Date of print 11-05-2021-09/22/48

```
Ущтенный рабощии" 
экземпляр
    оредств автоматизя{ии и
                                    коматизя&ии систем управлення
```


ХРОМАТОГРАФЫ ГАЗОВЫЕ ЛАВООРАТОРНЫЕ УНИВЕРСАЛНННЕ ЛХМ-80

Методические указания по поверке

Лб0.284.001

Date of print 11-05-2021-09/22/48

Настоящие методические уназани распространяштся на хроматог

 периодической поверок.

 Госстандартом.

Периодическая государственная поверка хроматограиа ЛХХМ-80 проводится один раз в шесть месяцев при применении его дяя охраны окружаощей среды и здоровья насөления.

В зависимости от модификации в хроматографе используются следуюоре детекторы:

ДTI - детектор теплопроводности:
ДИП - детектор ионизагми в пламени;
ДИР - детектор ионизационно-резонансныи:
ДЮЗ - детектор өлектронного захвата;
III苗 - детектор пламенно-фотометрическиИ;
ДTA - детектор термоаэрозольныи.

1. ОПЕРАІИИ ПОВЕРНИ.
I. I. При проведен п поверки должны выполняться оператии, укаяанные в табд. I.I.

Date of print 11-05-2021-09/22/48

Таблица I.I.

Наимвнамание апераций	! Номер пунктов раз! дела "Проведение ! поверки"
I. Внешний осмотр	4.I.*
2. Определение значения относительной погрешности деления выходного сигнала	$4.2 .^{\vee}$
3. Определение времени выхода хроматографљ на реким и определение уровня флуктуяиионных шумов нулевого сигняла хроматографа при номинальном козффициенте пеления выходного сигнала, устанавливаемом индивидуально для кащдой системы детектирования	4.3 .2
4. Определение минимального значения амплитудн выходного сигняла (А) в мяксимуме хроматографического пика при одной фиксированной средней концентрации контрольного вещества в детекторе (C), определяемой по концентрации контрольного вещества на входе в хроматограф.	4.4.-
5. Определение значения относительного среднего квядратического отклонения (СКО) высот и площадей пиков и времен удерживания	4.5. ${ }^{*}$

П. СРЕДСТВА И МАТЕРИАЛЫ ПОВЕРЮИ

2.I. При проведении поверки должны применяться средствя поверки, указанные в табл. 2.I.

Таблица 2.I.

| Наименоввние средств поверкиНормативно-технические
 характеристики |
| :--- | :--- |

Еюретка І-2-І00-0,2 ГОСТ20292-74 Кл. точности 2 вместимосты $100 \mathrm{~cm}^{3}$ цена деления $0,2 \mathrm{~cm}^{3}$

Секундомер механический СДСпр-І-2 Кл. точности 2 , диапазон измерения ГОСТ 5072-79 0-30 мин.

Date of print 11-05-2021-09/22/48

Продомтениє таблицџ 2.1.

Наименования средств поверки	Норматияо-техническия жарактери стики
Колонка газохроматоговфиеская $102.874 .004$	104.071.010=02
Источник регулируемого напряжения ИРН-64 Ty 25-05.166-67	Препел регулироввния напряжения $-5-0-100$ uB
Цифровои вольтметр В7-20 И22.740. 005 Ty	Погрешность измерения в \% $\pm\left(0,5+0, I \frac{d}{4 x}\right)$
Термометр TJ 4 事 2 ГОСТ 2I5-73	
Психрометр ПВ-IEM ГOCT 6353-52	Погрешность иямерения I, 5\%
Линеика 300 ГОСТ 427-75	Предел измерөния 300 mm
Микоошприи "Газохром IOI" Ty 25-05.2152-76	Погрешность дозирования 2%
Дупа ЛИ-3-10 ${ }^{\text {x }}$ ГОСТ 8309-75	Цена деления 0,OI cm

Примечание. Допускается использовать аналогичные средства измерений, обөспечиваоџие требования таблицы п млассу точности в измеряемых диалазонах.
2.2. При проведении поверки должны применяться следуощие матөриалы и ревктивы:

