,5 °C; СКО результата воспроизведения температуры затвердевания алюминия: не более 5⋅10^{—3} °C)];
- ампула реперной точки затвердевания меди [1084,62 °C (перепад температуры по длине ампулы реперной точки: 1,0 °C; СКО результата воспроизведения температуры затвердевания меди: не более $3\cdot10^{-2}$ °C)].
- 5.1.2 Рабочий эталон нулевого разряда (эталонный платинородий-платиновый термоэлектрический термометр) для определения неоднородности термопреобразователя 1-го разряда и для измерений температуры плавления реперных точек металлов [диапазон температур: от 600 °C до 1100 °C; СКО результата воспроизведения единицы температуры: ± (0,20...0,25) °C].
- 5.1.3 Термопреобразователь 1-го разряда для градуировки термопреобразователей 2-го разряда и определения неоднородности термопреобразователей 2-го и 3-го разрядов [диапазон температур: от 300 °C до 1100 °C; доверительная погрешность: ± (0,25...0,60) °C].
- 5.1.4 Термопреобразователь 2-го разряда для градуировки термопреобразователей 3-го разряда [диапазон температур: от 300 °C до 1200 °C; доверительная погрешность: ± (0,4...1,0) °C].

- 5.1.5 Термопреобразователь платинородий-платиновый рабочий для контроля температуры в печах [диапазон температур: от 300 °C до 1200 °C; предел допускаемой погрешности: \pm (1,5...6,0) °C].
- 5.1.6 Образец термоэлектродной платины (далее ОТП) марки Пл0 или Пл1 по ГОСТ 21007 диаметром 0,5 мм, длиной не менее 1000 мм (показатель чистоты платинового термоэлектрода W: не менее 1.3920).
- 5.1.7 Электроизмерительный прибор, обеспечивающий измерения напряжения в диапазоне от 0 до 100 мВ, с пределом допускаемой основной погрешности не более $5 \cdot 10^{-7}$ В и разрешающей способностью $1 \cdot 10^{-7}$ В.
- 5.1.8 Бестермоточный переключатель с контактной электродвижущей силой (далее ЭДС), не превышающей 0,05 мкВ (суммарная паразитная ЭДС всей измерительной цепи: не более 0,2 мкВ).
- 5.1.9 Две малоинерционные трубчатые печи сопротивления для отжига и градуировки типа МТП-2М [3] (далее печи) [рабочий диапазон температур: от 100 °C до 1200 °C, градиент температуры в средней части печи при температуре (1200 \pm 20) °C: не более 0,8 °C/см].

Печь № 1 используют для отжига термопреобразователей, печь № 2 — для их градуировки.

- 5.1.10 Устройство для дробления льда типа УДЛ-1 [4].
- 5.1.11 Сосуд Дьюара внутренним диаметром от 80 до 100 мм, высотой не менее 200 мм, вместимостью от 0.5 до 2 дм 3 .
- 5.1.12 Охранные трубы из прозрачного кварцевого стекла длиной (650 \pm 10) мм и наружным диаметром от 20 до 25 мм.
- 5.1.13 Охранные трубы из прозрачного кварцевого стекла длиной (650 \pm 10) мм и наружным диаметром от 40 до 45 мм.
- 5.1.14 Охранные тонкостенные пробирки из прозрачного кварцевого стекла длиной (500 ± 10) мм и наружным диаметром от 7 до 8 мм. Допускается применять пробирки из оксида алюминия.
- 5.1.15 Проволока диаметром 0,5 мм из платины или платинородиевого сплава любой марки по ГОСТ 18389 в отожженном состоянии в отрезках длиной не менее 60 мм для обвязки пучка термопреобразователей.
- 5.1.16 Проволока диаметром от 0,3 до 0,5 мм из платины марки ПлТ по ГОСТ 10821 или марки Пл по ГОСТ 18389 в отожженном состоянии в отрезках длиной не менее 30 мм для обвязки спаев термопреобразователей.
- 5.1.17 Стеклянные пробирки длиной (150 ± 10) мм и внутренним диаметром (6.5 ± 0.5) мм для термостатирования свободных концов термопреобразователей.
- 5.1.18 Медные нелуженые провода диаметром от 0,3 до 0,5 мм в изоляции (марка меди не хуже М1) для подключения термопреобразователей к электроизмерительному прибору.
- 5.1.19 Линейка металлическая измерительная (диапазон измерений: от 0 до 500 мм, цена деления: 1 мм).
- 5.1.20 Серийная установка УПСТ-2М [5], предназначенная для поверки и градуировки эталонных термоэлектрических преобразователей 2-го и 3-го разрядов и рабочих термоэлектрических преобразователей всех типов, характеристики оборудования которой соответствуют техническим и метрологическим характеристикам средств поверки по 5.1.7—5.1.10.
- 5.2 Допускается при поверке термопреобразователей использовать установку УПСТ-2М или ее отдельные комплектующие блоки или другие средства поверки, нормированные метрологические характеристики которых не уступают указанным в 5.1.7—5.1.10.

6 Требования безопасности и требования к квалификации поверителя

- 6.1 Электроизмерительный прибор (установка) и печи должны быть надежно заземлены в соответствии с указаниями эксплуатационных документов на них.
- 6.2 Во время проведения поверки необходимо избегать соприкосновения незащищенных частей тела с корпусом печи и с нагретыми термопреобразователями при извлечении их из печи.
- 6.3 Помещение, в котором проводят поверку (далее помещение), должно быть оборудовано приточно-вытяжной вентиляцией.
- 6.4 В помещении категорически запрещается курить, хранить горючие и химически опасные вещества и материалы.
- 6.5 К проведению поверки допускают лиц, аттестованных в качестве поверителей согласно [6] и имеющих квалификационную группу по технике безопасности не ниже III при работе с установками напряжением до 1000 В.

7 Условия поверки

- 7.1 Температура воздуха, относительная влажность, барометрическое давление, вибрация в помещении должны соответствовать установленным в эксплуатационных документах на применяемые средства поверки.
 - 7.2 В помещении не должно быть пыли, дыма, пара и газов.
 - 7.3 Изменение температуры воздуха в помещении не должно превышать 0,5 °C в течение 1 ч.
- 7.4 При работе с термопреобразователями следует принять меры, исключающие возможность пластического деформирования и загрязнения термоэлектродов термопреобразователя.

8 Подготовка к поверке

- 8.1 Проверяют наличие эталонных и рабочих средств измерений и вспомогательного оборудования, указанных в разделе 5.
 - 8.2 Проверяют соответствие условий поверки требованиям раздела 7.
- 8.3 Подготовляют к работе эталонные средства измерений, установки для реализации реперных точек, печи № 1 и № 2 в соответствии с требованиями эксплуатационных документов на них.
 - 8.4 Подготовляют термопреобразователи к поверке следующим образом:
- 8.4.1 Термопреобразователи с чистой поверхностью термоэлектродов, но с поврежденной или загрязненной керамической изоляцией освобождают от изоляции и армируют запасной керамической трубкой.
- 8.4.2 Термопреобразователи, подвергнутые переармированию или другим пластическим деформациям, а также термопреобразователи 1-го разряда перед первичной и периодической поверками, 2-го и 3-го разрядов перед первичной поверкой отжигают следующим образом:
- 8.4.2.1 Перед отжигом свободные концы термопреобразователей освобождают от гибких изоляционных трубок.
- 8.4.2.2 Термопреобразователи (не более шести штук) помещают в печь № 1 на глубину (300 ± 5) мм, отжигают в течение 1 ч при температуре (1100 ± 20) °C и охлаждают вместе с печью до температуры воздуха в помещении.
- 8.5 При термостатировании свободных концов термопреобразователей выполняют следующие операции:
- 8.5.1 Сосуд Дьюара заполняют однородной смесью льда и воды. Стеклянные пробирки по 5.1.17 погружают в льдоводяную смесь на глубину не менее 120 мм. Расстояние между пробирками должно быть не менее 15 мм.
- 8.5.2 Свободные концы термопреобразователей и концы медных измерительных проводов по 5.1.18 складывают вместе и плотно обматывают медной нелуженой проволокой для получения электрически надежного контакта, затем погружают в стеклянные пробирки в льдоводяную смесь.

Свободные концы термопреобразователей термостатируют за 5—10 мин до проведения измерений для установления теплового равновесия между льдоводяной смесью и термопреобразователем.

- 8.5.3 Термостатирование свободных концов термопреобразователей при температуре 0 °C проводят при подготовке термопреобразователей к градуировке прямым сличением, а также в реперных точках металлов и при определении чистоты платинового термоэлектрода.
- 8.5.4 При градуировке термопреобразователей поэлектродным сличением свободные концы термопреобразователей термостатируют в сухоблочном термостате при одной и той же температуре в диапазоне от 0 °C до 25 °C. Допускается при градуировке поэлектродным сличением термостатировать свободные концы термопреобразователей при температуре 0 °C по 8.5.2.

9 Проведение поверки

9.1 Внешний осмотр

- 9.1.1 Проверяют наличие паспорта термопреобразователя при представлении его на первичную поверку или свидетельства о поверке при представлении на периодическую поверку.
- 9.1.2 Проверяют комплектность, упаковку, маркировку, габаритные размеры термопреобразователя на соответствие требованиям ГОСТ Р 52314 и эксплуатационных документов на термопреобразователь конкретного типа.
- 9.1.3 Проверяют отсутствие явных повреждений элементов конструкции, нарушений электрической цепи.

