ОПИСАНИЕ ТИПА СТАНДАРТНОГО ОБРАЗЦА

СТАНДАРТНЫЙ ОБРАЗЕЦ СОСТАВА ИСКУССТВЕННОЙ ГАЗОВОЙ СМЕСИ ИНЕРТНЫХ, ПОСТОЯННЫХ И УГЛЕВОДОРОДНЫХ ГАЗОВ (ИПУ-Л-2)

ГСО 10701-2015

Назначение стандартного образца:

- поверка, калибровка, градуировка средств измерений, а также контроль метрологических характеристик при проведении их испытаний, в том числе в целях утверждения типа;
- аттестация методик (методов) измерений;
- контроль точности результатов измерений, полученных по методикам (методам) в процессе их применения в соответствии с установленными в них алгоритмами.

Область промышленности, производства, где преимущественно может применяться стандартный образец: контроль технологических процессов и промышленных выбросов.

Описание стандартного образца: стандартный образец (далее — CO) представляет собой искусственную газовую смесь. Определяемые компоненты — пропан (C_3H_8) , изобутан (i-C₄H₁₀), н-бутан (n-C₄H₁₀), неопентан (neo-C₅H₁₂), изопентан (i-C₅H₁₂), н-пентан (n-C₅H₁₂), н-гексан (n-C₆H₁₄), водород (H₂), диоксида углерода (CO₂), оксид углерода (CO), гелий (He), метан (CH₄), этилен (C₂H₄), кислород (O₂), ацетилен (C₂H₂), этан (C₂H₆), пропилен (C₃H₆), неон (Ne), криптон (Kr), ксенон (Xe), аргон (Ar), азот (N₂), воздух. Смесь находится под давлением (0,1-15) МПа, в баллонах из углеродистой или легированной стали по ГОСТ 949-73, или металлокомпозитного материала по ТУ 7551-002-23204567-99, в баллонах из алюминиевого сплава по ТУ 1411-016-03455343-2004, в баллоне из алюминиевого сплава AA6061 фирмы Luxfer или в аналогичных баллонах вместимостью (1-50) дм³. Баллоны должны быть оборудованы латунными вентилями типа KB-1M, KB-1П, KBБ-53M, ВЛ-16 или их аналогами. Исходные вещества, применяемые для приготовления СО, приведены в таблице 1.

Т а б л и ц а 1 – Исходные вещества, применяемые для приготовления стандартного образца

**	**	**	
Исходное вещество	Хим.	Нормативные документы,	
	формула	которым должны соответствовать исходные вещества	
Пропан	C_3H_8	TY 51-882-90, CAS№74-98-6	
Изобутан	i-C ₄ H ₁₀	ТУ 6-09-2454-85, CAS№75-28-5	
н-Бутан	$n-C_4H_{10}$	ТУ 51-946-90, CAS№106-97-8	
Неопентан	neo-C ₅ H ₁₂	Sigma-Aldrich Pr. № 644439, CAS№463-82-1	
Изопентан	i-C ₅ H ₁₂	Sigma Aldrich Produc № 277258, CAS№78-78-4	
н-Пентан	n-C ₅ H ₁₂	ТУ 6-09-922-76, САЅ№109-66-0	
н-Гексан	n-C ₆ H ₁₄	ТУ 6-09-3375-78, ТУ СОМР 2-012-06	
Оксид углерода	CO	ТУ 6-02-7-101-86, CAS№630-08-0	
Водород	H_2	ТУ 20.11.11-012-05015259-2018	

Окончание таблицы 1

Исходное вещество	Хим.	Нормативные документы,		
	формула	которым должны соответствовать исходные веществ		
Диоксида углерода	CO_2	TY 20.11.12-013-05015259-2018		
Гелий	Не	ТУ 20.11.11-017-05015259-2017, ТУ 0271-135- 431323949-05		
	CH			
Метан	$\mathrm{CH_4}$	ТУ 51-841-87, CAS№ 74-84-8		
Кислород	O_2	ТУ 2114-004-05015259-2016		
Этилен	C_2H_4	ΓΟCT 25070-2013, CAS№74-84-1		
Ацетилен	C_2H_2	ΓΟCT 5457-75, CAS№460-19-5		
Этан	C_2H_6	TY 6-09-2454-85, CAS№74-84-0		
Азот	N_2	ГОСТ 9293-74, ТУ 2114-011-05015259-2015		
Пропилен	C_3H_6	CAS№115-07-1		
Неон	Ne	CAS 7440-01-9		
Криптон	Kr	CAS 7439-90-9		
Ксенон	Xe	CAS 7440-63-3		
Аргон	Ar	ТУ 2114-010-05015259-2015		
Воздух	-	ТУ 2114-016-05015259-2016		

Форма выпуска: серийное непрерывное производство.