Аломогель А $_{\text {I }}$ ГОСТ 8І36-76,
Водород ГОСТ 3022-80.
Кислород ГиСТ 5583-78
Гексан марки "ч" ТУ 6-09-3375-78,
Пропан TУ 5I-882-79,
Пролазин технический ТУ 6-01-712-78,
Гамма-изомергексохлоримклогексан (линдан) Ту 6-0I-190-79,

Date of print 11－05－2021－09／22／48

$$
\begin{aligned}
& \text { - - - } \\
& \text { Метафос TV 6-09-IIB9-79, } \\
& \text { Хроматон N-AW DMCS (фракция 0,125-0, 16 cm) пропитянныи } 5 \%
\end{aligned}
$$ SE－30 импорт Чехословакия），

Додеквн $\mathrm{C}_{12} \mathrm{H}_{26}$ ТУ 6－09－3704－74，
Террадекан $\mathrm{C}_{\mathrm{I}} \mathrm{H}_{30}$ Ту 6－09－3705－74

3．усЛОВИЯ ПОВЕРКИ И пОДГОТОВКА к НЕД
3．1．При проведении поверки должны собдодаться следуюцие усло－ вия：темпоратура окружашщего воздүха（ 20 ± 5 ）${ }^{\circ} \mathrm{C}$ ；относительная влак－ ность нө болен 80% ；атиосферное давление от 84,0 до $107,0 \mathrm{kla}$ ． （от 630 до 800 мм рт．ст．）：напряжение сети（ 220 ± 10 ）В；частота се－ ти（ $50 \pm \mathrm{I}$ ）Гц；механические воздействия，внешние электрические и маг－ нитные поля，влияощие на работу хроматографа，должны отсутствовать； наличие примесей в окружапмем воздухе не выше нормированных СНйI－74．

3．2．Размещение блоков и устройств хроматографв，электрическиө и газовые соединения должны соответствовать требованиям чертежей， прилагяемых к руководству по эксллувтации（приломение 1）．
3.3 Подготовну хроматеграфиеских колонок проводить согдасно приложению 6 руководства по эксплуятации．

3．4．Перед проведением поверки необходимо проверить герметич－ ность газовых магиетралей хроматограйа по методике，изложөнной в руководстве по эксплуатации．

3．5．Подготовкя к работе и вклочение ДИІ，ДТА，дПФ，耳ЮЗ，ДИР，ДТП в последовательности。 изложенно命 в рукеводстве по эксплуатации．

Рабочие режимы для каждого детектора указаны в тябд．3．I．
$y_{\text {казанныsе шияалы }}$ ИМТ－05 соогветствуют минимальному коэффициенту деления выходного сигнала：
 ацетоне и метафося в гексане，Доз для анялияа линдана в гексане；

Date of print 11-05-2021-09/22/48

- 6 -

ДПФ дия анализ метароса гексане; дТ7 дли анализа пропана а аотед ДИР дни мнаииза лмндана гексане м метароса в гоксанө.

Date of print 11－05－2021－09／22／48

Ychobrat nobepria	MII	ITA ？	H3 ？	［19	IIII	IHP
Колон\％\％	металлиеская пинно号 2m，3a－ полненнен ало－ мorezem A оралтия $0,25-$ 0，5 м（актив－ ная ornes anm－ МИНй FOCT 8136－76． обр2ботання 5% пвуугдекис－ дого наттия TOCT 4201－66	степлннная длиной Iм，за－ подненнея хро метоном （фравтия 0，125 0 ，160m ）пропи－ тянным 5%	 ПНй понненная хро MaTOHOM （фоактия 0，125 0，160mm），п1po－ титанным 5% 30	стеRлннняя дітиной Im， 38 полненная хроматоном （कृ卩arimar	НяСаमоपная метaाличестая РОЛОНसа ПЛи－ но界 3，उसा०न－ ненная аломо－ гелем AI фрактия $0,25-$ 0,5 ми（актив－ нथп окисв sпи－ МИНИन ГОСT 8136－76，06pa－ ботанная 5% двуугнежислого Натрия＂$x .4$. TOCT 4201－66	
Pacxoд rasa－no－ сытеля（a30тa） पepes romonmy． cab／awh。	30 ± 5	30 ± 5	30 ± 5	$60+5$	－	35 ± 5
Расход геняя Pacxод водорода Pacxon воз духа	$\begin{aligned} & 30 \pm \% \\ & 300 \pm 50 \end{aligned}$	－			$25: 5$	
¢rama WMT－05，	5.10^{-12}	2.10^{-10}	5.10^{-10}	2． 10^{-8}	－	1.10^{-10}

