ОПИСАНИЕ ТИПА СТАНДАРТНОГО ОБРАЗЦА

СТАНДАРТНЫЙ ОБРАЗЕЦ СОСТАВА ИСКУССТВЕННОЙ ГАЗОВОЙ СМЕСИ В ГЕЛИИ (He-HK-2)

ГСО 10719-2015

Назначение стандартного образца:

- поверка, калибровка, установление и контроль стабильности градуировочных (калибровочных) характеристик средств измерений, а также контроль метрологических характеристик при проведении их испытаний, в том числе в целях утверждения типа;
- аттестация методик (методов) измерений;
- контроль точности результатов измерений, полученных по методикам (методам) в процессе их применения в соответствии с установленными в них алгоритмами. Область промышленности, производства, где преимущественно может применяться

стандартный образец: контроль технологических процессов и промышленных выбросов.

Описание стандартного образца: стандартный образец (далее – CO) представляет собой искусственную газовую смесь в газе-разбавителе гелии (He). Определяемые компоненты – водород (H₂), кислород (O₂), азот (N₂), аргон (Ar), оксид азота (NO), оксид серы (SO_2), аммиак (NH₃). Смесь находится под давлением (1-10) МПа, в баллонах из углеродистой или легированной стали по FOCT 949-73, в баллоне из алюминиевого сплава по FOCT 1411-016-03455343-2004, в баллоне из алюминиевого сплава фирмы Luxfer или в аналогичных баллонах вместимостью (1-50) дм³. Баллоны должны быть оборудованы вентилями: из нержавеющей стали типа FOCT ВС-16Л, FOCT ВС-16М или их аналогами; латунными вентилями типа FOCT КВБ-53М, ВЛ-16 или их аналогами.

Исходные вещества, применяемые для приготовления СО, приведены в таблице 1.

Т а б л и ц а 1 – Исходные вещества, применяемые для приготовления стандартного образца

Исходное вещество	Хим.	Нормативные документы,		
	формула	которым должны соответствовать исходные		
		вещества		
Водород	H_2	ГОСТ Р 51673-2000, ГОСТ 3022-80		
Кислород	O_2	ГОСТ 5583-78, ТУ 2114-004-05015259-2016,		
		ТУ 2114-013-45905715-2015		
Оксид азота	NO	Aldrich Product № 295566		
Диоксид серы	SO_2	ГОСТ 2918-79		
Аммиак	NH ₃	ГОСТ 6221-90		
Азот	N_2	ГОСТ 9293-74, ТУ 20.11.11-009-45905715-2017		
Гелий	Не	ТУ 0271-001-45905715-2016,		
		ТУ 20.11.11-005-45905715-2017		
Аргон	Ar	ТУ 6-21-12-94, ГОСТ 10157-2016,		
		ТУ 20.11.11-006-45905715-2017		

Форма выпуска: серийное непрерывное производство.

Метрологические характеристики: аттестуемая характеристика - объемная доля компонента, %.

Нормированные метрологические характеристики CO приведены в таблицах 2 и 3. Т а б л и ц а 2 – Нормированные метрологические характеристики CO

Наименование	Интервал допускаемых	Допускаемые значения		
аттестуемой	аттестованных значений, %	относительной		
характеристики	,	расширенной		
1 1		неопределенности (U)*		
		при коэффициенте охвата		
		k = 2, %		
	от 0,0000010 до 0,00010	58		
07	св. 0,00010 до 0,0010	от 10 до 8		
Объемная доля	св. 0,0010 до 0,10	от 8 до 5		
водород (Н2)	св.0,10 до 0,5	от 5 до 3		
	св. 0,5 до 10	3		
	от 0,0000010 до 0,00010	58		
	св. 0,00010 до 0,0010	от 10 до 8		
Объемная доля	св. 0,0010 до 0,10	от 8 до 5		
кислорода (O_2)	св. 0,10 до 0,5	от 5 до 3		
·	св. 0,5 до 20	3		
	св. 20 до 30	от 3 до 2,5		
	от 0,0000010 до 0,00010	58		
	св. 0,00010 до 0,0010	от 10 до 8		
Объемная доля	св. 0,0010 до 0,10	от 8 до 5		
аргона (Аг)	св. 0,10 до 0,5	от 5 до 3		
	св. 0,5 до 20	3		
	св. 20 до 30	от 3 до 2,5		
	от 0,0000010 до 0,00050	58		
	св. 0,00050 до 0,0010	от 9 до 8		
Объемная доля	св.0,0010 до 0,10	от 8 до 5		
азота (N_2)	св. 0,10 до 0,5	от 5 до 3		
	св. 0,5 до 20,0	3		
	св. 20,0 до 30,0	от 3 до 2,5		
	от 0,0000010 до 0,050	58		
Объемная доля	св.0,050 до 0,1	от 6 до 5		
оксида азота (NO)	св. 0,1 до 0,5	от 5 до 3		
	св. 0,5 до 2,5	3		
	от 0,0000010 до 0,050	58		
Объемная доля	св.0,050 до 0,10	от 6 до 5		
оксида серы (SO ₂)	св. 0,10 до 0,5	от 5 до 3		
	св. 0,5 до 9,5	3		
	от 0,0000010 до 0,050	58		
Объемная доля	св.0,050 до 0,10	от 6 до 5		
аммиака (NH ₃)	св. 0,10 до 0,5	от 5 до 3		
	св. 0,5 до 2,5	3		

Окончание таблицы 2

Наименование аттестуемой характеристики	Интервал допускаемых аттестованных значений, %	Допускаемые значения относительной расширенной неопределенности (U)* при коэффициенте охвата		
		k = 2, %		
Объемная доля гелия (He)	остальное			

^{*} соответствует границам относительной погрешности $(\pm \Delta_0)$ при доверительной вероятности (P=0,95).