Шарик на рабочем конце термопреобразователя должен иметь гладкую (без раковин) блестящую поверхность.

Допускается наличие не более одной точки сварки по длине свободных концов термопреобразователя.

9.1.4 Термопреобразователи, не удовлетворяющие требованиям 9.1.1—9.1.3, к дальнейшей поверке не допускают.

9.2 Определение нестабильности

- 9.2.1 Нестабильность термопреобразователей при первичной поверке определяют в последовательности, приведенной ниже:
- а) определяют значения ТЭДС термопреобразователей при температуре, соответствующей реперной точке меди:
- для 1-го разряда в расплавленном металле по 9.5, но на одной «площадке» затвердевания меди;
 - для 2-го и 3-го разрядов поэлектродным сличением по 9.6.3;
- б) помещают термопреобразователи в печь № 1 на глубину (300 ± 5) мм и отжигают в течение 2—3 ч при температуре (1100 ± 20) °C. Затем термопреобразователи охлаждают вместе с печью до температуры воздуха в помещении;
- в) повторяют процедуру определения значения ТЭДС в реперной точке меди отожженных термопреобразователей 1-го разряда по 9.5, а отожженных термопреобразователей 2-го и 3-го разрядов по 9.6.3.

Изменение ТЭДС термопреобразователей в реперной точке меди после отжига не должно превышать 3, 6 и 8 мкВ для термопреобразователей 1, 2 и 3-го разрядов соответственно.

Термопреобразователи, не удовлетворяющие этому требованию, бракуют или присваивают им более низкий разряд.

9.2.2 Нестабильность термопреобразователей при периодической поверке определяют, градуируя их в реперной точке меди в соответствии с перечислением а) 9.2.1 и сравнивая полученное значение ТЭДС в реперной точке меди с соответствующим значением из свидетельства о предыдущей поверке.

Изменение значений ТЭДС термопреобразователей в реперной точке меди за межповерочный интервал не должно превышать 5, 8 и 10 мкВ для термопреобразователей 1, 2 и 3-го разрядов соответственно.

Термопреобразователи, не удовлетворяющие этому требованию, бракуют или присваивают им более низкий разряд или статус рабочих термопреобразователей.

9.3 Определение неоднородности

9.3.1 Определение неоднородности термопреобразователей проводят при температуре (1100 \pm 10) °C поэлектродным сличением по 9.6.3, измеряя расхождение значений ТЭДС термопреобразователя при температуре (1100 \pm 10) °C на глубинах погружения в печь № 2 250 и 300 мм.

При определении неоднородности термопреобразователей 1-го разряда используют изученный на неоднородность термопреобразователь 1-го разряда или рабочий эталон нулевого разряда по 5.1.2, а при определении неоднородности термопреобразователей 2-го и 3-го разрядов — термопреобразователь 1-го разряда.

- 9.3.2 Определение неоднородности термопреобразователей 1-го разряда проводят отдельно от градуировки, а 2-го и 3-го разрядов совместно с градуировкой.
- 9.3.3 Расхождение значений ТЭДС термопреобразователя на глубинах погружения в печь № 2 250 и 300 мм при первичной поверке термопреобразователей всех разрядов, а при периодической поверке термопреобразователей 1-го разряда не должно превышать 3 мкВ.

При периодической поверке неоднородность должна быть не более 6 и 8 мкВ для термопреобразователей 2-го и 3-го разрядов соответственно.

Термопреобразователи, не удовлетворяющие этому требованию, бракуют или присваивают им более низкий разряд или статус рабочих термопреобразователей.

9.4 Определение показателя чистоты платинового термоэлектрода термопреобразователя

9.4.1 Показатель чистоты платинового термоэлектрода поверяемого термопреобразователя определяют при первичной поверке по формуле

$$W_{\text{TOR}} = W_{\text{OTI}} - K \Delta e_{\text{III}}, \tag{1}$$

где $W_{\text{пов}}$ и $W_{\text{ОТП}}$ — показатели чистоты платинового термоэлектрода поверяемого термопреобразователя и ОТП соответственно;

- $\Delta e_{\pi\pi}$ ТЭДС пары, образованной платиновым термоэлектродом поверяемого термопреобразователя и ОТП, при температуре (1100 \pm 10) °C и при температуре свободных концов термопреобразователя 0 °C;
 - K— коэффициент, равный 0,4·10⁻⁴ мкВ⁻¹ при температуре (1100 ± 10) °C.

П р и м е ч а н и е — Понижению $W_{\text{пов}}$ на $1\cdot 10^{-4}$ соответствует положительное приращение ТЭДС платинового термоэлектрода на 2.5 мкВ при температуре (1100 ± 10) °C.

- 9.4.2 Определение показателя чистоты платинового термоэлектрода *W* термопреобразователей 1-го разряда проводят отдельно от градуировки, а термопреобразователей 2-го и 3-го разрядов совместно с градуировкой.
- 9.4.3 Операции сличения платиновых термоэлектродов выполняют по 9.6.3.1—9.6.3.4, заложив в пучок поверяемых термопреобразователей ОТП. Свободные концы термопреобразователей и ОТП термостатируют при температуре 0 °C. При этом термоэлектрод ОТП должен быть подключен к зажиму электроизмерительного прибора по 5.1.7, помеченному знаком «—» (минус).

 Π р и м е ч а н и е — Допускается при определении W термопреобразователей 2-го и 3-го разрядов вместо ОТП использовать платиновый термоэлектрод эталонного платинородий-платинового термопреобразователя 1-го разряда, W которого должен быть не менее 1,3920.

- 9.4.4 Измерения ТЭДС между платиновыми термоэлектродами поверяемых термо<u>пре</u>образователей и ОТП выполняют по 9.6.3.6. Вычисляют среднее арифметическое значение $\Delta e_{\pi\pi}$ для серии измерений для каждого платинового термоэлектрода поверяемого термопреобразователя и вычисляют значение показателя чистоты $W_{\text{пов}}$ по формуле (1). Значение $W_{\text{пов}}$ округляют до 0,0001.
- 9.4.5 Значение показателя чистоты платиновых термоэлектродов поверяемых термопреобразователей должно быть не менее 1,3920.

Термопреобразователи, не удовлетворяющие этому требованию, бракуют или присваивают им статус рабочих термопреобразователей.

9.5 Определение градуировочной характеристики термопреобразователя 1-го разряда

- 9.5.1 Термопреобразователи 1-го разряда при первичной и периодической поверках градуируют в реперных точках металлов в последовательности:
 - в точке затвердевания меди 1084,620 °C;
 - в точке затвердевания алюминия 660,323 °C;
 - в точке затвердевания цинка 419,527 °C.

Порядок операций, проводимых при градуировке в расплавленных металлах, единый для всех реперных точек.

- 9.5.2 Подготовляют установки для реализации реперных точек к работе в соответствии с эксплуатационными документами на них.
- 9.5.3 Металл в ампулах реперных точек нагревают до температуры, превышающей температуру его затвердевания на 10 °C. Выдерживают расплавленный металл при этой температуре в течение 10—15 мин. Температуру в ампуле реперной точки (далее ампула) контролируют рабочим платино-родий-платиновым термопреобразователем.

Из ампулы удаляют контрольный термопреобразователь и заменяют его на поверяемый для градуировки последнего.

- 9.5.4 Термостатируют свободные концы поверяемого термопреобразователя при температуре 0 °C и подключают их к электроизмерительному прибору по 5.1.7.
- 9.5.5 Снижают значение силы тока в обмотке печи до значения, при котором металл в ампуле охлаждается со скоростью от 0,5 до 1,5 °C/мин, обеспечивая «площадку» затвердевания металла.
- 9.5.6 Выполняют не менее пяти измерений ТЭДС E_t термопреобразователя на «площадке» затвердевания с точностью до 0,1 мкВ.
- 9.5.7 После окончания измерений ТЭДС в реперных точках металлов термопреобразователь медленно извлекают из ампулы и охлаждают до температуры воздуха в помещении.
- 9.5.8 При первичной поверке термопреобразователя его градуировку в реперных точках меди, алюминия и цинка повторяют на двух «площадках» затвердевания металла.

Вычисляют средние арифметические значения ТЭДС $\overline{E_t}$ для каждой реперной точки и записывают их в протоколе поверки, форма которого приведена в A.1 (приложение A).

9.5.9 Расхождение отдельных результатов измерений ТЭДС термопреобразователя на двух «площадках» затвердевания меди не должно превышать 2 мкВ, а на «площадках» затвердевания цинка и алюминия — 1,5 мкВ.

Если расхождение превышает вышеуказанные значения, термопреобразователь необходимо градуировать на третьей «площадке» затвердевания меди.

Если расхождение отдельных результатов измерений ТЭДС термопреобразователя на третьей и второй «площадках» затвердевания меди превышает 2 мкВ, термопреобразователь следует отжечь по 8.4.2 и градуировать на четвертой «площадке».

Если расхождение отдельных результатов измерений ТЭДС термопреобразователя на четвертой и третьей «площадках» составляет более 2 мкВ, термопреобразователь бракуют.