Date of print 11-05-2021-09/22/48

Date of print 11-05-2021-09/22/48

4. ПРОВЕДЕНИЕ ПОВЕРРИ

4.I. Внешний осиотр.

При внепнеи осмотре проверяется комплектность, четкость м правияьность мяркировки, чистотя приборя, целостность механизмов к монтажя, ксправноств препежных деталеи. четкоств отметок м чрфрр ни дицевых панелях блоков.
4.2. Определение значения относительно青 погрепности деления внходного сигнала.
4.2.I. Ко входу блока питания детектора теппопроводности подкмючить вместо детектора источник регулируемого напряженмя, няпример ИРН-64, снабженный џифровым вольтметром, к выходу блока питанюя подклшчить потенциометр ІКСП4.
4.2.2. Ко входу бяока питания детектора теплопроводмости допус кяется подклпчять другие приборы с аналогичными характөристикями кляссе не хуже 0,5 .
4.2.3. установить минимальны коэффициент деления выходного сигнала M $_{\text {I }}$ бнока питания.
4.2.4. Подать на вход блока питания няпряжение от источникя ИРН-64, при котором показания потөнциометра КСПІ установлтся на зна чении, соответствующем 80-95 о рябочеи части шкалы.
4.2.5. Зарегистрировать значение напрятения И $_{I}$, водьтах, подаваемое на блок питания, и измерить динейой с ценой деления I мм покязяния потенциометра КСПА миллиметрах с тояностью до 0,5 мм .
4.2.6. Кратковременно изменить коэффмциент деления и возвратить к исходному значению. Операиип повчорить if раз, регистрируи кажднй раз показания потенииометра КСП4 $\mathrm{L} \delta \mathrm{j}$ милииметрах, м вм-
 ค миллиметрах:

$$
\begin{equation*}
i=5 \tag{4.1.}
\end{equation*}
$$

Date of print 11-05-2021-09/22/48

-10 -
4.2.7. При каждом значении коэффичиента денения сигнала Mi_{i} дроизвести операірии по пп 4.2.4-4.2.6. и определить средние нрпфтетические значения показании потен!иометра $\mathrm{KCII} 4 \mathcal{L}_{i}$, в миллммөтрах, и соответствуюцие им значения напряжении U_{i}, в вольтах.
4.2.8. Относительнур погрешность делөния выходного сигналя блока питания $\triangle M_{i}$ определить по формуле:

$$
\begin{equation*}
\Delta M_{i}=\left(1-\frac{L_{i} \cdot M_{i} \cdot U_{i}}{L_{1} \cdot M_{1} \cdot U_{1}}\right) \cdot 100 \tag{4.}
\end{equation*}
$$

(де: $\Delta M_{i}-$ \%.
4.2.9. Полученные знячения относительнои погрешности деления ныхидного сигнала должны быть по абсолютной велииине не более 5%.
4.3. Определения времени выхода на режим и уровня флуктуяиионных шумов нулевого сигнвла хроматогра па проиэводить при различных усповиях а зависимости от системы детектирования хроматограпа, corдасно табл. З.I.
4.3.1. Время выхода на режим проверять при скорости диаграммной денты $600 \mathrm{~mm} / \mathbf{ч}$ следуощцм образом. Включить хроматограф в изотерыическом режиме. Через 2 ч для моделей с ДИП, ДТП, ДЭЗ, ДТА, ДП\$ и через 2,5 ч дая модели с ДИР определить уровень шумов нулевого сигнала хроматографа и СКО высот пиков. Полученные знячения должны бшть: уровня шумов не более 1\% шкалы потенџиометра КСПП;

СНО высот пиков в изотермическом режиме:
с ДИП, ДТІІ при контрольном веществе пропан не более I, О\%;
с ДИР не солее 5%;
с ДЭЗ, ДТА, ДПФ не более $5,0 \%$ 。
4.3.2. Определение уровня флитуапронных шумов нулевого сигtаке хроматограф производить изотермическом режиме после выхода хроматографя на режим при скорости диаграммной ленты $600 \mathrm{mм} / \mathbf{4}$.

