ОПИСАНИЕ ТИПА СТАНДАРТНОГО ОБРАЗЦА

СТАНДАРТНЫЙ ОБРАЗЕЦ СОСТАВА ИСКУССТВЕННОЙ ГАЗОВОЙ СМЕСИ – «ТРАНСФОРМАТОРНАЯ» ГАЗОВАЯ СМЕСЬ (ТР-Ю-1)

ГСО 10520-2014

Назначение стандартного образца: поверка, калибровка, градуировка средств измерений, а также контроль метрологических характеристик при проведении их испытаний, в том числе с целью утверждения типа; аттестация методик (методов) измерений; контроль точности результатов измерений, полученных по методикам (методам) в процессе их применения в соответствии с установленными в них алгоритмами.

Область промышленности, производства, где преимущественно может применяться стандартный образец: контроль технологических процессов и промышленных выбросов.

Описание стандартного образца: стандартный образец представляет собой искусственную газовую смесь, содержащую определяемые компоненты в соответствии с таблицей 1.

Типы применяемых баллонов:

- баллоны из углеродистой или легированной стали по ГОСТ 949-73;
- баллоны из алюминиевого сплава по ТУ 1411-016-03455343-2004;
- баллоны бесшовные из алюминиевого сплава AA6061 (типа Luxfer и др.).

Баллоны должны быть оборудованы латунными запорными вентилями типа KB-1M, KB-1П, KBБ-53M, ВЛ-16, ВЛ-16Л или их аналогами. Вместимость баллонов от 1 $дм^3$ до 50 $дm^3$. Давление в баллонах от 1 МПа до 15 МПа (в зависимости от типа баллона и приготавливаемой газовой смеси).

Исходные вещества, применяемые для приготовления стандартного образца, приведены в таблице 1.

Т а б л и ц а 1 – Исходные вещества, применяемые для приготовления стандартного образца

Исходное вещество	Хим. формула	Нормативные документы, которым долг соответствовать исходные вещества	
Метан	CH ₄	TY 51-841-87, Aldrich №463035	
Этан	C_2H_6	TY 6-09-2454-85, TY 0272-022-00151638- 99, Fluka №00582, Matheson Pr. № G2243101, Linde № 32367923	
Ацетилен	C2H2	ΓΟCT 5457-75	
Этилен	C2H4	ΓOCT 25070-2013, Fluka №00489	
Пропан	C_3H_8	TY 51-882-90, Aldrich №536172, Linde № 32367917	
Пропилен	C_3H_6	ΓΟCT 25043-2013, Aldrich №295663, Linde № 32379384	
Водород	H_2	ΓΟCT P 51673-2000, TУ 2114-016-78538315- 2008, Fluka № 00473	

Окончание таблицы 1

Исходное вещество	Хим. формула	Нормативные документы, которым должны соответствовать исходные вещества*
Гелий	Не	TY 51-940-80, TY 0271-006-72689906-2014,
		TY 0271-001-45905715-02, TY 0271-135- 31323949-2005, Fluka № 00488
Аргон	Ar	ГОСТ 10157-2016, ТУ 2114-004-72689906-
		2014, TY 2114-005-05798345-2009, TY 2114-
		005-0024760-99, ТУ 6-21-12-94,
		ТУ 2114-006-45905715-2010, ТУ 2114-005-
		53373468-2006, Aldrich № 295000
Оксид углерода	СО	TY 6-02-7-101-86, Aldrich №295116
Диоксид углерода	CO_2	ΓΟCT 8050-85, Aldrich №295108,
		ТУ 2114-008-72689906-2014
Азот	N_2	ГОСТ 9293-74, ТУ 2114-003-72689906-2014,
		TY 2114-009-45905715-2011, Fluka №00474
Кислород	O_2	ГОСТ 5583-78, ТУ 6-21-10-83, ТУ 2114-007-
_		72689906-2014, TY 2114-001-05798345-2007,
		TY 2114-004-05015259-2016, Fluka № 00476
Воздух	-	ГОСТ 17433-80, ТУ 6-21-5-82, ТУ 2114-005-
		72689906-2014

^{*}Допускается использовать исходные вещества с характеристиками не хуже указанных.

Форма выпуска: серийное непрерывное производство.

Метрологические характеристики: аттестуемая характеристика - молярная доля компонента, %;

нормированные метрологические характеристики стандартного образца приведены в таблице 2.

Т а б л и ц а 2 – Нормированные метрологические характеристики стандартного образца

Определяемый компонент	Интервал	Допускаемые значения
	допускаемых	относительной
	(номинальных)	расширенной
	значений молярной	неопределенности**
	доли*, %	при коэффициенте охвата
		k=2, %
Аргон (Ar), азот (N2), гелий (He), воздух	от 70 до 99,9	***
	от 20 до 70	0,8
	от 10 до 20	1,2
	от 1,0 до 10	1,5
	от 0,1 до 1,0	2
	от 0,010 до 0,1	2,5
	от 0,0010 до 0,010	6
	от 0,00010 до 0,0010	10
	от 0 до 0,00010	-