Метрологические характеристики: аттестуемая характеристика - объемная доля компонента, %;

нормированные метрологические характеристики СО приведены в таблице 2.

Таблица2 – Нормированные метрологические характеристики СО

Наименование	Интервал допускаемых ат-	Допускаемые значения от-	
аттестуемой характеристики	тестованных значений, %	носительной расширенной	
		неопределенности U при ко-	
		эффициенте охвата $k = 2^*$, %	
	от 0,0000010 до 0,00005	58	
	св. 0,00005 до 0,00010	10	
	св. 0,00010 до 0,0010	от 10 до 8	
Объемная доля	св. 0,0010 до 0,10	от 8 до 5	
оксида углерода	св. 0,10 до 0,5	от 5 до 3	
(CO)	св. 0,5 до 20	3	
	св. 20 до 70	от 3 до 0,5	
	св. 70 до 97	от 0,5 до 0,2	
	св. 97 до 99,5	от 0,2 до 0,1	

Продолжение таблицы 2

Наименование	Интервал допускаемых ат-	Допускаемые значения от-
аттестуемой характеристики	тестованных значений, %	носительной расширенной
7 1 1	,	неопределенности U при ко-
		эффициенте охвата $k = 2^*$, %
	от 0,0000010 до 0,00010	58
	св. 0,00010 до 0,0010	от 10 до 8
05	св. 0,0010 до 0,10	от 8 до 5
Объемная доля	св. 0,10 до 0,5	от 5 до 3
диоксида углерода	св. 0,5 до 20	3
(CO_2)	св. 20 до 70	от 3 до 0,5
	св. 70 до 97	от 0,5 до 0,2
	св. 97 до 99,5	от 0,2 до 0,1
	от 0,0000010 до 0,00005	58
	св. 0,00005 до 0,00010	10
	св. 0,00010 до 0,0010	от 10 до 8
Объемная доля	св. 0,0010 до 0,10	от 8 до 5
метана	св. 0,10 до 0,5	от 5 до 3
(CH ₄)	св. 0,5 до 20	3
(- 4)	св. 20 до 70	от 3 до 0,5
	св. 70 до 97	от 0,5 до 0,2
	св. 97 до 99,5	от 0,2 до 0,1
	от 0,0000010 до 0,00005	58
	св. 0,00005 до 0,00010	10
	св. 0,00010 до 0,0010	от 10 до 8
Объемная доля	св. 0,0010 до 0,10	от 8 до 5
пропана	св. 0,10 до 0,5	от 5 до 3
(C_3H_8)	св. 0,5 до 20	3
(-36)	св. 20 до 70	от 3 до 0,5
	св. 70 до 97	от 0,5 до 0,2
	св. 97 до 99,5	от 0,2 до 0,1
	от 0,0000010 до 0,00010	58
	св. 0,00010 до 0,0010	от 10 до 8
0.4	св. 0,0010 до 0,10	от 8 до 5
Объемная доля	св. 0,10 до 0,5	от 5 до 3
водорода	св. 0,5 до 20	3
(H_2)	св. 20 до 70	от 3 до 0,5
	св. 70 до 97	от 0,5 до 0,2
	св. 97 до 99,5	от 0,2 до 0,1
	от 0,0000010 до 0,00010	58
	св. 0,00010 до 0,0010	от 10 до 8
0.5	св. 0,0010 до 0,10	от 8 до 5
Объемная доля	св. 0,10 до 0,5	от 5 до 3
кислорода	св. 0,5 до 20	3
(O_2)	св. 20 до 70	от 3 до 0,5
	св. 70 до 97	от 0,5 до 0,2
	св. 97 до 99,5	от 0,2 до 0,1