Date of print 11-05-2021-09/22/48

- II -
4.3.3. Уровень флуктуаиионных шумов нулевого сигнала хроматог рафа ΔX принять рявным пирине пояосы, огранкчивапмей максимальны размах нулевого сигняла частотой не менее 0,05 Ги.
Примечание. Одиночнне возмушения нулевого сигнала хроматографа
длительностыю не более I е' но половине ямплитудн одиночного возмумения (п поличестве не болев десяти в течение часа но учитмвять.
4.3.4. Полученнме значения уровня флуктуагионных шумов нулевого сигнала хромятографя должны бчть не более І\% шкалы потенциометpa KCTI4.
4.4. Определение вмплитудм выходного сигнала (А) в максимуме хро
 щонтрольного веществя в детекторе (\bar{C}), значения относительного СКО вмсот пико изотермическом режиме, значөния относительного СКО площадей пиков в изотермическом режиме, эначения относительного СКО. времен удерживания и ияотермическом режиме.
4.4.I. Порядок проведения испнтанй следуопии:

Усновия испытани хроматогряра должны соответствовать условиям, указянным в разделе 3 ая исклоиением ткал ИМТ-05 и коэффициента ослабдения внходного сигня月а бяока питания детекторя теплопроводности.
 Прмготовмть поверочине смеси, указанные табл. 4.2.

Твблмця 4.2.

Намменование детектора	Поверочная ммес	Концентратия контрольного sешествa C, $m \Gamma / \mathrm{cm}^{3}$	Примечяние
ATII	пропан гелии	$\begin{aligned} & 2,0,10^{-2} \\ & \left(1,00-2,00^{-4} \% 0.10 \text { 06 }\right) \end{aligned}$	${ }^{2}$ Смесь готовится в соответствии с "Методикой приготовления контрольных гязовых смесен AM\#0.284.002. Д. Догтускеется мспользование смесей, прмобретеннмх мя

Date of print 11-05-2021-09/22/48

Продолаение табл. 4.2.

соответствуюних заво-дах-изготовителях, имеютих указтнное содермание пропяна в гелии и погрешность, не превытв wy10 5\%

Ввод жидк х смесей производить вручную с помодыю микроптуиия "Газохром 101", объем вводимой пробы $\mathrm{I}, 10^{-3} \mathrm{~cm}^{3}$,

Ввод газовнх смесей производить вручную газовым доэятором, втодячим бдок термостатя, объъем газовой дозы $0,5 \mathrm{~cm}^{3}$:

Подожөние перөкпючะтелей поаффииента ослабления внходного сигнаяа бдока питания детекторя теплопроводности и шквлы ИМТ -0к,

Date of print 11-05-2021-09/22/48

KCl 4 ;
В процессе проведения испытаний фиксировать на диагряммнои ленте прибора КСП4 хроматографический пик, соответствующий контчи. ному веществу;

Определить время удержания этого вещества и измерить нн"оч м ширину пика ня половине его высоты.

Для определения времени удерживания измерить интервал нпемнин между моментом внода поверочной смеси в испаритель и моментом, .. ответствуюцим вершине хроматограбического пика контрольного веще Ba.

Измерение времени производить косвөнно по хроматограмме, ли неикой с ценои деления 1 мм.

