Приложение к сертификату № 2468 (обязательное)

ОПИСАНИЕ ТИПА ГСО

СОГЛАСОВАНО

Директор

ФГУП «ВНИИМ им. Д.И.Менделеена»

Н.И. Ханов 2008 г.

Государственный стандартный образец состава газовой смеси - чмитатор природного газа (ИПГ-1)

ВНЕСЕН В ГОСУДАРСТВЕННЫЙ РЕЕСТР УТВЕРЖДЕННЫХ ТИПОВ ГСО

Регистрационный номер ГСО 8218-2002

НД НА ВЫПУСК И ФОРМА ВЫПУСКА СО: Технические условия «Смеси газовые поверочные - стандартные образцы состава» ТУ 6-16-2956-92 с изменениями № 1, 2, 3; единичное повторяющееся производство.

НОМЕР БАЛЛОНА И ДАТА ВЫПУСКА: № 506, 10.01.2008 г.

НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ:

СО предназначен для поверки и градуировки СИ, применяемых при определении компонентного состава природных (попутных) газов, в том числе при их сертификации.

Область применения: газодобывающая, химическая промышленность и экология.

В соответствии с Государственной поверочной схемой для средств измерений в газовых средах (ГОСТ 8.578-2002) ГСО выполняет функцию рабочего эталона 1-го разряда.

НОРМАТИВНЫЕ ДОКУМЕНТЫ, определяющие необходимость применения СО:

ГОСТ 23781-87 «Газы горючие природные. Хроматографический метод определения компонентного состава», ГОСТ 30319-96 «Газ природный. Методы расчёта физических свойств»,

ISO 6976-01 «Natural gas – Calculation of calorific values, density, relative density and Wobbe Index from composition». ОПИСАНИЕ:

Газовая смесь, под давлением (2,0 –5,0) МПа, находящаяся в баллоне из углеродистой стали ГОСТ 949-73 или металлокомпозитного материала (внутренний лейнер из нержавеющей стали 2X18H10T) по ТУ 7551-002-23204567-99, вместимостью от 4 до 40 дм³, снабженном вентилем ВВ-55. Исходные газы, применяемые для приготовления СО:

Исходное вещество	Нормативные документы, которым должны соответствовать исходные вещества		
CH ₄	ТУ 51-841-87		
C_2H_6	ТУ 6-09-2454		
C ₃ H ₈	ТУ 51-882-90		
изо-С ₄ Н ₁₀	ТУ 6-09-2454-85		
н-С ₄ Н ₁₀	ТУ 51-946-90		
neo-C ₅ H ₁₂	Intergas UN 2044 (DIN 477-1)		
изо-C ₅ H ₁₂	Intergas UN 1265 (DIN 477-1)		
н-С ₅ Н ₁₂	ТУ 6-09-922-76		
CO_2	ΓΟCT 8050-85		
N_2	ГОСТ 9293-74		
O_2	ТУ 6-21-10-83		

НОРМИРОВАННЫЕ МЕТРОЛОГИЧЕСКИЕ ХАРАКТЕРИСТИКИ:

	Интервал	Пределы допускаемого	Пределы допускаемой
Аттестуемая характеристика	аттестованных	относительного	погрешности
	значений СО	отклонения ±Д	±Δ**
Молярная доля СН4, %	от 99,97 до 75	-	-0,03·X + 3,03
Молярная доля С ₂ Н ₆ , %	от 0,005 до 15	20	$0.02 \cdot X + 0.0004$
Молярная доля С ₃ Н ₈ , %	от 0,005 до 6	20	$0.03 \cdot X + 0.0002$
Молярная доля изо- C_4H_{10} , %	от 0,0020 до 4	20	$0.04 \cdot X + 0.0002$
Молярная доля н-С ₄ Н ₁₀ , %	от 0,0020 до 4	20	$0.04 \cdot X + 0.0002$
Молярная доля neo-C ₅ H ₁₂ *, %	от 0,0010 до 0,05	20	$0.05 \cdot X + 0.0002$
Молярная доля изо-С ₅ H ₁₂ , %	от 0,0010 до 0,5	20	$0.04 \cdot X + 0.0001$
Молярная доля н-С ₅ Н ₁₂ , %	от 0,0010 до 0,5	20	$0.04 \cdot X + 0.0001$
Молярная доля СО2, %	от 0,005 до 4	20	$0.03 \cdot X + 0.0006$
Молярная доля N ₂ , %	от 0,005 до 10	20	$0.02 \cdot X + 0.0007$
Молярная доля O_2 , %	от 0,005 до 2,0	20	$0.03 \cdot X + 0.0011$

^{* -} данный компонент включается в смесь по требованию заказчика

Срок годности экземпляра ГСО - 12 месяцев.

РАЗРАБОТЧИКИ СО:

С ФГУП «ВНИИМ им. Д.И. Менделеева», 190005, г. Санкт-Петербург, Московский пр. д.19 ООО «МОНИТОРИНГ», 190005, г. Санкт-Петербург, а/я 113

of hotely never to

изготовитель со:

ООО «МОНИТОРИНГ», 198013, г. Санкт-Петербург, а/я 113

Руководитель научно-исследовательского отдела

Государственных эталонов в области физико-химических измерений ФГУП «ВНИИМ им. Д.И. Менделесва»

Директор ООО «МОНИТОРИНГ»

Л.А. Конопелько

Т.М. Королева

^{**} - X- значение молярной доли компонента.