Продолжение таблицы 2

Наименование	Интервал допускаемых ат-	Допускаемые значения от-
аттестуемой характеристики	тестованных значений, %	носительной расширенной
		неопределенности U при
		коэффициенте охвата $L = 2*$ 0/
	от 0,0000010 до 0,00010	<i>k</i> = 2*, % 58
Объемная доля	св. 0,00010 до 0,0010	от 10 до 8
ооьемная доля н-бутана	св. 0,00010 до 0,0010	от 8 до 5
$(n-C_4H_{10})$	св. 0,10 до 0,5	от 5 до 3
(II-C ₄ Π ₁₀)	св. 0,10 до 0,3	3
	от 0,0000010 до 0,00010	58
Объемная доля	св. 0,00010 до 0,0010	от 10 до 8
изобутана	св. 0,0010 до 0,10	от 8 до 5
$(i-C_4H_{10})$	св. 0,10 до 0,5	от 5 до 3
(1 041-10)	св. 0,5 до 20	3
	от 0,0000010 до 0,00010	58
Объемная доля	св. 0,00010 до 0,0010	от 10 до 8
н-пентана	св. 0,0010 до 0,10	от 8 до 5
$(n-C_5H_{12})$	св. 0,10 до 0,5	от 5 до 3
(5 -27	св. 0,5 до 3,0	3
	от 0,0000010 до 0,00010	58
Объемная доля	св. 0,00010 до 0,0010	от 10 до 8
изопентана	св. 0,0010 до 0,10	от 8 до 5
$(i-C_5H_{12})$	св. 0,10 до 0,5	от 5 до 3
	св. 0,5 до 3,0	3
0.5	от 0,0000010 до 0,00010	58
Объемная доля	св. 0,00010 до 0,0010	от 10 до 8
неопентана	св. 0,0010 до 0,10 св. 0,10 до 0,5	от 8 до 5 от 5 до 3
$(n-C_5H_{12})$	св. 0,5 до 3,0	3
	от 0,0000010 до 0,00010	58
Объемная доля	св. 0,00010 до 0,0010	от 10 до 8
ацетилена	св. 0,0010 до 0,10	от 8 до 5
(C_2H_2)	св. 0,10 до 0,5 св. 0,5 до 12,5	от 5 до 3 3
	от 0,0000010 до 0,00010	58
	св. 0,00010 до 0,0010	от 10 до 8
Объемная доля	св. 0,0010 до 0,10	от 8 до 5
этилена	св. 0,10 до 0,5	от 5 до 3
(C_2H_4)	св. 0,5 до 20 св. 20 до 70	3 от 3 до 0,5
~ 2 "/	св. 20 до 70 св. 70 до 97	от 0,5 до 0,2
	св. 97 до 99,5	от 0,2 до 0,1
	от 0,0000010 до 0,00010	58
	св. 0,00010 до 0,0010	от 10 до 8
Of anyon hong arous	св. 0,0010 до 0,10	от 8 до 5
Объемная доля этана (C_2H_6)	св. 0,10 до 0,5 св. 0,5 до 20	от 5 до 3 3
$(\smile_2 1 1_6)$	св. 20 до 70	от 3 до 0,5
	св. 70 до 97	от 0,5 до 0,2
	св. 97 до 99,5	от 0,2 до 0,1

Продолжение таблицы 2

Наименование	Интервал допускаемых ат-	Допускаемые значения от-
аттестуемой характеристики	тестованных значений, %	носительной расширенной
		неопределенности U при
		коэффициенте охвата
		<i>k</i> = 2*, %
	от 0,0000010 до 0,00010	58
	св. 0,00010 до 0,0010	от 10 до 8
Объемная доля	св. 0,0010 до 0,10	от 8 до 5
пропилена	св. 0,10 до 0,5	от 5 до 3
(C_3H_6)	св. 0,5 до 20	3
(C3116)	св. 20 до 70	от 3 до 0,5
	св. 70 до 97	от 0,5 до 0,2
	св. 97 до 99,5	от 0,2 до 0,1
	от 0,0000010 до 0,00010	58
Объемная доля	св. 0,00010 до 0,0010	от 10 до 8
н-гексана	св. 0,0010 до 0,10	от 8 до 5
$(n-C_6H_{14})$	св. 0,10 до 0,5	от 5 до 3
	св. 0,5 до 1,5	3
	от 0,0000010 до 0,00010	58
Объемная доля неона (Ne)	св. 0,00010 до 0,0010	от 10 до 8
	св. 0,0010 до 0,10	от 8 до 5
Heona (Ne)	св. 0,10 до 0,5	от 5 до 3
	св. 0,5 до 5	3
	от 0,0000010 до 0,00010	58
Объемная доля	св. 0,00010 до 0,0010	от 10 до 8
криптона (Кг)	св. 0,0010 до 0,10	от 8 до 5
криптона (Кт)	св. 0,10 до 0,5	от 5 до 3
	св. 0,5 до 5	3
	от 0,0000010 до 0,00010	58
Объемная доля	св. 0,00010 до 0,0010	от 10 до 8
ксенона (Хе)	св. 0,0010 до 0,10	от 8 до 5
ксснона (Де)	св. 0,10 до 0,5	от 5 до 3
	св. 0,5 до 5	3
	от 0,0000010 до 0,00010	58
	св. 0,00010 до 0,0010	от 10 до 8
	св. 0,0010 до 0,10	от 8 до 5
Объемная доля	св. 0,10 до 0,5	от 5 до 3
аргона (Аг)	св. 0,5 до 20	3
_ , .	св. 20 до 70	от 3 до 0,5
	св. 70 до 97	от 0,5 до 0,2
	св. 97 до 99,5	от 0,2 до 0,1