Измерение ширины пикя на половине высоты производить лупой ценой деления $0, I$ мм с точносты до $0, I$ мм;

Измерение значения внсоты пика \boldsymbol{d}, в миллиметрах, пересчи тать в значения высоты пика h, в процентах шкялы потенциометря КСП14, по формуле:

$$
\begin{equation*}
h=\frac{\alpha}{2,5} \tag{4.3}
\end{equation*}
$$

Измеренные значения ширины пика на половине высоты ๆf 0,5 , миллиметрах, пересчитать в значения ширины пика на половине яысожы M. , в секундах по формуле:

$$
\begin{equation*}
M=\frac{\tau 0,5}{0,5} \tag{4.4}
\end{equation*}
$$

Определение площади пика производить толькс для модели : с помомыю интег าтора И-02 в условных өдиницах счета. Рясчеты характеристик ио пдомадям пиков для другмх моделей не пи ои: водить.

Перед проведением испнтаниі̆ допускаетст проиявести нескольки технопоняческих янаннзов. Количество төхнопогических вналияов ог-

Date of print 11-05-2021-09/22/48

- 14 -

нинтрольного вещества, но долино бытв не более десяти.
4.4 .2 . Не вход хромятографе с каждмм детектором n рая подать соответствуодую поверочную смесь $(n=10)$. Дия пжжпого из полученных хроматогряһических пиков определить вмсоту h_{l}, в процентах ткалы потенгиометря КСП4, опрөдөлить время удерживания t_{i}, в сөкундах. определить ширину пика на половине высоты Mi, в сөкундах, и определить площадь пика $S L$, у условных единицах счета.
4.4.3. Допускается из результатов мспнтаниИ искльчить анормальные результаты наблодений.

Оценку анормальности результатов наблодений производить в соотвөтствии с ГОСТ І1.002ヶ73.

Составить упорядоченнне выборки результатов наблодению

$$
\begin{align*}
& h_{1} \leq h_{2} \ldots . . \leq h_{n} \tag{4.5}\\
& S_{4} \leq s_{2} \ldots \leq s_{n} \tag{4.6}\\
& t_{1} \leq t_{2} \ldots \leq t_{n} \tag{4.7}\\
& M_{1} \leq M_{2} \ldots \leq M_{n} \tag{4.8}
\end{align*}
$$

Определить выборочнне средние по формулям:

$$
\begin{align*}
& \bar{h}=\frac{1}{n} \sum_{n=1}^{n} h_{i} \tag{4.9}\\
& \bar{S}=\frac{1}{n} \sum_{i=1}^{n} S_{i} \tag{4.10}\\
& \bar{t}=\frac{1}{n} \sum_{i=1}^{n} t_{i} \tag{4.II}\\
& \bar{M}=\frac{1}{n} \sum_{i=1}^{n} M_{i} \tag{4.L2}
\end{align*}
$$

где: $\bar{h}, \bar{S}, \bar{t}, \overline{\mathcal{M}}$ - средние ариव̆метические ия всех наблоденй значения высот пиков, плопядей пиков, времен удерживания и вирины пика на половине высоты соответственно.

-Date of print 11-05-2021-09/22/48

- 15 -

Определить виборочнне среднеквапратические отклонения (СКо: по формуяе:

$$
\begin{align*}
& \sigma_{n}=\sqrt{\frac{\sum_{i=1}^{n}\left(h_{i}-\bar{h}\right)^{2}}{n-1}} \tag{4.13}\\
& \sigma_{s}=\sqrt{\frac{\sum_{i=1}^{n}\left(S_{i}-\bar{S}\right)^{2}}{n-1}} \tag{4,14}\\
& \sigma_{t}=\sqrt{\frac{\sum_{n=1}^{n}\left(t_{i}-\bar{t}\right)^{2}}{n-1}} \tag{4.15}\\
& \sigma_{m}=\sqrt{\sum_{i=1}^{n}\left(M_{i}-\bar{M}\right)^{2}} n-i \tag{4.16}
\end{align*}
$$

 живяния и ширины пика на подовине высоты союя ветственно.

