

КОМИТЕТ СТАНДАРТОВ, МЕР И ИЗМЕРИТЕЛЬНЫХ ПРИБОРОВ при СОВЕТЕ МИНИСТРОВ СССР

ИНСТРУКЦИЯ 184—62

ПО ПОВЕРКЕ АМПЕРМЕТРОВ, ВОЛЬТМЕТРОВ, ВАТТМЕТРОВ: И ВАРМЕТРОВ

Издание официальное

Инструкция переработана Всесоюзным научно-исследовательским институтом метрологии им. Д. И. Менделеева взамен инструкции 184—54; утверждена Комитетом стандартов, мер и измерительных приборов 3 декабря 1962 г. п. введена в действие 1 пюня 1963 г.

ИНСТРУКЦИЯ 184 — 62

по поверке амперметров, вольтметров, ваттметров и варметров

Инструкция предусматривает поверку амперметров, вольтметров, ваттметров и варметров всех систем, предиазначенных для измерения соответствующих величии постоянного или переменного тока в диапазоне частот от 10 до 20 000 гц.

Ииструкция охватывает поверку вновь изготовлениых, выпускаемых из ремоита и находящихся в эксплуатации приборов.

Соблюдение инструкции обязательно для всех организаций и предприятий, производящих поверку этих приборов.

I. ТЕХНИЧЕСКНЕ ТРЕБОВАНИЯ, ПРЕДЪЯВЛЯЕМЫЕ К ПРИБОРАМ, 'И ДОПУСКАЕМЫЕ ПОГРЕШНОСТИ

1. Амперметры, вольтметры, ваттметры и варметры, а также шуиты и добавочные сопротивления к этим приборам должны удовлетворять всем требованиям ииструкции. Вновь выпускаемые триборы должиы удовлетворять также требованиям действующих стандартов и утвержденным техническим условиям.

Приборы, выпущенные по ранее утвержденным техническим условиям и стандартам, которые заменены новыми, поверяются на соответствие тем техническим условням и стандартам, по которым ни были выпущены. Приборы, на которых не обозначен стандарт неизвестно каким техническим условиям они соответствуют, отновтся по внешнему виду к определенному классу точности согласто табл 1 приложения 5 и поверяются на соответствие этому глассу.

Приборы без обозначения класса точности, но имеющие зеркальную полоску на шкале для устранения параллакса, следует этносить к классу 0,2, если шкала имеет длину порядка 300 мм; к классу 0,5, если шкала имеет длину порядка 130 мм, и к классу 1,0 в случае малогабаритиых приборов.

Приборы, не имеющие обозначения класса точности и зеркальной полоски для устранения параллакса, следует относить к

Переиздание, Двгуст, 1967, г.

Miles 1

классу 1,0 или 1,5 в случае ножевидиой стрелки и к классу 2,5 или 4,0 в случае кольевидной стрелки.

 Класс точности с большими допускаемыми погрешностями (из двух указанных) при данной форме стрелки приписывается малогабаритным приборам.

Импортные приборы, не имеющие обозначения класса, должны удовлетворять требованиям табл. 1 приложения 5.

- 2. На всех приборах, находящихся в эксплуатации, должны быть обязательно указаны:
- а) заводской иомер; для миниатюрных и малогабаритных приборов, а также приборов классов 2,5 н 4,0 допускается вместо заводского иомера указание даты выпуска;
- б) наименование прибора или сокращенное обозначение измеряемой им ведичины;
- в) предел измерения (для ваттметров и варметров также номинальные значения тока и напряжения);
 - г) условиое обозиачение рода тока;

д) номинальная частота, если она отличается от 50 гц, или номинальная область частот (для приборов переменного тока).

Кроме того, при выпуске из ремонта обозначается класс прибора, наносится условный знак системы прибора, указывается год ремонта, а также наименование или марка ремонтирующей органнзации

3. Прибор не должен иметь таких дефектов, которые могут привести к ошибкам в измерениях или дальнейшей его порче.

Прибор призиается непригодиым к применению также, если:

- а) испорчен корректор и не допускает регулировки нулевого положения указателя;
- б) разбивка шкалы на деления между основными числовыми отметками проведена явио не в соответствии с характером всей шкалы. Например, явио неравномерио при равномерном характере шкалы или не в соответствии с характером интервалов между числовыми отметками при неравномерной шкале.
- 4. Классы точности взаимозаменяемых калиброванных шунтов, добавочных сопротнвлений и измернтельных трансформаторов, включаемых с приборами для расширения пределов измерения должиы быть не инже указанных в табл. 1.

