ОПИСАНИЕ ТИПА СТАНДАРТНОГО ОБРАЗЦА

СТАНДАРТНЫЙ ОБРАЗЕЦ СОСТАВА ИСКУССТВЕННОЙ ГАЗОВОЙ СМЕСИ В КИСЛОРОДЕ (O₂-Ю-1)

ГСО 10515-2014

Назначение стандартного образца:

- поверка, калибровка, градуировка средств измерений, а также контроль метрологических характеристик при проведении их испытаний, в том числе с целью утверждения типа;
- аттестация методик (методов) измерений;
- контроль точности результатов измерений, полученных по методикам (методам) в процессе их применения в соответствии с установленными в них алгоритмами.

Область промышленности, производства, где преимущественно может применяться стандартный образец: контроль технологических процессов и промышленных выбросов.

Описание стандартного образца: стандартный образец представляет собой искусственную газовую смесь в газе-разбавителе кислороде (O_2) . Определяемые компоненты – диоксид углерода (CO_2) , водород (H_2) , гелий (He), аргон (Ar), закись азота (N_2O) . Газ-разбавитель – кислород. Смесь находится под давлением (0,5-10) МПа в баллоне из углеродистой и легированной стали (ГОСТ 949-73) или алюминия по ТУ 1411-016-03455343-2004, а также алюминиевых баллонах типа Luxfer, снабженном латунным вентилем, либо вентилем из нержавеющей стали.

Таблица 1 – Исходные вещества, применяемые для приготовления СО

Исходное вещество	Нормативные документы,			
	которым должны соответствовать исходные вещества*			
CO_2	ΓΟCT 8050-85, Aldrich №295108, TУ 2114-008-72689906-2014			
O_2	ГОСТ 5583-78, ТУ 6-21-10-83, ТУ 2114-007-72689906-2014,			
	ТУ 2114-001-05798345-2007, ТУ 2114-004-05015259-2016,			
	Fluka № 00476			
H_2	ΓΟCT P 51673-2000, TУ 2114-016-78538315-2008, Fluka № 00473			
Ar	ГОСТ 10157-2016, ТУ 2114-004-72689906-2014, ТУ 2114-005-			
	05798345-2009, ТУ 2114-005-0024760-99, ТУ 6-21-12-94,			
	ТУ 2114-006-45905715-2010, ТУ 2114-005-53373468-2006,			
	Aldrich № 295000			
Не	ТУ 51-940-80, ТУ 0271-006-72689906-2014,			
	ТУ 0271-001-45905715-02, ТУ 0271-135-31323949-2005,			
	Fluka № 00488			
N_2O	ТУ 2114-051-00203772-2006, Fluka №00583			

^{*}Допускается использовать исходные вещества с характеристиками не хуже указанных.

Форма выпуска: серийное непрерывное производство.

Метрологические характеристики: аттестуемая характеристика – объемная доля компонента, %.

Нормированные метрологические характеристики СО приведены в таблице 2.

Т а б л и ц а 2 – Нормированные метрологические характеристики стандартного образца

Наименование аттестуемой характеристики	Интервал допускаемых аттестованных значений (X)*	Допускаемые значения относительной расширенной неопределенности (U, %)** при коэффициенте охвата k=2	
Объемная доля диоксида углерода (${ m CO}_2$), %	от 0,0000010 до 0,00010 св. 0,00010 до 0,0010 св. 0,0010 до 0,10 св. 0,10 до 0,50 св. 0,5 до 20 св. 20 до 70 св. 70 до 97 св. 97 до 99,5	$U = -545455 \cdot X + 58,545$ $U = -1111,1 \cdot X + 5,11$ $U = -15,15 \cdot X + 4,015$ $U = -2,5 \cdot X + 2,75$ $U = -0,046 \cdot X + 1,523$ $U = -0,008 \cdot X + 0,76$ $U = -0,0037 \cdot X + 0,459$ $0,10$	
Объемная доля водорода (H_2), %	от 0,0000010 до 0,00010 св. 0,00010 до 0,0010 св. 0,0010 до 0,10 св. 0,10 до 0,50 св. 0,5 до 20 св. 20 до 70 св. 70 до 97 св. 97 до 99,5	$U = -545455 \cdot X + 58,545$ $U = -1111,1 \cdot X + 5,11$ $U = -15,15 \cdot X + 4,015$ $U = -2,5 \cdot X + 2,75$ $U = -0,046 \cdot X + 1,523$ $U = -0,008 \cdot X + 0,76$ $U = -0,0037 \cdot X + 0,459$ $0,10$	
Объемная доля гелия (Не), %	от 0,0000010 до 0,00010 св. 0,00010 до 0,0010 св. 0,0010 до 0,10 св. 0,10 до 0,50 св. 0,5 до 20 св. 20 до 70 св. 70 до 97 св. 97 до 99,5	$U = -545455 \cdot X + 58,545$ $U = -1111,1 \cdot X + 5,11$ $U = -15,15 \cdot X + 4,015$ $U = -2,5 \cdot X + 2,75$ $U = -0,046 \cdot X + 1,523$ $U = -0,008 \cdot X + 0,76$ $U = -0,0037 \cdot X + 0,459$ $0,10$	
Объемная доля аргона (Ar), %	от 0,000010 до 0,00010 св. 0,00010 до 0,0010 св. 0,0010 до 0,10 св. 0,10 до 0,50 св. 0,5 до 20 св. 20 до 70 св. 70 до 97 св. 97 до 99,5	$U = -545455 \cdot X + 58,545$ $U = -1111,1 \cdot X + 5,11$ $U = -15,15 \cdot X + 4,015$ $U = -2,5 \cdot X + 2,75$ $U = -0,046 \cdot X + 1,523$ $U = -0,008 \cdot X + 0,76$ $U = -0,0037 \cdot X + 0,459$ $0,10$	
Объемная доля закиси азота (N ₂ O), %	от 0,000010 до 0,00010 св. 0,00010 до 0,0010 св. 0,0010 до 0,10 св. 0,10 до 0,50 св. 0,5 до 20 св. 20 до 70 св. 70 до 97 св. 97 до 99,5	$U = -545455 \cdot X + 58,545$ $U = -1111,1 \cdot X + 5,11$ $U = -15,15 \cdot X + 4,015$ $U = -2,5 \cdot X + 2,75$ $U = -0,046 \cdot X + 1,523$ $U = -0,008 \cdot X + 0,76$ $U = -0,0037 \cdot X + 0,459$ $0,10$	
Объемная доля кислорода (O_2), %	остальное		