Чтобы оңенить принадлежность результатов наблюдений к даннои нормаяьной совокупнос'ти и принять решение об исключении или останлн: нии результатов наблодения в составе выборки, найти отношения

$$
\begin{align*}
& V_{h i}=\frac{\left(\bar{h}-h_{i}\right)}{\delta_{h}} \tag{4.17}\\
& V_{s_{i}}=\frac{\left(\xi-s_{i}\right)}{\sigma_{s}} \tag{4.18}\\
& V_{t_{i}}=\frac{\left(\bar{t}-t_{i}\right)}{\delta_{t}} \tag{4.19}\\
& V_{M_{i}}=\frac{\left(\bar{M}-M_{i}\right)}{\sigma_{M}} \tag{4.20}
\end{align*}
$$

гдя Vhl - отношение дяя внсот пиков,
V_{8} - - отншения для пломадей пиков,
Vel - отношение дй времен удөрживания

Резудьтаты сравнить с величиной β. взатой иа табп. 4.3.

Date of print 11-05-2021-09/22/48

Таблиця 4.3.

$\mathcal{\beta}$ 2,29 2,23 2,I8 2,II $2,03 \quad \mathrm{I}, 94 \quad \mathrm{I}, 82 \quad \mathrm{I}, 67$ I,46 \quad I,I5
Если
$\left.\begin{array}{l}V_{h i} \geq \beta \\ V_{s i} \geq \sum_{\beta} \\ V_{H i} \geq \beta \\ V_{\mu i} \geq \beta\end{array}\right\}$
то результат наблодения
hc, Si, ti, Ml анормален и должен быть исключен ия дальнейших расчетов.

Проверкө ня анормяльность подвергать результаты няблодении, мяксимально отличяпщиеся от результятов наблюдении, полученных ня одной поверочной смеси.

Примечание. В тябл. 4.3. использованы даннье из раздела 2 ГОСТ
II.002-73 (уровень значимости принят $h=0,05$).
4.4.4. Определить средние арифметические значения выходных сигнялов $\bar{h}_{1}, \bar{S}_{I}, \bar{t}_{1}$ и ширины пика ня половине высоты \bar{M}_{I}, при работе $с$ каждым детектором по формулам:

$$
\begin{align*}
& \bar{h}_{1}=\frac{1}{h_{1}} \sum_{i=1}^{n} h_{i} \tag{4.2I}\\
& \bar{t}_{1}=\frac{1}{h_{1}} \sum_{i=1}^{n} t_{i} \tag{4.22}\\
& \bar{S}_{1}=\frac{1}{h_{1}} \sum_{i=1}^{n} S_{i} \tag{4.23}\\
& \vec{M}_{i}=\frac{1}{h_{0}} \sum_{i=1}^{n} M_{i} \tag{4.24}
\end{align*}
$$

где: $h l, t_{L}, S_{i}, M_{i} \quad i$-тые аначения высоты пиков, времени удеркивания, площади пинов и ширины пикя ня половине высоты соответственно после исключения анормальнвх результатов наблюдении;
h_{1} - количество результатов наблодении, полученное на каждои поверочноя смеси посяя исклочения анормяльных резуяьтатов наблюдя ний.
4.4.5. Определить знячөние концентрятии контрольного веществя в детекторе $\overline{\mathrm{C}}$ по формуле:

Date of print 11-05-2021-09/22/48

$$
\begin{equation*}
\bar{c}=\frac{G}{M_{6}} \tag{4.25}
\end{equation*}
$$

где: $\overrightarrow{\mathrm{C}}-\mathrm{r} / \mathrm{c}$
6 - количество контрольного вепұества в Γ.
Ноличество контрольного веществе (G) в граммах для жидких смесей определить по формуде:

$$
\begin{equation*}
G=10^{-3} v_{q} \cdot c \tag{4.26}
\end{equation*}
$$

где: $V g$ - объем дозы в cm^{3};
C - концентрация контрольного вещества в пробе в мг/ cm^{3}
Ноличество пропана (G) в граммах для газовых смесей определять по формуле:

$$
\begin{equation*}
G=\frac{0,01 \cdot P V_{\text {vg }} \cdot M M_{r c}}{R(t+273)} \tag{4.27}
\end{equation*}
$$