Таблица 1

Клесс приборя	Класс шунта или добавочного сопротивления	Класс измерительного трансформатора
0,05	0,02	0,02
0,1	0,05	0,05
0,2	0,1	0,1
0,5	0,2	0,2
1,0	0,5	0,2 или 0,5
1,5	0,5	0,5 или 1,0
2,5	0,5	1,0

5. Погрешности и вариация приборов не должны превышать значений, указанных в технических условиях или стаидартах, по которым были выпущены эти приборы (см. табл. 1 и 3 приложения 5).

Условия, при которых определяются основные погрешности при-

боров, даны в пп. 83—116.

6. Изоляция между всеми электрическими цепями и корпусом прибора или вспомогательной частью, а также между отдельными цепями должиа удовлетворять требованиям стандартов или технических условий, по которым эти приборы были выпущены (см. табл. 2 и 5 приложения 5).

II. ОПЕРАЦИН, ПРОИЗВОДИМЫЕ ПРН ПОВЕРКЕ, И ПРИМЕНЯЕМЫЕ СРЕДСТВА

- 7. Для обеспечения правильности передачи зиачений электрических единиц от эталонов к рабочим приборам следует соблюдать порядок поверки, предусмотренный поверочными схемами (приложение 2).
- 8. Номенклатура приборов, подлежащих государственной или обязательной поверке, и сроки поверки приборов устанавливаются действующими правилами Комитета стандартов, мер и измерительных приборов при Совете Министров СССР об организации и проведении поверки мер и измерительных приборов.

9. При государственной и обязательной поверке должиы проводиться: внешний осмотр прибора, проверка влияния наклона, определение основных погрешностей, а также вариации показаний

прибора и иевозвращение указателя к иулевой отметке.

В киловольтметрах, кроме того, испытывают прочность изоляции первичной цепн осветительного трансформатора каждого прибора по отношению к корпусу.

При поверке вновь изготовлениых или отремонтированных приборов испытывается также прочность изоляции, измеряется сопротивление параллельных цепей прибора, определяются погрешности ваттметров и варметров при коэффициенте мощности равном нулю.

- 10. Приборы, находящиеся в эксплуатации, помимо обязательной или государствениой поверки, подлежат периодической поверке, осуществляемой ведомственными учреждениями под общим надзором местных органов Комитета стандартов, мер и измерительных приборов при Совете Министров СССР.
- 11. Вся аппаратура, применяемая для поверки приборов (потенциометры, показывающие приборы, катушки сопротивления, нормальные злементы, делители напряжения и пр.), должиа иметь свидетельства и должиа быть внесена в список образцовой аппаратуры данного учреждения.

2 - 1805

ии, поверка

Виешиий осмотр

12. При осмотре проводится проверка соответствия приборов и их вспомогательных частей требованиям пп. 1-4.

В случае иесоответствия прибора хотя бы одному из перечнслениых требований его признают непригодным к применению,

13. У всех приборов, не снабженных уровнем, проверяется влияние наклона на нулевой отметке шкалы. При отклонении невключенного прибора от указанного на ием рабочего положения в любом иаправлении на угол, нормируемый соответствующими стандартами (см. табл. 4 приложения 5), смещение указателя с нулевой отметки не должно превосходить величииы, допускаемой для приборов его класса точности,

Выбор метода поверки

14. В соответствии с требованиями ГОСТ 1845-59 допускаемая погрешность образцового прибора в том случае, когда поправки к его показаниям не учитываются, должна быть по крайней мере в 5 раз меньше допускаемой погрешиости поверяемого при-

Возможно применение образцовых приборов с допускаемой погрешностью в 2,5 раза меньше основной погрешности поверяемого прибора. При этом необходимо введение поправок к показаниям образцового прибора во всех случаях, когда погрешности поверяемого прибора отличаются от допускаемых на величину, близкую к допускаемой погрешности образцового прибора.

Применение образцовых приборов с большей допускаемой по-

грешностью не разрешается.

15. Определение погрешности приборов классов 0,05 ÷ 0,5 прнгодных для постоянного тока, производится компенсационным методом на постоянном токе1.

Определение погрешностей приборов классов 0,1 ÷ 0,5, пригодных для постояниого и перемениого тока, производится также на постоянном токе компенсационным методом1 если известно, что изменение показаний прибора, вызванное переключением его с постоянного на переменный ток номинальной частоты (или область частот), не превосходит $\frac{1}{3}$ K_n , где K_n — число, обозначающее класс точности. Если поверочные органы не располагают такими даиными, то прибор должеи поверяться на постояином и перемен-

Наряду с потеициометрами постоянного тока допускается применять в качестве образцовых приборов устройства, на выходе которых воспроизводятся определенные заданные значения величины, измеряемой поверяемым прибором.

ном токе иоминальной частоты. Поверка приборов из переменном токе проводится термоэлектрическим методом¹.