- 9.5.10 При периодической поверке допускается однократная градуировка термопреобразователя 1-го разряда в реперных точках меди, алюминия и цинка, если расхождение результата градуировки в реперной точке меди с соответствующим значением из свидетельства о предыдущей поверке не превышает 5 мкВ. В остальных случаях градуировку выполняют два раза в каждой реперной точке.
- 9.5.11 Значения ТЭДС термопреобразователей, мкВ, должны быть следующими в точках затвердевания:
 - меди: 10574 ± 30 ; - алюминия: 5860 ± 17 ;
 - цинка: 3447 ± 14.

Термопреобразователи, не удовлетворяющие требованиям 9.5.11, бракуют или переводят в рабочие термопреобразователи.

9.5.12 Допускается градуировать термопреобразователи 1-го разряда в расплавленных металлах классическим «тигельным» методом в реперных точках «Цинк», «Сурьма» и «Медь». Температуру затвердевания металлов контролируют рабочим эталоном нулевого разряда по 5.1.2.

9.6 Определение градуировочной характеристики термопреобразователя 2-го или 3-го разряда

- 9.6.1 Термопреобразователи 2-го и 3-го разрядов градуируют сличением: поэлектродным (основной метод) или прямым с эталонным термопреобразователем более высокого разряда в печи № 2.
- 9.6.2 Градуировку термопреобразователей выполняют при температурах, близких к температурам затвердевания меди, алюминия и цинка с отклонением от них не более 10 °C, начиная с температуры, соответствующей точке затвердевания меди.
 - 9.6.3 При градуировке методом поэлектродного сличения выполняют следующие операции:
- 9.6.3.1 Поверяемые термопреобразователи, подлежащие сличению, складывают в общий плотный пучок с термопреобразователем более высокого разряда (эталонным термопреобразователем), выравнивают рабочие концы и обвязывают армирующие керамические трубки в двух местах отрезками платиновой проволоки. Общее число термопреобразователей в пучке должно быть не более пяти вместе с эталонным термопреобразователем.
- 9.6.3.2 Вытягивают на 12—15 мм из керамических трубок рабочие концы термопреобразователей и плотно стягивают их друг с другом вблизи спаев несколькими витками платиновой проволоки, при этом электрический контакт между отдельными термоэлектродами должен быть образован только в месте их связки.
- 9.6.3.3 Пучок термопреобразователей помещают в рабочее пространство печи № 2 на глубину (300 ± 5) мм и центрируют его по оси печи.

Рекомендуется для выравнивания температурного поля в центральной зоне печи использовать выравнивающие никелевые блоки.

- 9.6.3.4 Свободные концы всех термопреобразователей термостатируют при одной и той же температуре по 8.5.4 или при температуре 0 °C по 8.5.2 и подключают к электроизмерительному прибору по 5.1.7 в соответствии с указаниями эксплуатационных документов на него по схеме, приведенной в ГОСТ 8.338 (приложение Г).
- 9.6.3.5 Нагревают печь до температуры, близкой к температуре затвердевания металлов. Отклонение от нее не должно превышать 10 °C. Начинают градуировку с температуры (1084 ± 10) °C. Температуру в печи контролируют по показаниям эталонного термопреобразователя в пучке в начале и конце серии измерений.

Изменение температуры в печи при поэлектродном сличении за серию измерений не должно превышать 5 °C.

9.6.3.6 Порядок измерений при поэлектродном сличении:

- а) измеряют ТЭДС эталонного термопреобразователя;
- б) последовательно измеряют ТЭДС между платинородиевым термоэлектродом эталонного термопреобразователя и платинородиевым термоэлектродом поверяемого термопреобразователя $\Delta e_{\rm пр}$, затем измеряют ТЭДС между платиновым термоэлектродом эталонного термопреобразователя $\Delta e_{\rm пл}$.

Измерения ТЭДС выполняют, переходя последовательно от первого поверяемого термопреобразователя к последнему, затем повторяют измерения в обратном порядке до получения требуемого числа отсчетов.

Число отсчетов должно быть равно четырем для каждого термоэлектрода при градуировке термопреобразователей 2-го разряда и двум — для термопреобразователей 3-го разряда;

- в) измеряют ТЭДС эталонного термопреобразователя.
- 9.6.3.7 Значения ТЭДС между платинородиевыми $\Delta e_{\rm np}$ и платиновыми $\Delta e_{\rm nn}$ термоэлектродами поверяемых термопреобразователей определяют с округлением до 1 мкВ с учетом знака в паре с одноименными термоэлектродами эталонного термопреобразователя и записывают в протокол поверки, форма которого приведена в приложении А.
- 9.6.3.8 Уменьшают глубину погружения термопреобразователей в рабочее пространство печи до (250 \pm 5) мм и повторяют измерения.
 - 9.6.4 При градуировке методом прямого сличения выполняют следующие операции:
 - 9.6.4.1 Проводят подготовительные операции по 9.6.3.1—9.6.3.3.
- 9.6.4.2 Термоэлектроды всех поверяемых термопреобразователей термостатируют при температуре 0 °C и подключают к электроизмерительному прибору по 5.1.7 по схеме, приведенной в приложении Б ГОСТ 8.338.
- 9.6.4.3 Нагревают печь № 2 до заданной температуры. Температуру контролируют с помощью эталонного термопреобразователя более высокого разряда, с которым ведут сличение, в начале и конце измерений. Изменение температуры за время серии измерений должно быть плавным и не должно превышать 1 °C.
- 9.6.4.4 Значения ТЭДС термопреобразователей поверяемых $E_{
 m пов}$ и эталонного $E_{
 m эт}$ измеряют, начиная с эталонного и кончая последним поверяемым. Затем все измерения повторяют в обратном порядке до получения не менее четырех отсчетов ТЭДС для каждого термопреобразователя. Полученные результаты округляют до 1 мкВ.

Измерения ТЭДС термопреобразователей по 9.6.3.6 или 9.6.4.4 проводят на глубинах погружения в печь 300 и 250 мм, совмещая градуировку поэлектродным и прямым сличениями с определением неоднородности и нестабильности термопреобразователей.

10 Обработка результатов измерений

10.1 Обработка результатов измерений при градуировке термопреобразователя 1-го разряда в реперных точках

- 10.1.1 По значениям E_t вычисляют средние арифметические значения ТЭДС термопреобразователя на «площадках» затвердевания металлов из результатов двух градуировок.
- 10.1.2 Значение ТЭДС термопреобразователя в реперной точке меди должно быть равно (10574 ± 30) мкВ.

Термопреобразователи, не удовлетворяющие этому требованию, бракуют или присваивают им статус рабочих термопреобразователей.

- 10.1.3 Вычисляют нестабильность термопреобразователя $\Delta E_{
 m Hecraf}$ по формулам:
- при первичной поверке

$$\Delta E_{\text{Hecta6}} = \overline{E}_{t \text{ до отж}} - \overline{E}_{t \text{ после отж}}; \tag{2}$$

- при периодической поверке

$$\Delta E_{\text{Hecraf}} = \overline{E}_{t \text{ ,IO OTM}} - \overline{E}_{\text{CB}}^{\text{I}}, \tag{3}$$

где $\overline{E}_{t, \text{до отж}}$ — ТЭДС термопреобразователя при температуре 1084,62 °C до отжига, мВ;

 $\overline{E}_{t\, {
m после \,\, отж}}$ — ТЭДС термопреобразователя при температуре 1084,62 °C после отжига, мВ;

 $E_{
m CB}{}^{
m I}$ — ТЭДС термопреобразователя при температуре 1084,62 °C из свидетельства о предыдущей поверке, мВ.

10.1.4 Значения нестабильности термопреобразователя при первичной и периодической поверках не должны превышать 3 и 5 мкВ соответственно.

10.2 Обработка результатов измерений при градуировке термопреобразователей 2-го и 3-го разрядов поэлектродным сличением

10.2.1 По результатам измерений ТЭДС $\Delta e_{\pi p}$ и $\Delta e_{\pi \pi}$ по 9.6.3.6 вычисляют средние арифметические значения $\overline{\Delta e}_{\pi p}$ и $\overline{\Delta e}_{\pi \pi}$ для каждого термопреобразователя с округлением до 1 мкВ.

Вычисления для каждой температуры градуировки и глубины погружения в печь выполняют раздельно.

10.2.2 Вычисляют разности ΔE_{300} и ΔE_{250} значений ТЭДС, измеренных на глубинах погружения в печь 300 и 250 мм, каждого поверяемого и эталонного термопреобразователей по формулам:

$$\Delta E_{300} = \overline{\Delta e}_{np} - \overline{\Delta e}_{n\pi}; \tag{4}$$

$$\Delta E_{250} = \overline{\Delta e}_{\rm np} - \overline{\Delta e}_{\rm LII}. \tag{5}$$

При вычислении необходимо учитывать знаки $\overline{\Delta e}_{
m np}$ и $\overline{\Delta e}_{
m np}$

10.2.3 Вычисляют для каждого термопреобразователя расхождения между значениями ΔE_{300} и ΔE_{250} — (неоднородность $E_{\rm Heo, I}$), полученные при температуре (1100 \pm 10) °C, допускаемые значения которых указаны в 9.3.3, по формуле

$$E_{\text{HeOII}} = \Delta E_{300} - \Delta E_{250}. \tag{6}$$

10.2.4 Вычисляют среднее арифметическое значение $\overline{\Delta E}$ на разных глубинах погружения в печь по формуле

$$\Delta \overline{E} = \frac{\Delta E_{300} + \Delta E_{250}}{2} \ . \tag{7}$$

10.2.5 Вычисляют значения ТЭДС каждого поверяемого термопреобразователя $E_{\rm nos}$ для температур 419,527 °C, 660,323 °C и 1084,62 °C по формуле

$$E_{\text{TIOB}} = E_{\text{TI,CB}} + \overline{\Delta E},\tag{8}$$

где $E_{\rm ЭТ.CB}$ — значение ТЭДС из свидетельства о поверке эталонного термопреобразователя в точках затвердевания металлов, мкВ.