где: P - атмосферное давление в Па;
Vrg - объем газовой пробы в cm^{3};
М - волекулярная масса пропана в г/моль (44 г/моль);
CrC - концентрация пропана в смеси в \% об.
R - газовая постоянная $-8,3 \times 10^{6} ; \frac{\text { Па. } \text { см }^{3}}{\text { моль. грядуус }}$
t - температура окружапщии среды в ${ }^{\circ} \mathrm{C}$.
4.4.6. Опрөделить минимальное допустимое значение амплитуды выходного сигнала А в максимуме хроматографического пика при средней концентрации нонтрольного вецества в детекторе $\overline{\mathrm{C}}$ по формуле:

$$
\begin{equation*}
A=K \cdot \bar{C} \tag{4.28}
\end{equation*}
$$

где: А - в \% щкалы потенциометра КсГ4;
K - коэффиициент, нормируемыи для каждого детектора ло соответотвуюпим контрольным веществам и имеюций следуоцие значения: дия диП при контрольном веществе пропан I. $10^{\text {II }}$ С. \% щкали r для дтП при контрольном вецестве пропан $2.10^{8} \frac{\text { C.\% пкалия }}{r}$

Date of print 11-05-2021-09/22/48

- 18 -

для ДЭЗ при контрольном веществе линдан $3.10^{\text {I2 }} \frac{\text { C. wкалы }}{\Gamma}$ для ДИР при контрольном веществе линдан 5. 10 IT $\frac{\text { C. \% шкалн }}{\Gamma}$ для ДИР при контрольном веместве метафос $5.10^{10} \frac{\mathrm{C} \text {. \% мкалн }}{\mathrm{r}}$ для ДТА при контрольном веществе метафос $3.10^{\text {I2 }} \frac{\mathrm{C} . \% \text { мкалы }}{5}$ для ДТА при контрольном веществе пропязин $5.10^{I I} \frac{\mathrm{C} \text {. \% пкалы }}{\mathrm{r}}$ для Дпп при контрольном веществе метафос $5.10^{9} \frac{\text { C. \% шкалы }}{\Gamma}$
4.4.7. Действительное значөние амплитудв выходного сигнала в максимуме хроматографического пина при средней концентраприи контрольного ведествя в детекторе $\overline{\mathrm{C}}$ слөдует определять по формуля:

$$
\begin{equation*}
A_{g}=\frac{M_{i}}{M_{1}} \cdot h_{1} \tag{4.29}
\end{equation*}
$$

где $A g-$ \% мкалы потенциометра КСП4, Mi - положение переключателей козффициента ослабления выхолчого сигнала блока питания детектора теплопроводности или ИМТ-05 по п. 3.5 .
M_{1}-положение пөреключателей козффичиента ослабления выходного сигнала блока питания детектора теплопроводности или шкалы ИМТ-05 по п. 3.5 .
4.4.8. Действительноө значение амплитуды ввходного сигнала должно быть не менөе минимально доптустимого знячөния амплитуды выходного сигнала (A) рассчитанного по формуле (4.28)
4.4.9. Определить значение относительного СКО высот пиков. 6 hi СКО плопадей пиков 6 \$1. СКО времен удерживания бै। 1 при работе с кяжднм летактором по формулем:

$$
\begin{align*}
& \sigma_{h_{1}}=\frac{100}{\bar{h}_{1}} \sqrt{\frac{\frac{n_{1}}{5}\left(\bar{h}_{1}-h_{i}\right)^{2}}{n_{1}-1}} \tag{4.30}\\
& \sigma_{S_{1}}=\frac{100}{\bar{s}_{1}} \sqrt{\frac{\sum_{i}\left(\bar{S}_{1}-S_{i}\right)^{2}}{n_{1}-1}} \tag{4,3I}
\end{align*}
$$

$$
\sigma_{t_{1}}=\frac{100}{\vec{t}_{1}} \sqrt{\frac{\sum_{1}^{n_{1}\left(\tilde{t}_{1}-t_{i}\right)^{2}}}{n_{1}-1}}
$$