Т а б л и ц а 3 – Характеристики допускаемого отклонения значений объемной доли определяемого компонента от номинальных

Интервал аттестованных значений СО, объемная доля, %	Пределы допускаемого относительного отклонения ±Д, %		
от 0,000001 до 0,0001	100		
св. 0,001 до 0,001	20		
св. 0,001 до 0,1	10		
св. 0,1 до 30	5		

Показатели пожаровзрывоопасности веществ и методы их определения указаны в ГОСТ 12.1.044-2018, ГОСТ Р МЭК 60079-20-1-2011. Запрещается изготавливать СО в взрывопожароопасных концентрациях, с сочетанием компонентов способных вступать друг с другом в химические реакции, с нестабильными компонентами, компонентами способными к полимеризации в условиях использования, хранения и транспортирования в соответствии с ГОСТ Р 8 776-2011.

Срок годности экземпляра:

- 24 месяца для газовых смесей с объемной долей определяемого компонента выше 0,1 %;
- 12 месяцев для газовых смесей с объемной долей определяемых компонентов (или хотя бы одного из определяемых компонентов) ниже 0,1 %, а также для газовых смесей с определяемыми компонентами NO, SO_2 , NH_3 .

Знак утверждения типа: наносят печатным способом в правый нижний угол первого листа паспорта.

Комплектность стандартного образца: экземпляр стандартного образца, паспорт, инструкция по хранению и эксплуатации.

Документы, устанавливающие требования к стандартному образцу:

- 1 Техническая документация, по которой выпущен (будет выпускаться) стандартный образец:
- ТУ 2114-014-45905715-2015 «Стандартные образцы состава смеси газовые поверочные. Технические условия» с извещениями об изменениях № 1, 2;

Зависимость значений относительной расширенной неопределённости (границ относительной погрешности) от значений объемной доли определяемого компонента линейная.

- Техническое задание № 1-2015 на разработку стандартных образцов состава газовых смесей, утвержденное ООО «НИИ КМ» 01.07.2015 г. с изменением № 1, утвержденным ООО «НИИ КМ» 12.02.2019 г.;
- Типовая программа испытаний стандартных образцов состава газовых смесей в целях утверждения типа, утвержденная ФГУП «ВНИИМ им. Д.И. Менделеева» в 2015 году.
- 2 Документы, определяющие применение стандартного образца:
- на методики (методы) измерений (испытаний):

ГОСТ 13320-81 «Газоанализаторы промышленные автоматические. Общие технические условия» и др.;

- на методики поверки (калибровки):

МИ 2402-97 «Хроматографы газовые аналитические лабораторные. Методика поверки» и др.

3 Нормативный документ на государственную поверочную схему:

Приказ Федерального агентства по техническому регулированию и метрологии № 2664 от 14.12.2018 «Об утверждении государственной поверочной схемы для средств измерений содержания компонентов в газовых и газоконденсатных средах». В соответствии с государственной поверочной схемой СО выполняет функцию рабочего эталона второго разряда.

4 Периодичность актуализации технической документации на стандартный образец: один раз в пять лет.

Номер экземпляра (партии), дата выпуска: в целях продления срока действия свидетельства об утверждении типа стандартного образца представлен экземпляр СО: баллон № 8850, дата выпуска 21.04.2020 г.

Изготовитель: Общество с ограниченной ответственностью «НИИ КМ» (ООО «НИИ КМ»), юридический адрес: 119180, г. Москва, ул. Большая Полянка, дом 42, строение 1, этаж 1, помещение III, комната 10, офис 7; фактический адрес: 123182, г. Москва, пл. Академика Курчатова, дом 1, ИНН 7706130928.

Заявитель: Общество с ограниченной ответственностью «НИИ КМ» (ООО «НИИ КМ»), юридический адрес: 119180, г. Москва, ул. Большая Полянка, дом 42, строение 1, этаж 1, помещение III, комната 10, офис 7; фактический адрес: 123182, г. Москва, пл. Академика Курчатова, дом 1.

Испытательный центр: Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт метрологии им. Д.И. Менделеева» (ФГУП «ВНИИМ им. Д.И. Менделеева»), 190005, г. Санкт-Петербург, Московский пр., д. 19, e-mail: <u>info@vniim.ru</u>, аттестат аккредитации № RA.RU.310494 выдан 17.10.2016 г.

Заместитель Руководителя Федерального агентства			А.В. Кулешов
по техническому регулированию	подпись		расшифровка подписи
и метрологии			
	М.П. «	>>	2020 г.