Значение $E_{\rm пов}$ для термопреобразователей всех разрядов при температуре 1084,62 °C должно быть равно (10574 \pm 30) мкВ.

Термопреобразователи, не удовлетворяющие этому требованию, бракуют.

10.2.6 Рассчитывают значения ТЭДС E_t каждого поверяемого термопреобразователя для целых сотен градусов Цельсия в диапазоне температур от 300 °C до 1200 °C и заполняют градуировочную таблицу 6 в А.2 (приложение A). Расчет выполняют по формуле

$$E_t = A_t + B_t + C_t. ag{9}$$

Значения слагаемых A_p B_p C_t в зависимости от ТЭДС поверяемого термопреобразователя в реперных точках цинка (E_1) , алюминия (E_2) , меди (E_3) и температуры t приведены в таблицах Б.1, Б.2, Б.3 (приложение Б).

Найденные значения A_p B_p C_t записывают в протокол поверки и суммируют для каждого значения температуры.

- 10.2.7 Проверяют правильность расчетов E_p вычисляя первые и вторые разности между соседними значениями ТЭДС. Любые два значения вторых разностей не должны отличаться друг от друга более чем на 2 мкВ.
- 10.2.8 После проверки по 10.2.7 рассчитанные значения ТЭДС при 1200 °C уменьшают на 8 мкВ для приведения к МТШ-90 [2].

10.3 Обработка результатов измерений при градуировке термопреобразователя прямым сличением

10.3.1 По отсчетам ТЭДС каждого поверяемого термопреобразователя $E_{\text{пов.п}}$ и ТЭДС эталонного термопреобразователя $E_{\text{эт.п}}$ вычисляют их средние арифметические значения $\overline{E}_{\text{пов.п}}$ и $\overline{E}_{\text{эт.п}}$ с округлением до 1 мкВ. Для каждой глубины погружения в печь (далее — глубина погружения) и температуры вычисления выполняют раздельно.

10.3.2 По средним значениям ТЭДС $\overline{E}_{\text{пов. п}}$ определяют значение температуры t, при которой проведено сличение, по формуле

$$t = t_3 + \frac{\overline{E}_{9T, \, \Pi} - E_{9T, \, CB}}{dE/dt} \,, \tag{10}$$

где $E_{\rm ЭТ.CB}$ — значение ТЭДС из свидетельства о поверке эталонного термопреобразователя в точках затвердевания металлов, мВ;

 t_3 — значение температуры реперной точки, заданное при сличении, °C;

dE/dt — приращение ТЭДС эталонного термопреобразователя на единицу температуры (чувствительность), мВ/°С, при температурах реперных точек:

- при t_2 = 419,527 °C dE/dt = 9,6·10—3 мВ/°C:
- при $t_3 = 660,323$ °C $dE/dt = 10,4.10^{-3}$ мВ/°C:
- при t_3 = 1084,62 °C dE/dt = 11,9·10⁻³ мВ/°C.
- 10.3.3 Вычисляют разности ΔE_{Π} средних арифметических значений ТЭДС каждого поверяемого термопреобразователя $\overline{E}_{\Pi OB,\Pi}$ и эталонного термопреобразователя $\overline{E}_{9T,\Pi}$ на глубинах погружения 250 и 300 мм по формуле

$$\Delta E_{\Pi} = \overline{E}_{\Pi O B, \Pi} - \overline{E}_{2T, \Pi}. \tag{11}$$

- 10.3.4 Дальнейшую обработку результатов измерений проводят по 10.2.3—10.2.8.
- 10.3.5 Результаты измерений при поверке по разделу 9 и их обработки по разделу 10 настоящего стандарта записывают в протоколы поверки, формы которых приведены в приложении А.

11 Оформление результатов поверки

- 11.1 На термопреобразователи, прошедшие поверку с положительными результатами и признанные годными к применению, выдают свидетельство о поверке в соответствии с [7].
- 11.2 На титульном листе свидетельства о поверке термопреобразователя должны быть представлены следующие данные:
 - наименование и обозначение типа;
 - заводской номер;
 - изготовитель и год изготовления;
 - наименование юридического лица, которому принадлежит термопреобразователь;
 - наименование и обозначение нормативного документа на методику поверки;
 - диапазон градуировки;
 - дата поверки;
 - указание срока проведения следующей поверки;
 - оттиск клейма поверителя.
 - 11.3 В разделе «Результаты поверки» свидетельства о поверке приводят следующие данные:
- округленные до 0,001 мВ значения ТЭДС термопреобразователя при температурах 419,527 °C; 660,323 °C; 1084,62 °C (для термопреобразователей всех разрядов);
- округленные до 0,001 мВ значения ТЭДС термопреобразователя для целых сотен градусов Цельсия в диапазоне температур от 300 °C до 1200 °C (для термопреобразователей 2-го и 3-го разрядов);
 - округленное до 0,0001 значение $W_{
 m IOR}$ платинового термоэлектрода термопреобразователя.
- 11.4 Термопреобразователи, не удовлетворяющие требованиям настоящего стандарта, к выпуску в обращение и применению не допускают и на них выдают извещение о непригодности с указанием причин в соответствии с [7].

Приложение A (справочное)

Формы протоколов поверки термопреобразователей

А.1 Форма протокола поверки термопреобразователя 1-го разряда

Протокол № поверки термопреобразователя 1-го разряда

Номер поверяемого					
IIOBEDHEMOIO	1.5	_	Длина термоэ	лектродов, мм	Вид поверки
термопреобразо- вателя	Кем представлен	Год выпуска	положительного	отрицательного	(первичная, периодическая)
№ 2 Установка д - точка затвер - точка затвер - точка затвер 3 Образец тер Результаты г 1 Замечания	бразователь платиі с W = 1,392 для реализации регодевания цинка, рдевания алюмини рдевания меди. рмоэлектродной пл поверки при внешнем осмо	перных точек: я, патины ОТП № лтре	ый эталонный 1-го р		, <i>W</i> =1,392
Номер измерения		ТЭДС поверяемог	о термопреобразовате	ля до отжига, мВ	
	1-я	площадка		2-я площадк	a
1					
2					
3					
4		_			
5					
Среднее*					
			тж =		

$E_{t \text{ IO OTX}}$	≤	(1057	'5 ±	30)) мкВ.
------------------------	---	-------	------	-----	--------

^{*} Здесь и далее: среднее арифметическое значение ТЭДС термопреобразователя.

FOCT P 8.611—2005

Таблица 2 — Определение ТЭДС термопреобразователя в реперной точке меди после отжига при первичной поверке и в эксплуатации при периодической поверке

Номер измерения	ТЭДС поверяемого термопр	еобразователя после отжига, мВ
	1-я площадка	2-я площадка
1		
2		
3		
4		
5		
Среднее		
	$E_{t \text{ после отж}} = \dots$	

При первичной поверке $\Delta E_{
m Hecta6}$ = $\overline{E}_{t\,
m IIO}$ отж — $\overline{E}_{t\,
m Hoche}$ отж.

При периодической поверке $\Delta E_{
m HCCT26}$ = $\overline{E}_{t,
m IO,OTM}$ — $E_{
m CB}^{-1}$,

где $E_{_{\mathrm{CB}}}{}^{\mathrm{I}}$ — ТЭДС термопреобразователя при температуре 1084,62 °C из свидетельства о предыдущей поверке (...мВ).