гдө: $\sigma h_{1}, 6 s_{1}, \sigma_{t},-$ в $\%$
Подученные значения б $^{\text {а }}$ должны быть не болеө:
дия ДИЛ и дтा - I,0\%
для ДИР $\quad-5,0 \%$
для ДЗЗ,ДТА, дПП -
Полученные значения 6S, , додмнн быть не более 3\%.
Пояученные значения δt_{1}, должны быть не более:
длм диП и дтП - $1,0 \%$,
для ДИР, ДЭЗ,ДТА,ДПФ- I,5\%.
4.б. Определение эначеиия относительного СКО высот пиков, СКО площадей пиков, и СКО времен удерживания в режиме програмаиирования температур с дөтектором ионизации в пламени.
4.5.1. Проверку произвести при следуюпих условиях:

Насадочные металлические колонки (2шт.) длинои I м, заполненны хроматоном N-AW-DMCS (фракция $0,125-0,160$ мм), пропитанным 5% SE - 30.

Расход газа-носитөля через колонки по (30 ± 5) $\mathrm{cm}^{8} /$ мин
Расход водорода дмя Дй (30 ± 5) $\mathrm{cm}^{3} / \mathrm{m} и$.
Расход воздуха для ДИП (300 ± 50) $\mathrm{cm}^{3} /$ мин
Tемпөратура начальнои ступени термостата колонок $140^{\circ} \mathrm{C}$.
Выдержка времени на начальной ступени 2 мин.
Температура конечной ступени тершостата колонок $200^{\circ} \mathrm{C}$.
Выдерика вүемөни на конечной ступени 2 мин.
Скорость подвема температуры $12^{\circ} \mathrm{C}$ /мин.
Tеипература детекторов $220^{\circ} \mathrm{C}$.
Темлературя испаритедей $250^{\circ} \mathrm{C}$.
Констрольная смесь - тексановый раствор додекана и гетрацекана моннентрацией для ДИП - додекан $0,8 \mathrm{mг} / \mathrm{cm}$, тетрадекан $1,28 \mathrm{mг}^{2} / \mathrm{cm}^{3}$

Date of print 11-05-2021-09/22/48

для ДТТ - додекан $20 \mathrm{~m} / \mathrm{cm}^{3}$, тетрадекан $32 \mathrm{mг} / \mathrm{cm}^{3}$.
Гексановые растворы смеси готовятся в соответствии с методикой AMH0.284.004 Д.

Ввод смеси осуцесттвлять согласно пуннту 4.4.I.
Положение переклочателей блока питания детектора теплопроводности и шкалы ИМТ-0,5 установить такими, при которых внсоты хроматограф̆ических пиков соотвегствуюфих додекану и тетрядекану превышaíт 40% шкалы потенциометра кСП-4.

Скорость диаграммнои ленты на потенциометре КСІІ4 - 1800 мм/и.
4.5.2. Определение высот хроматографических пиков, времен удерживания и площадей пиков и исключение анормальных результатов набліодений производить согласно п. 4.4.3.

Перед проведением испытаний допускцется произвести несколько технологических анализов. Количество технологических анализов огряничивается прекращением нарастания следующих друг за другом пиков контрольных веществ, но не долхно быть болеө десяти.
4.5.3. На вход хроматографе в рекиме программирования температур n раз подать поверочную смесь ($n=10$) и определить средния ариф метические эначения высот пиков \bar{h}_{1}, времен удерживания \bar{t}_{1}, площадей пиков \bar{S}_{1}, контрольных веществ по формулам (4.21), (4.22), (4.23).
4.5.4. Определичь СКО выходных сигналов по формулам (4.30), (4.3I), (4.32)

Полученные значения относитөльного среднего квацратического отидонения (СКО) высот пиков долкны быть не более 4%.

Полученные значения относительного СКО площадеИ пиков дощжны быть не более 6\%.

Полученные значения относительного СКО времен удерживания должны быть не более 3%.

Date of print 11-05-2021-09/22/48

- 21-

5. ОФОРМЛЕНИЕ РЕЗУЩЬТАТОВ ПОВЕРКИ
6. I. Положительные результаты поверки должны аформляться путвы записи в паспорте на хроматограй резулртатов поверки, заверенныя понерителем, с нанесөнием оттиска поверительного клейа согласно TOCT 8.042-72.