^{*}X – значение объемной доли определяемого компонента.

** Допускаемые значения относительной расширенной неопределенности соответствуют границам допускаемых значений относительной погрешности ($\pm\Delta_0$) при доверительной вероятности (P=0,95). Значения объемной доли компонентов могут быть ниже нижней границы интервала допускаемых аттестованных значений. При этом относительная расширенная неопределенность не нормируется, и данные компоненты в паспорте стандартного образца не приводятся.

Примечание:

Для экземпляров стандартных образцов состава газовых смесей кислорода в водороде установлен предел содержания объемной доли кислорода, соответствующий 3 % об.

Таблица 3 – Характеристики пределов допускаемого отклонения

Интервал аттестованных значений СО (молярная доля, %)	Пределы допускаемого относительного отклонения $\pm \text{Д}, \%$		
от 0,000001 до 0,0001	100		
св. 0,0001 до 0,001	от минус 50 до плюс 100		
св. 0,001 до 0,1	50		
св. 0,1 до 1,0	20		
св. 1,0 до 10	5		
св. 10 до 50	3		
св. 50 до 99,5	1		

Срок годности экземпляра: 12 месяцев.

Знак утверждения типа: наносится печатным способом в правом нижнем углу первого листа паспорта.

Комплектность стандартного образца: экземпляр стандартного образца, паспорт стандартного образца.

Документы, устанавливающие требования к стандартному образцу:

1.Техническая документация, по которой выпущен (будет выпускаться) стандартный образец:

ТУ 2114-001-72689906-2014 «Смеси газовые поверочные – стандартные образцы состава. Технические условия» с изменением № 1.

На общие метрологические и технические требования: ГОСТ Р 8.776-2011 «Стандартные образцы состава газовых смесей. Общие метрологические и технические требования».

2. Документы, определяющие применение стандартного образца:

- на методики (методы) измерений (испытаний): ГОСТ 13320-81 «Газоанализаторы промышленные автоматические. Общие технические условия» и др.
- на методики поверки (калибровки): МИ 2402-97 «Хроматографы газовые аналитические лабораторные. Методика поверки» и др.

3. Нормативный документ на государственную поверочную схему:

Приказ Федерального агентства по техническому регулированию и метрологии № 2664 от 14.12.2018 г. «Об утверждении государственной поверочной схемы для средств измерений содержания компонентов в газовых и газоконденсатных средах». В соответствии с государственной поверочной схемой СО выполняет функцию стандартного образца 1-го разряда.

4. Периодичность актуализации технической документации на стандартный образец: один раз в пять лет.

Номер экземпляра (партии), дата выпуска: в целях продления срока действия свидетельства об утверждении типа стандартных образцов представлен экземпляр СО, баллон № 777, дата выпуска 28.03.2019 г.

Изготовитель: Общество с ограниченной ответственностью «Югра-ПГС» (ООО «Югра-ПГС»), 628422, Российская Федерация, Ханты-Мансийский автономный округ — Югра, город Сургут, улица Сосновая, дом 74, корпус 1. ИНН 8602238132.

Заявитель: Общество с ограниченной ответственностью «Югра-ПГС» (ООО «Югра-ПГС»), 628422, Российская Федерация, Ханты-Мансийский автономный округ — Югра, город Сургут, улица Сосновая, дом 74, корпус 1.

Заместитель			
Руководителя Федерального агентства			А.В. Кулешов
по техническому регулированию	подпись		расшифровка подписи
и метрологии	М.П. «	>>	2019 г.