Таблица 3 — Проверка неоднородности термопреобразователя после отжига при первичной поверке и в эксплуатации при периодической поверке

	Томпоратура	ТЭДС пары термоэлектродов, мкВ		
Номер измерения	^{эр}	N2		Глубина погружения термопреобразователя, мм
		$\Delta e_{ m np}$	$\Delta e_{_{ m III}}$	
1				
2				
3	 -			
4				300
	$\Delta \overline{e}_{\text{пр}}; \overline{\Delta e}_{\text{пл}}$ $\Delta E_{300} = \overline{\Delta e}_{\text{пр}} - \overline{\Delta e}_{\text{пл}}$			
1	110			
2				
3				250
4				
	$\overline{\Delta}e_{\text{пр}}; \overline{\Delta}e_{\text{пл}}$ $\Delta E_{250} = \overline{\Delta}e_{\text{пр}} - \overline{\Delta}e_{\text{пл}}$ $\overline{E}_{\text{неод}} = \Delta E_{300} - \Delta E_{250}$			
	$\Delta E_{250} = \overline{\Delta e}_{np} - \overline{\Delta e}_{nn}$			
E	$E_{\text{HeOJ}} = \Delta E_{300} - \Delta E_{250}$			

Таблица 4 — Определение показателя чистоты $W_{\text{пов}}$ платинового термоэлектрода термопреобразователя

Номер Температур	Temperations, C/TS/IC Temperations of the MR I	Значение ∆е для поверяемого термопреобразователя, мкВ		
измерения		№		
1				
2				
3				
4				
Среднее				
	$W_{\text{пов}} = W_{\text{ОТП}} - 0.4 \cdot 10^{-4} \Delta e$			

Таблица 5 — Градуировка термопреобразователя в реперной точке алюминия

омер измерения	ТЭДС поверяемого термо	ТЭДС поверяемого термопреобразователя, мВ			
	1-я площадка	2-я площадка			
1					
2					
3					
4					
5					
Среднее					
	$\overline{E}_t = E_{A1 CB}$				
 Примеча	н и е — $E_{ m A1~cB}$ — ТЭДС термопреобразователя п	при температуре 660.323 °C из свидетельств			

Таблица 6 — Градуировка термопреобразователя в реперной точке цинка

ТЭДС поверяемого термо	ТЭДС поверяемого термопреобразователя, м В			
1-я площадка	2-я площадка			

П р и м е ч а н и е — $E_{
m Zn~cs}$ — ТЭДС термопреобразователя при температуре 419,527 °C из свидетельства о предыдущей поверке.

	ЗАКЛЮЧЕНІ	1E
Термопреобраз овател ь типа	Nº	годен (не годен), соответствует
разряду, выписано свидетельство № _		
Дата Поверил		
	подпись	инициалы, фамилия

А.2 Форма протокола поверки термопреобразователя 2-го или 3-го разряда

Протокол № 2 поверки термопреобразователя ... разряда поэлектродным спичением

Длина термоэлектрода, мм

Вид поверки

Іомер поверяемого			электрода, мм	Вид поверки (первичная,		
рмопреобразователя	потределять.	1 '' 1	положительного отрицательного		`'	периодическая)
•						
Средства повер						
1 Термопреобра	взователь платинороды	ий-платиновый	й эталонный ра	зряда, тип		
№	c W= 1.392					
2 Измерительнь	ый прибор типа		, Ns	2		
2 Измерительны Результаты пов			, Nº			

Таблица 1 — Определение нестабильности и неоднородности термопреобразователей

	Температура,		ТЭД	(С в репе	рной точ	се меди д	о отжига,	мкВ	ТЭДС в реперной точке меди до отжига, мкВ								
Номер измерения	°С/ТЭДС термопре- образователя	№*		№		№		№		погружения термопреобразо- вателя, мм							
		$\Delta e_{ m np}$	$\Delta e_{_{ m IIJ}}$	$\Delta e_{ m np}$	$\Delta e_{_{ m II/I}}$	$\Delta e_{ m np}$	$\Delta e_{_{ m IIJ}}$	$\Delta e_{\rm inp}$	Δe _{πνι}								
1																	
2								_									
3]							
4										300							
Δ	$\overline{\Delta e}_{np}; \overline{\Delta e}_{nn}$																
ΔE_{300}	$= \overline{\Delta e}_{\rm np} - \overline{\Delta e}_{\rm nn}$																
1																	
2																	
3																	
4										250							
	$\Delta e_{\rm np}$; $\Delta e_{\rm nn}$																
ΔE_{250}	$= \overline{\Delta e_{\rm np}} - \overline{\Delta e_{\rm nm}}$																
E	, _{эт. св, мкВ}																
$\overline{\Delta}\overline{E} = \frac{1}{2}$	$\frac{\Delta E_{300} + \Delta E_{250}}{2}$																
E _{Cu} :	$= E_{\text{9T. CB}} + \overline{\Delta E}$																

^{*} Здесь и далее: номер поверяемого термопреобразователя.

Окончание таблицы 1

	Температура,		ТЭД	(С в репе	рной точк	е меди д	о отжига,	мкВ		Глубина
Номер измерения	°С/ТЭДС термопре- образователя	N º		Ns	2	Nº		Nº	l	погружения термопреобразователя, мм
		$\Delta e_{ m np}$	$\Delta e_{_{ m IDI}}$	$\Delta e_{ m np}$	∆ <i>е</i> пл	$\Delta e_{ m np}$	$\Delta e_{\Pi \Pi}$	$\Delta e_{ m np}$	$\Delta e_{_{ m IDI}}$	Dates of Alm
1										
2										
3		_								300
4			_	-						300
Δ	$\overline{\Delta e}_{\rm np}; \overline{\Delta e}_{\rm II,I}$									
ΔE ₃₀₀	$=\overline{\Delta e_{\rm np}}-\overline{\Delta e_{\rm nn}}$	_								
1										
2										
3										
4										250
Δ	$\Delta e_{\pi p}; \Delta e_{\pi n}$									
ΔE_{250}	$=\overline{\Delta e}_{\rm np}-\overline{\Delta e}_{\rm nn}$									
Е _{неод} =	$\Delta E_{300} - \Delta E_{250}$									
E	, эт. св, мкВ			-						
$\overline{\Delta}E = \frac{1}{2}$	$\frac{\Delta E_{300} + \Delta E_{250}}{2}$									
E _{Cu} :	$= E_{\text{er. CB}} + \overline{\Delta E}$									
<i>E</i> _{стаб.Си} =	Ε' _{Cu cв} — Ε _{Cu cв}									

Примечание — $E'_{\text{Cu cs}}$ — ТЭДС термопреобразователя при температуре 1084,62 °C из свидетельства о предыдущей поверке.

Таблица 2 — Определение ТЭДС термопреобразователя в реперной точке алюминия

"C/	Температура, °С/ТЭДС термопре- образователя		Глубина							
		№		№		Nº		№		погружения термопреобразо- вателя, мм
		$\Delta e_{ m np}$	$\Delta e_{\mathbf{n}\pi}$	$\Delta e_{\rm np}$	Δ e ₁₁₇₁	$\Delta e_{ m np}$	$\Delta e_{_{\mathbf{HJ}}}$	$\Delta e_{ m np}$	Δe _{ππ}	Barona, ww
1									_	
2										
3										
4										300
Δ	.e _{пр} ; Де пл									
ΔΕ300	$=\overline{\Delta e}_{np}-\overline{\Delta e}_{nn}$					_	_			

ΓΟCT P 8.611—2005

Окончание таблицы 2

	Температура,		Т	ЭДС в ре	перной то	очке алюі	ииния, мі	_B		Глубина
Номер измерения	°С/ТЭДС термопре- образователя	Nº		№		Nº		№		погружения термопреобразо- вателя, мм
		$\Delta e_{ m np}$	$\Delta e_{_{ m IIJ}}$	$\Delta e_{ m np}$	$\Delta e_{_{ m IIJ}}$	$\Delta e_{ m mp}$	Δe _{пл}	$\Delta e_{\rm np}$	Δe _{πл}	Balcin, MM
1									_	
2										
3										
4										250
Δ	$\overline{e}_{np}; \overline{\Delta e}_{n\pi}$									
ΔE_{250}	$=\overline{\Delta e}_{\rm np}-\overline{\Delta e}_{\rm nur}$	_			!					
E_{s}	эт. св, мкВ									
$\overline{\Delta}E = \frac{\Delta}{2}$	$\frac{\Delta E_{300} + \Delta E_{250}}{2}$									
$E_{\rm Al}$ =	$= E_{\text{9T. CB}} + \overline{\Delta E}$									

Таблица 3 — Определение ТЭДС термопреобразователя в реперной точке цинка

	Температура,			ТЭДС в	реперной	і точке ци	нка, мкВ			Глубина
Номер измерения	°С/ТЭДС термопре- образователя	№		Nº		Nº		№		погружения термопреобразо- вателя, мм
		Δe_{np}	$\Delta e_{_{\Pi\!\Pi}}$	$\Delta e_{ m np}$	$\Delta e_{_{f I\!I\!I\!I}}$	$\Delta e_{ m np}$	$\Delta e_{\Pi \Pi}$	$\Delta e_{ m np}$	$\Delta e_{_{ m ILM}}$	
1										
2										
3										
4										300
Δ	$\overline{Ae}_{np}; \overline{Ae}_{nn}$									
ΔE_{300}	$=\overline{\Delta e}_{\Pi p} - \overline{\Delta e}_{\Pi \Pi}$									
1										
2										
3										
4										250
Δ	$\overline{\Delta e}_{np}; \overline{\Delta e}_{n\pi}$									
ΔE_{250}	$= \overline{\Delta e}_{\Pi p} - \overline{\Delta e}_{\Pi \Pi}$									
E,	эт, св, мкВ			•						
$\overline{\Delta E} = \frac{A}{2}$	$\frac{\Delta E_{300} + \Delta E_{250}}{2}$									
E _{Zn} =	$=E_{\rm ST.~CB}+\overline{\Delta E}$									

Таблица 4 — Определение показателя чистоты W платинового термоэлектрода термопреобразователя

Номер измерения	Температура, °С/ТЭДС термопреобразователя, мВ	Значение Δe , мкВ, поверяемого термопреобразователя						
		№	Nº	№	№			
1								
2		_						
3								
4								
Среднее				_				
	$W_{\text{nob}} = W_{\text{OTII}} - 0.4 \cdot 10^{-4} \Delta e$	<u>-</u>						

Таблица 5 — Исходные данные для расчета градуировочной таблицы

Температура, °С	Обозначение параметра	ТЭДС термопреобразователя, мВ						
, , , , , , , , , , , , , , , , , , ,		№	№	№	Nº			
1084,62	$E_{\text{Cu}} = E_3$							
660,323	$E_{A1} = E_2$							
419,527	$E_{\mathbf{Z}\mathbf{n}} = E_{\mathbf{l}}$							

Таблица 6 — Расчет градуировочной таблицы

la la	Термопреобразователь №										
Температура, °С	A_{t} , мВ	B_p мВ	С _е мВ	$E_{ m p}$ мВ	Разности ТЭДС						
	214, 1410	D _p will	Op MD	L _p wis	первые	вторые					
300					0	0					
400											
500											
600											
700											
800											
900											
1000											
1100											
1200	-										

Примечание — При внесении в свидетельство о поверке расчетного значения ТЭДС при 1200 °C его следует уменьшить на 0,008 мВ.