Окончание таблицы 2

неопределе коэффици	й расширенной нности <i>U</i> при ленте охвата 2*, % 58
неопределен коэффици	нности <i>U</i> при ненте охвата 2*, %
коэффици	ленте охвата 2*, %
	2*, %
	0 до 8
	8 до 5
	5 до 3
азота (N ₂) св. 0,5 до 20	3
	до 0,5
	5 до 0,2
	2 до 0,1
	58
	0 до 8
св. 0,0010 до 0,10 от 8	8 до 5
Объемная доля св. 0,10 до 0,5 от 5	5 до 3
гелия (Не) св. 0,5 до 20	3
св. 20 до 70 от 3	до 0,5
св. 70 до 97 от 0,5	5 до 0,2
	2 до 0,1
	58
св. 0,00010 до 0,0010 от 1	0 до 8
св. 0,0010 до 0,10	8 до 5
Объемная доля св. 0,10 до 0,5 от 5	5 до 3
воздуха св. 0,5 до 20	3
св. 20 до 70 от 3	до 0,5
св. 70 до 97 от 0,5	5 до 0,2
	2 до 0,1

^{*} Соответствует доверительным границам относительной погрешности при P=0,95. Зависимость значений относительной расширенной неопределенности от значений объемной доли определяемого компонента линейная

Пределы допускаемых отклонений действительных значений объемной доли определяемого компонента от номинальных значений приведены в таблице 3.

Т а б л и ц а 3 – Пределы допускаемых отклонений действительных значений объемной доли определяемого компонента от номинальных

Интервал аттестованных значений СО	Пределы допускаемого относительного
(объемная доля, %)	отклонения, %
от 0,00001 до 0,0001	100
св. 0,0001 до 0,001	40
св. 0,001 до 0,1	30
св. 0,1 до 1,0	15
св. 1,0 до 10	7
св. 10 до 50	5
св. 50 до 70	2
св. 70 до 99,5	0,5

Срок годности экземпляра:

- − 24 месяца, если значение объемной доли каждого определяемого компонента выше или равно 0,1%;
- -18 месяцев, если значение объемной доли хотя бы одного из определяемых компонентов ниже 0.1 %.

Знак утверждения типа: наносят печатным способом в правый нижний угол первого листа паспорта.

Комплектность стандартного образца: экземпляр стандартного образца, паспорт, инструкция по хранению и эксплуатации.

Документы, устанавливающие требования к стандартному образцу:

- 1 Техническая документация, по которой выпущен (будет выпускаться) стандартный образец:
- ТУ 2114-009-05015259-2015 «Смеси газовые поверочные стандартные образцы состава. Технические условия» с изменением № 1;
- Типовая программа испытаний стандартных образцов состава газовых смесей в целях утверждения типа, утвержденная ФГУП «ВНИИМ им. Д.И. Менделеева» в 2015 году;
- на общие метрологические и технические требования:

ГОСТ Р 8.776-2011 «Стандартные образцы состава газовых смесей. Общие метрологические и технические требования».

- 2 Документы, определяющие применение стандартного образца:
- на методики (методы) измерений (испытаний):

ГОСТ 13320-81 «Газоанализаторы промышленные автоматические. Общие технические условия» и др.

- на методики поверки (калибровки):

МИ 2402-97 «Хроматографы газовые аналитические лабораторные. Методика поверки» и др.

3 Нормативный документ на государственную поверочную схему:

Приказ Федерального агентства по техническому регулированию и метрологии № 2664 от 14.12.2018 «Об утверждении государственной поверочной схемы для средств измерений содержания компонентов в газовых и газоконденсатных средах». В соответствии с государственной поверочной схемой СО выполняет функцию рабочего эталона второго разряда.

4 Периодичность актуализации технической документации на стандартный образец: один раз в пять лет.

Номер экземпляра (партии), дата выпуска: в целях продления срока действия свидетельства об утверждении типа стандартного образца представлен экземпляр СО — баллон N 9534312, дата выпуска 02.06.2020 г.

Изготовитель: Акционерное Общество «Линде Газ Рус» (АО «Линде Газ Рус») 143900, РФ, Московская область, г. Балашиха-7, ул. Белякова, дом 1А. ИНН 5001000041.

Заявитель: Акционерное Общество «Линде Газ Рус» (АО «Линде Газ Рус») 143900, РФ, Московская область, г. Балашиха-7, ул. Белякова, дом 1А.

Испытательный центр: Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт метрологии им. Д.И. Менделеева» (ФГУП «ВНИИМ им. Д.И. Менделеева»), 190005, г. Санкт-Петербург, Московский пр., д. 19, e-mail: info@vniim.ru, аттестат аккредитации № RA.RU.310494 выдан 17.10.2016 г.

Заместитель			
Руководителя Федерального агентства			А.В. Кулешов
по техническому регулированию	подпись		расшифровка подписи
и метрологии	М.П. «	>>	2020 г.