Окончание таблицы 2

Определяемый компонент	Интервал	Допускаемые значения
Определяемый компонент	*	
	допускаемых	относительной
	(номинальных)	расширенной
	значений молярной	неопределенности**
	доли*, %	при коэффициенте охвата
		k=2, %
	от 20 до 50	0,8
	от 10 до 20	1,2
Оксид углерода (СО),	от 1,0 до 10	1,5
диоксид углерода (СО2),	от 0,1 до 1,0	2
кислород (О2),	от 0,010 до 0,1	2,5
водород (Н2)	от 0,0010 до 0,010	6
	от 0,00010 до 0,0010	10
	от 0 до 0,00010	-
Этилен (С2Н4),	от 1,0 до 10	1,5
этан (С2Н6),	от 0,1 до 1,0	2
пропилен (С3Н6),	от 0,010 до 0,1	2,5
пропан (СзН8),	от 0,0010 до 0,010	6
метан (СН4),	от 0,00010 до 0,0010	10
ацетилен (С2Н2)	от 0 до 0,00010	-
	,	

Примечания:

- * Интервал допускаемых значений молярной доли компонента, приведенный с указанием значения расширенной неопределенности, является интервалом допускаемых аттестованных значений. Интервал допускаемых значений молярной доли компонента, приведенный без указания значения расширенной неопределенности, является интервалом допускаемых справочных значений. По согласованию с заказчиком справочные значения могут не указываться в паспорте СО.
- ** Допускаемые значения относительной расширенной неопределенности соответствуют границам допускаемых значений относительной погрешности ($\pm\Delta_0$) при доверительной вероятности (P=0,95). Зависимость значений относительной расширенной неопределенности (границ относительной погрешности) от значений молярной доли определяемого компонента линейная.
- *** Расширенная неопределенность рассчитывается по формуле: квадратный корень из суммы квадратов стандартных неопределенностей остальных компонентов смеси, умноженный на k (k=2) с последующим переводом в относительную форму.

Запрещается изготавливать стандартные образцы во взрывопожароопасных концентрациях, с сочетанием компонентов, могущих вступать друг с другом в химические реакции, с нестабильными компонентами, компонентами, способными к полимеризации в условиях использования, хранения и транспортирования в соответствии с ГОСТ Р 8.776-2011.

Характеристики допускаемых отклонений молярной доли определяемого компонента от номинальных значений приведены в таблице 3.

Таблица3 – Характеристики пределов допускаемого отклонения

Интервал аттестованных (номинальных) значений СО (молярная доля, %)	Допускаемое относительное отклонение не более ±Д, %	
от 1·10 ⁻⁴ до 1·10 ⁻³	50	
св. 1·10 ⁻³ до 5·10 ⁻³	30	
св. 5·10 ⁻³ до 1·10 ⁻²	20	
св. 1·10-2 до 0,1	15	

Окончание таблицы 3

Интервал аттестованных (номинальных) значений СО (молярная доля, %)	Допускаемое относительное отклонение не более ±Д, %	
св. 0,1 до 1	7	
св. 1 до 10	5	
св. 10 до 90	2	
св. 90 до 99	0,5	
св. 99 до 99,9	0,05	

Срок годности экземпляра: 12 месяцев.

Знак утверждения типа: наносится печатным способом в правом нижнем углу первого листа паспорта.

Комплектность стандартного образца: экземпляр стандартного образца, паспорт стандартного образца.

Документы, устанавливающие требования к стандартному образцу:

1. Техническая документация, по которой выпущен (будет выпускаться) стандартный образец:

Типовая программа испытаний стандартных образцов состава газовых смесей, выпускаемых ООО «Югра-ПГС», в целях внесения изменений в описания типа, утвержденная ФГУП «ВНИИМ им. Д.И. Менделеева» 11.07.2016 г.;

ТУ 2114-001-72689906-2014 «Смеси газовые поверочные - стандартные образцы состава. Технические условия» с изменением № 1.

2. Документы, определяющие применение стандартного образца:

- на методики (методы) измерений (испытаний): ГОСТ 13320-81 «Газоанализаторы промышленные автоматические. Общие технические условия» и др.
- на методики поверки (калибровки): МИ 2402-97 «Хроматографы газовые аналитические лабораторные. Методика поверки» и др.

3. Нормативный документ на государственную поверочную схему:

Приказ Федерального агентства по техническому регулированию и метрологии № 2664 от 14.12.2018 г. «Об утверждении государственной поверочной схемы для средств измерений содержания компонентов в газовых и газоконденсатных средах». В соответствии с государственной поверочной схемой СО выполняет функцию стандартного образца 1-го разряда.

4. Периодичность актуализации технической документации на стандартный образец: один раз в пять лет.

Номер экземпляра (партии), дата выпуска: в целях продления срока действия свидетельства об утверждении типа стандартных образцов представлен экземпляр СО, баллон № D641648, дата выпуска 02.04.2019 г.

Изготовитель: Общество с ограниченной ответственностью «Югра-ПГС» (ООО «Югра-ПГС»), 628422, Российская Федерация, Ханты-Мансийский автономный округ – Югра, город Сургут, улица Сосновая, дом 74, корпус 1. ИНН 8602238132.

Заявитель: Общество с ограниченной ответственностью «Югра-ПГС» (ООО «Югра-ПГС»), 628422, Российская Федерация, Ханты-Мансийский автономный округ — Югра, город Сургут, улица Сосновая, дом 74, корпус 1.

Испытательный центр: Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт метрологии им. Д.И. Менделеева» (ФГУП «ВНИИМ им. Д.И. Менделеева»); 190005, г. Санкт-Петербург, Московский пр., 19, e-mail:info@vniim.ru, аттестат аккредитации № RA.RU.310494 выдан 17.10.2016 г.

Заместитель			
Руководителя Федерального агентства			А.В. Кулешов
по техническому регулированию	подпись		расшифровка подписи
и метрологии	М.П. «	>>	2019 г.