	ЗАКЛЮЧЕН	HNE
Гермопреобразователь типа	Nº	годен (не годен), соответствует
разряду, выписано свидетельство №		.
Дата Поверил		
	полпись	инициалы, фамилия

Приложение Б (справочное)

Таблицы для вычисления значений ТЭДС платинородий-платиновых термопреобразователей, градуированных в реперных точках цинка (419,527 °C), алюминия (660,323 °C) и меди (1084.62 °C)

Формула для расчета значений ТЭДС E(t) термопреобразователей в диапазоне температур от 300 °C до 1200 °C по результатам градуировки в реперных точках цинка, алюминия и меди следующая:

$$E_{\text{HOB}}(t) = E_1 \varphi_1(t) + E_2 \varphi_2(t) + E_3 \varphi_3(t), \tag{5.1}$$

где E_1 , E_2 , E_3 — значения ТЭДС термопреобразователя, соответствующие температурам затвердевания цинка (t_1) , алюминия (t_2) и меди (t_3) $(E_1$ = 3,447 мB; E_2 = 5,860 мB; E_3 = 10,574 мB);

 $\varphi_1(t), \varphi_2(t), \varphi_3(t)$ — функции влияния, рассчитываемые по формулам:

$$\varphi_1(t) = (t - t_2)(t - t_3)/(t_1 - t_2)(t_1 - t_3), \tag{5.2}$$

$$\varphi_2(t) = (t - t_1)(t - t_2)/(t_2 - t_1)(t_2 - t_3), \tag{5.3}$$

$$\varphi_3(t) = (t - t_1)(t - t_2)/(t_3 - t_1)(t_3 - t_2), \tag{5.4}$$

$$\varphi_1(t) + \varphi_2(t) + \varphi_3(t) = 1.$$
 (5.5)

Формула (Б.1) может быть представлена в виде:

$$E_{\text{TIOR}}(t) = A_t + B_t + C_t, {(5.6)}$$

где $A_t = E_1 \varphi_1(t)$, $B_t = E_2 \varphi_2(t)$, $C_t = E_3 \varphi_3(t)$.

В таблицах Б.1—Б.3 приведены значения A_p B_p C_t для целых сотен градусов Цельсия температуры в диапазоне от 300 °C до 1200 °C и для значений E_1 от 3,437 до 3,460 мВ, E_2 от 5,842 до 5,877 мВ, E_3 от 10,542 до 10,607 мВ, которые могут быть получены при градуировке термопреобразователей 2-го и 3-го разрядов.

Значения ТЭДС термопреобразователей 2-го и 3-го разрядов при температуре 1200 °C, рассчитанные по формуле (Б.6), следует уменьшить на 0,008 мВ для приведения к МТШ-90 [2].

П р и м е ч а н и е — Машинную обработку результатов измерений ТЭДС термопреобразователей осуществляют с помощью программы определения значений ТЭДС термопреобразователей в диапазоне от 300 °C до 1200 °C при температурах, кратных 100, разработанной и аттестованной ФГУП УНИИМ в соответствии с [8].

Таблица Б.1

t, °C		Значение $A_{\!$									
, -	3,437	3,438	3,439	3,440	3,441	3,442					
300	6,0674	6,0691	6,0709	6,0726	6,0744	6,0762					
400	3,8248	3,8259	3,8270	3,8281	3,8293	3,8304					
500	2,0115	2,0121	2,0127	2,0132	2,0138	2,0144					
600	0,6274	0,6276	0,6277	0,6279	0,6281	0,6283					
700	-0,3275	-0,3276	-0,3277	0,3278	0,3279	0,3280					
800	0,8532	0,8534	-0,8537	0,8539	0,8542	0,8544					
900	0,9496	-0,9499	-0,9502	0,9505	0,9507	0,9510					
1000	-0,6169	-0,6170	-0,6172	-0,6174	-0,6176	0,6178					
1100	0,1451	0,1452	0,1452	0,1453	0,1453	0,1453					
1200	1,3363	1,3367	1,3371	1,3375	1,3379	1,3383					

Продолжение таблицы Б.1

t, °C	Значение $A_{_{\! I}}$ при $E_{_{\! 1}}$, мВ									
., 0	3,443	3,444	3,445	3,446	3,447	3,448				
300	6,0779	6,0797	6,0815	6,0832	6,0850	6,0868				
400	3,8315	3,8326	3,8337	3,8348	3,8359	3,8371				
500	2,0150	2,0156	2,0162	2,0168	2,0173	2,0179				
600	0,6285	0,6287	0,6288	0,6290	0,6292	0,6294				
700	-0,3281	-0,3282	-0,3283	0,3284	0,3285	0,3286				
800	-0,8547	0,8549	-0,8552	0,8554	0,8557	0,8559				
900	-0,9513	0,9516	-0,9518	0,9521	0,9524	0,9527				
1000	-0,6179	0,6181	0,6183	0,6185	0,6187	0,6188				
1100	0,1454	0,1454	0,1455	0,1455	0,1455	0,1456				
1200	1,3387	1,3390	1,3394	1,3398	1,3402	1,3406				

Продолжение таблицы Б.1

t, °C		Значение $A_{\!\scriptscriptstyle 1}$ при $E_{\!\scriptscriptstyle 1}$, мВ									
۱, ٥	3,449	3,450	3,451	3,452	3,453	3,454					
300	6,0885	6,0903	6,0921	6,0938	6,0956	6,0974					
400	3,8382	3,8393	3,8404	3,8415	3,8426	3,8437					
500	2,0185	2,0191	2,0197	2,0203	2,0209	2,0214					
600	0,6296	0,6298	0,6299	0,6301	0,6303	0,6305					
700	0,3286	0,3287	0,3288	0,3289	0,3290	0,3291					
800	0,8562	0,8564	0,8567	0,8569	0,8571	0,8574					
900	-0,9529	-0,9532	-0,9535	-0,9538	-0,9540	-0,9543					
1000	0,6190	0,6192	0,6194	0,6196	0,6197	0,6199					
1100	0,1456	0,1457	0,1457	0,1458	0,1458	0,1458					
1200	1,3410	1,3414	1,3418	1,3422	1,3425	1,3429					

Окончание таблицы Б.1

t, °C	Значение $A_{\!\scriptscriptstyle 1}$ при $E_{\!\scriptscriptstyle 1}$, мВ							
۱, ٥	3,455	3,456	3,457	3,458	3,459	3,460		
300	6,0991	6,1009	6,1027	6,1044	6,1062	6,1080		
400	3,8448	3,8460	3,8471	3,8482	3,8493	3,8504		
500	2,0220	2,0226	2,0232	2,0238	2,0244	2,0249		
600	0,6307	0,6309	0,6310	0,6312	0,6314	0,6316		
700	-0,3292	0,3293	0,3294	0,3295	0,3296	0,3297		
800	0,8576	0,8579	0,8581	0,8584	0,8586	0,8589		
900	-0,9546	-0,9549	-0,9552	-0,9554	0,9557	0,9560		
1000	0,6201	0,6203	0,6205	0,6206	0,6208	0,6210		
1100	0,1459	0,1459	0,1460	0,1460	0,1461	0,1461		
1200	1,3433	1,3437	1,3441	1,3445	1,3449	1,3453		

FOCT P 8.611—2005

Таблица Б.2

t, °C	Значение B_{t} при E_{2} , мВ							
., 0	5,842	5,843	5,844	5,845	5,846	5,847		
300	5,3625	-5,3634	-5,3643	5,3653	5,3662	5,3671		
400	0,7644	0,7645	0,7647	0,7648	0,7649	0,7651		
500	2,6901	2,6905	2,6910	2,6915	2,6919	2,6924		
600	5,0010	5,0018	5,0027	5,0036	5,0044	5,0053		
700	6,1683	6,1694	6,1704	6,1715	6,1725	6,1736		
800	6,1920	6,1931	6,1941	6,1952	6,1962	6,1973		
900	5,0721	5,0730	5,0739	5,0747	5,0756	5,0765		
1000	2,8086	2,8091	2,8096	2,8101	2,8106	2,8111		
1100	0,5984	-0,5985	0,5986	0,5987	0,5988	0,5989		
1200	5,1491	— 5,1500	— 5,1509	— 5,1517	5,1526	— 5,1535		

Продолжение таблицы Б.2

t, °C	Значение $B_{_{\!f}}$ при $E_{_{\!2}}$, мВ							
., 0	5,848	5,849	5,850	5,851	5,852	5,853		
300	5,3680	5,3689	5,3698	5,3708	5,3717	5,3726		
400	0,7652	0,7653	— 0,7655	0,7656	0,7657	0,7659		
500	2,6928	2,6933	2,6938	2,6942	2,6947	2,6952		
600	5,0061	5,0070	5,0078	5,0087	5,0095	5,0104		
700	6,1746	6,1757	6,1767	6,1778	6,1789	6,1799		
800	6,1984	6,1994	6,2005	6,2015	6,2026	6,2037		
900	5,0773	5,0782	5,0791	5,0799	5,0808	5,0817		
1000	2,8115	2,8120	2,8125	2,8130	2,8135	2,8139		
1100	0,5990	0,5991	0,5992	0,5993	0,5994	0,5996		
1200	5,1544	— 5,1553	— 5,1561	— 5,1570	— 5,1579	— 5,1588		

t, °C	Значение $B_{\scriptscriptstyle I}$ при E_2 , мВ							
., 0	5,854	5,855	5,856	5,857	5,858	5,859		
300	5,3735	5,3744	-5,3754	5,3763	-5,3772	-5,3781		
400	0,7660	0,7661	0,7662	0,7664	0,7665	0,7666		
500	2,6956	2,6961	2,6965	2,6970	2,6975	2,6979		
600	5,0113	5,0121	5,0130	5,0138	5,0147	5,0155		
700	6,1810	6,1820	6,1831	6,1841	6,1852	6,1862		
800	6,2047	6,2058	6,2068	6,2079	6,2090	6,2100		
900	5,0825	5,0834	5,0843	5,0852	5,0860	5,0869		
1000	2,8144	2,8149	2,8154	2,8159	2,8163	2,8168		
1100	0,5997	0,5998	0,5999	-0,6000	0,6001	0,6002		
1200	— 5,1597	5,1606	<i>—</i> 5,1614	5,1623	5,1632	5,1641		

Продолжение таблицы Б.2

t, °C	Значение B_{j} при E_{2} , мВ							
,, ,	5,860	5,861	5,862	5,863	5,864	5,865		
300	-5,3790	-5,3799	-5,3809	-5,3818	5,3827	5,3836		
400	0,7668	0,7669	0,7670	0,7672	0,7673	0,7674		
500	2,6984	2,6988	2,6993	2,6998	2,7002	2,7007		
600	5,0164	5,0173	5,0181	5,0190	5,0198	5,0207		
700	6,1873	6,1884	6,1894	6,1905	6,1915	6,1926		
800	6,2111	6,2121	6,2132	6,2143	6,2153	6,2164		
900	5,0878	5,0886	5,0895	5,0904	5,0912	5,0921		
1000	2,8173	2,8178	2,8183	2,8187	2,8192	2,8197		
1100	0,6003	0,6004	0,6005	0,6006	0,6007	0,6008		
1200	— 5,1650	5,1658	—5,1667	—5,1676	—5,1685	— 5,1694		

Продолжение таблицы Б.2

t, °C	Значение $B_{_{I}}$ при $E_{_{2}}$, мВ							
., 0	5,866	5,867	5,868	5,869	5,870	5,871		
300	5,3845	5,3855	5,3864	5,3873	5,3882	5,3891		
400	0,7676	0,7677	0,7678	0,7679	0,7681	0,7682		
500	2,7011	2,7016	2,7021	2,7025	2,7030	2,7034		
600	5,0215	5,0224	5,0232	5,0241	5,0250	5,0258		
700	6,1936	6,1947	6,1957	6,1968	6,1979	6,1989		
800	6,2174	6,2185	6,2196	6,2206	6,2217	6,2227		
900	5,0930	5,0938	5,0947	5,0956	5,0964	5,0973		
1000	2,8202	2,8207	2,8211	2,8216	2,8221	2,8226		
1100	0,6009	0,6010	0,6011	0,6012	0,6013	0,6014		
1200	5,1702	— 5,1711	— 5,1720	—5,1729	— 5,1738	— 5,1747		

Окончание таблицы Б.2

t, °C	Значение $B_{\!\scriptscriptstyle 1}$ при $E_{\!\scriptscriptstyle 2}$, мВ							
,, 0	5,872	5,873	5,874	5,875	5,876	5,877		
300	-5,3900	-5,3910	-5,3919	5,3928	-5,3937	-5,3946		
400	0,7683	0,7685	0,7686	0,7687	0,7689	0,7690		
500	2,7039	2,7044	2,7048	2,7053	2,7057	2,7062		
600	5,0267	5,0275	5,0284	5,0292	5,0301	5,0310		
700	6,2000	6,2010	6,2021	6,2031	6,2042	6,2053		
800	6,2238	6,2249	6,2259	6,2270	6,2280	6,2291		
900	5,0982	5,0990	5,0999	5,1008	5,1016	5,1025		
1000	2,8231	2,8236	2,8240	2,8245	2,8250	2,8255		
1100	0,6015	0,6016	0,6017	0,6018	0,6019	0,6020		
1200	 5,1755	5,1764	— 5,1773	—5,1782	— 5,1791	 5,1799		

FOCT P 8.611—2005

Таблица Б.3

t, °C	Значение C_{l} при E_{3} , мВ							
., •	10,542	10,543	10,544	10,545	10,546	10,547		
300	1,6089	1,6091	1,6092	1,6094	1,6095	1,6097		
400	0,1899	0,1899	0,1899	0,1900	0,1900	0,1900		
500	0,4820	-0,4820	-0,4821	-0,4821	0,4821	-0,4822		
600	0,4067	0,4067	-0,4068	-0,4068	0,4068	-0,4069		
700	0,4157	0,4158	0,4158	0,4158	0,4159	0,4159		
800	1,9853	1,9855	1,9856	1,9858	1,9860	1,9862		
900	4,3020	4,3024	4,3028	4,3032	4,3036	4,3040		
1000	7,3658	7,3665	7,3672	7,3679	7,3686	7,3693		
1100	11,1767	11,1778	11,1789	11,1799	11,1810	11,1820		
1200	15,7348	15,7363	15,7378	15,7393	15,7408	15,7423		

Продолжение таблицы Б.3

t, °C	Значение C_{t} при E_{3} , мВ							
1, 0	10,548	10,549	10,550	10,551	10,552	10,553		
300	1,6098	1,6100	1,6101	1,6103	1,6104	1,6106		
400	0,1900	0,1900	0,1900	0,1901	0,1901	0,1901		
500	-0,4822	0,4823	0,4823	0,4824	0,4824	0,4825		
600	-0,4069	-0,4070	-0,4070	-0,4070	0,4071	-0,4071		
700	0,4160	0,4160	0,4160	0,4161	0,4161	0,4162		
800	1,9864	1,9866	1,9868	1,9870	1,9872	1,9873		
900	4,3044	4,3048	4,3052	4,3056	4,3060	4,3064		
1000	7,3700	7,3707	7,3714	7,3721	7,3728	7,3735		
1100	11,1831	11,1842	11,1852	11,1863	11,1873	11,1884		
1200	15,7438	15,7453	15,7468	15,7483	15,7498	15,7513		

t, °C	Значение $C_{\!\scriptscriptstyle f}$ при $E_{\!\scriptscriptstyle 3}$, мВ							
., 0	10,554	10,555	10,556	10,557	10,558	10,559		
300	1,6107	1,6109	1,6110	1,6112	1,6113	1,6115		
400	0,1901	0,1901	0,1901	0,1902	0,1902	0,1902		
500	0,4825	-0,4826	0,4826	0,4827	0,4827	0,4827		
600	0,4072	-0,4072	0,4072	0,4073	0,4073	0,4073		
700	0,4162	0,4162	0,4163	0,4163	0,4164	0,4164		
800	1,9875	1,9877	1,9879	1,9881	1,9883	1,9885		
900	4,3069	4,3073	4,3077	4,3081	4,3085	4,3089		
1000	7,3742	7,3749	7,3756	7,3763	7,3770	7,3777		
1100	11,1895	11,1905	11,1916	11,1926	11,1937	11,1948		
1200	15,7528	15,7542	15,7557	15,7572	15,7587	15,7602		

Продолжение таблицы Б.3

t, °C	Значение C_{r} при E_{3} , мВ							
., 0	10,560	10,561	10,562	10,563	10,564	10,565		
300	1,6116	1,6118	1,6120	1,6121	1,6123	1,6124		
400	0,1902	0,1902	0,1903	0,1903	0,1903	0,1903		
500	-0,4828	0,4828	-0,4829	0,4829	0,4830	0,4830		
600	-0,4074	0,4074	0,4075	0,4075	0,4075	0,4076		
700	0,4164	0,4165	0,4165	0,4165	0,4166	0,4166		
800	1,9887	1,9888	1,9890	1,9892	1,9894	1,9896		
900	4,3093	4,3097	4,3101	4,3105	4,3109	4,3113		
1000	7,3784	7,3791	7,3798	7,3805	7,3812	7,3819		
1100	11,1958	11,1969	11,1979	11,1990	11,2001	11,2011		
1200	15,7617	15,7632	15,7647	15,7662	15,7677	15,7692		

Продолжение таблицы Б.3

t, °C	Значение $C_{\!\scriptscriptstyle I}$ при $E_3^{}$, мВ							
,, 0	10,566	10,567	10,568	10,569	10,570	10,571		
300	1,6126	1,6127	1,6129	1,6130	1,6132	1,6133		
400	0,1903	0,1903	0,1904	0,1904	0,1904	0,1904		
500	0,4831	0,4831	0,4832	0,4832	0,4832	-0,4833		
600	0,4076	0,4077	0,4077	0,4077	0,4078	0,4078		
700	0,4167	0,4167	0,4167	0,4168	0,4168	0,4169		
800	1,9898	1,9900	1,9902	1,9904	1,9905	1,9907		
900	4,3117	4,3122	4,3126	4,3130	4,3134	4,3138		
1000	7,3826	7,3832	7,3839	7,3846	7,3853	7,3860		
1100	11,2022	11,2032	11,2043	11,2054	11,2064	11,2075		
1200	15,7707	15,7722	15,7736	15,7751	15,7766	15,7781		

t, °C	Значение C_t при E_3 , мВ						
	10,572	10,573	10,574	10,575	10,576	10,577	
300	1,6135	1,6136	1,6138	1,6139	1,6141	1,6142	
400	0,1904	0,1905	0,1905	0,1905	0,1905	0,1905	
500	-0,4833	-0,4834	-0,4834	0,4835	0,4835	-0,4836	
600	0,4078	0,4079	-0,4079	0,4080	0,4080	0,4080	
700	0,4169	0,4169	0,4170	0,4170	0,4171	0,4171	
800	1,9909	1,9911	1,9913	1,9915	1,9917	1,9919	
900	4,3142	4,3146	4,3150	4,3154	4,3158	4,3162	
1000	7,3867	7,3874	7,3881	7,3888	7,3895	7,3902	
1100	11,2085	11,2096	11,2107	11,2117	11,2128	11,2139	
1200	15,7796	15,7811	15,7826	15,7841	15,7856	15,7871	

FOCT P 8.611—2005

Продолжение таблицы Б.3

t, °C	Значение $C_{_{\!I}}$ при $E_{_{\!3}}$, мВ						
., 0	10,578	10,579	10,580	10,581	10,582	10,583	
300	1,6144	1,6145	1,6147	1,6149	1,6150	1,6152	
400	0,1905	0,1906	0,1906	0,1906	0,1906	0,1906	
500	0,4836	-0,4837	0,4837	-0,4837	0,4838	-0,4838	
600	0,4081	0,4081	-0,4082	-0,4082	0,4082	-0,4083	
700	0,4171	0,4172	0,4172	0,4173	0,4173	0,4173	
800	1,9920	1,9922	1,9924	1,9926	1,9928	1,9930	
900	4,3166	4,3171	4,3175	4,3179	4,3183	4,3187	
1000	7,3909	7,3916	7,3923	7,3930	7,3937	7,3944	
1100	11,2149	11,2160	11,2170	11,2181	11,2192	11,2202	
1200	15,7886	15,7901	15,7916	15,7931	15,7945	15,7960	

Продолжение таблицы Б.3

t, °C	Значение C_{t} при E_{3} , мВ						
	10,584	10,585	10,586	10,587	10,588	10,589	
300	1,6153	1,6155	1,6156	1,6158	1,6159	1,6161	
400	0,1907	0,1907	0,1907	0,1907	0,1907	0,1907	
500	-0,4839	-0,4839	0,4840	0,4840	0,4841	0,4841	
600	0,4083	-0,4084	-0,4084	0,4084	0,4085	0,4085	
700	0,4174	0,4174	0,4175	0,4175	0,4175	0,4176	
800	1,9932	1,9934	1,9936	1,9937	1,9939	1,9941	
900	4,3191	4,3195	4,3199	4,3203	4,3207	4,3211	
1000	7,3951	7,3958	7,3965	7,3972	7,3979	7,3986	
1100	11,2213	11,2223	11,2234	11,2245	11,2255	11,2266	
1200	15,7975	15,7990	15,8005	15,8020	15,8035	15,8050	

t, °C	Значение C_{t} при E_{3} , мВ						
., 0	10,590	10,591	10,592	10,593	10,594	10,595	
300	1,6162	1,6164	1,6165	1,6167	1,6168	1,6170	
400	0,1908	0,1908	0,1908	0,1908	0,1908	0,1909	
500	-0,4842	-0,4842	0,4843	-0,4843	0,4843	0,4844	
600	0,4085	0,4086	0,4086	0,4087	0,4087	0,4087	
700	0,4176	0,4177	0,4177	0,4177	0,4178	0,4178	
800	1,9943	1,9945	1,9947	1,9949	1,9951	1,9952	
900	4,3215	4,3220	4,3224	4,3228	4,3232	4,3236	
1000	7,3993	7,4000	7,4007	7,4014	7,4021	7,4028	
1100	11,2276	11,2287	11,2298	11,2308	11,2319	11,2329	
1200	15,8065	15,8080	15,8095	15,8110	15,8125	15,8139	

Продолжение таблицы Б.3

t, °C	Значение $\mathit{C_{t}}$ при $\mathit{E_{3}}$, мВ						
	10,596	10,597	10,598	10,599	10,600	10,601	
300	1,6171	1,6173	1,6174	1,6176	1,6177	1,6179	
400	0,1909	0,1909	0,1909	0,1909	0,1909	0,1910	
500	0,4844	0,4845	0,4845	0,4846	0,4846	0,4847	
600	0,4088	0,4088	0,4089	0,4089	0,4089	0,4090	
700	0,4178	0,4179	0,4179	0,4180	0,4180	0,4180	
800	1,9954	1,9956	1,9958	1,9960	1,9962	1,9964	
900	4,3240	4,3244	4,3248	4,3252	4,3256	4,3260	
1000	7,4035	7,4042	7,4049	7,4056	7,4063	7,4070	
1100	11,2340	11,2351	11,2361	11,2372	11,2382	11,2393	
1200	15,8154	15,8169	15,8184	15,8199	15,8214	15,8229	

Окончание таблицы Б.3

t, °C	Значение C_t при E_3 , мВ						
	10,602	10,603	10,604	10,605	10,606	10,607	
300	1,6181	1,6182	1,6184	1,6185	1,6187	1,6188	
400	0,1910	0,1910	0,1910	0,1910	0,1911	0,1911	
500	0,4847	0,4848	0,4848	0,4848	0,4849	0,4849	
600	0,4090	-0,4090	0,4091	0,4091	-0,4092	-0,4092	
700	0,4181	0,4181	0,4182	0,4182	0,4182	0,4183	
800	1,9966	1,9968	1,9969	1,9971	1,9973	1,9975	
900	4,3264	4,3268	4,3273	4,3277	4,3281	4,3285	
1000	7,4077	7,4084	7,4091	7,4098	7,4105	7,4112	
1100	11,2404	11,2414	11,2425	11,2435	11,2446	11,2457	
1200	15,8244	15,8259	15,8274	15,8289	15,8304	15,8319	

Библиография

- [1] РМГ 29—99 Государственная система обеспечения единства измерений. Метрология. Основные термины и определения
- [2] Документ Международного Бюро по мерам и весам, 1989. Международная температурная шкала МТШ-90
- [3] ТУ 50-240—80 Малоинерционная трубчатая печь сопротивления для отжига и градуировки МТП-2М
- [4] ТУ 50-240—80 Устройство для дробления льда УДЛ-1
- [5] ТУ 50—96 ДДШ 1.270.003 Установка для поверки и градуировки датчиков температуры УПСТ-2М
- [6] ПР 50.2.012—94 Государственная система обеспечения единства измерений. Порядок аттестации поверителей средств измерений
- [7] ПР 50.2.006—94 Государственная система обеспечения единства измерений. Порядок проведения поверки средств измерений
- [8] МИ 2174—91 Государственная система обеспечения единства измерений. Аттестация алгоритмов и программ обработки данных при измерениях. Основные положения

УДК 536.5.087.92.089.6:006.354

OKC 17.020

T88.6

Ключевые слова: эталонный термоэлектрический преобразователь, разряд, температура, поверка, реперная точка, поэлектродное сличение, прямое сличение, неоднородность, стабильность, показатель чистоты платинового термоэлектрода

Редактор Л.В. Афанасенко Технический редактор В.Н. Прусакова Корректор Т.И. Кононенко Компьютерная верстка Л.А. Круговой

Изд. лиц. № 02354 от 14.07.2000.

Сдано в набор 24.02.2005. . л. 2,90. Тираж 164 экз.

Подписано в печать 22.03.2005.

Усл. печ. л. 3,72.

Уч.-изд. л. 2,90.

C 761. Зак. 167.

ИПК Издательство стандартов, 107076 Москва, Колодезный пер., 14. http://www.standards.ru e-mail: info@standards.ru Набрано в Издательстве на ПЭВМ

Отпечатано в филиале ИПК Издательство стандартов — тип. «Московский печатник», 105062 Москва, Лялин пер., 6. Плр № 080102