Определение погрешности приборов классов 0,1; 0,2 и 0,5, предназначенных только для переменного тока, производится термоэлектрическим методом.

16. Погрешности приборов классов 1,0; 1,5; 2,5 и 4,0 определяются методом сличения с образцовыми приборами непосредствен-

ной оценки или любым более точным методом.

17. Допускается также поверка всех приборов класса 0,5 методом сличения с образцовым прибором класса 0,1. Поверка рабочих приборов класса 0,5 может производиться методом сличения с образцовым прибором класса 0,2 с длиной шкалы ие менее 300 мм при условии введения поправок к показаниям последних.

Поверка компенсационным методом на постоянном токе

18. Компенсационный метод основан на уравнивании двух включенных навстречу напряжений, измеряемого и известного, и осуществляется при помощи потенциометра постоянного тока. Падение напряжения создается при прохождении рабочего тока по измерительному сопротивлению потенциометра. Рабочий ток в потенциометре устанавливается по э. д. с. нормального элемента E_N , который служит в данном случае образцовой мерой.

19. Для поверки измерительных приборов могут применяться потенциометры, обеспечивающие совместно с образцовыми мерами и приборами определение действительного значения измеряемой величины для конечного значения шкалы поверяемого прибора с погрешностью, не превышающей 0,1% для приборов класса 0,5; 0,04% — для приборов класса 0,5; 0,04% — для приборов класса

са 0,1 и 0,01% — для приборов класса 0,05.

Допускается примененне автоматических и полуавтоматических потенциометров, если онн в комплекте с образцовыми мерами н

приборами удовлетворяют указанным условиям.

20. Если указанные в свидетельствах действительные значения напряжения N, измеряемого потенциометром, коэффициента D делителя и сопротивления r_0 образцовой катушки отличаются каждое от своего иоминального значения более чем на $^{1}/_{10}$ K_{n} , где K_{n} — численное обозначение класса поверяемого прибора, то следует пользоваться действительными значениями этих величин².

21. В качестве образцовой меры электродвижущей силы при поверке приборов компенсационным методом могут применяться

образцовые иормальные элементы I и II классов.

 2 Если сумма относительных погрешностей значений (в %) N, D и r_0 без учета их знаков не превышает $^1/_5$ $K_{\rm ft}$ %, то можно пользоваться номинальными

значениями.

¹ С разрешения Комитета стандартов, мер и измерительных приборов при Совете Министров СССР возможно применение других методов поверки приборов переменного тока, если они обеспечивают необходимую точность определения погрешностей поверяемых приборов в заданном интервале частот.

- 22. Источники постоянного тока, служащие для питання потенциометрических установок, и потенциометрические установки в целом, примеияемые для поверки амперметров, вольтметров и ваттметров, должиы удовлетворять требованиям методических указаний № 188 «По приемке потенциометрических установок постоянного тока».
- 23. При поверке компенсационным методом приборов классов 0,1 н 0,2 следует измерять температуру нормального элемента с точностью до одного градуса и, подсчитав э. д с данного элемента при этой температуре по его температурной формуле, изменить соответственно значение установочного сопротивления потенциометра.

Поверка вольтметров

24. Поверка вольтметров с пределами измерения, не превышающими верхнего предела измерения потенциометра, а также поверка миллиамперметров, проводится по схеме на рис. 1.

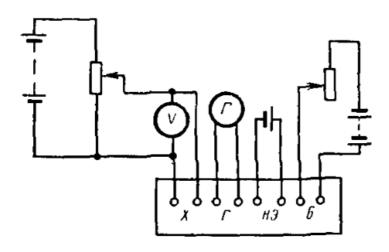


Рис. I Схема поверки милливольтметров и вольтметров с пределами измерений, не превышающими предела измерения потенциометра

На данном потенциометре допускается поверка милливольтметров с такими пределами измерения, для которых погрешность потенциометра при наибольшем значении измеряемой величины, выраженная в процентах от данного показания, менее $^{1}/_{5}$ K_{n} , где K_{n} — число, обозначающее класс точности поверяемого прибора.

Действительное зиачение иапряжения, соответствующее даиному показанию вольтметра, равно показанию потенциометра, выраженному в вольтах.

При поверке милливольтметра по схеме рис. 1 присоединение его к зажимам X потенциометра должно осуществляться с помощью калиброванных проводов или проводов, имеющих равиое им сопротивление.

25. Если требовання второго абзаца п. 24 ие выполняются, то поверка милливольтметра может быть проведена по схеме рис. 2.

Милливольтметр подключается к потенциальным зажимам об-

разцовой катушки сопротивления r_2 . Потенциометром измеряют напряжение N между потенциальными зажимами образцовой катушки сопротивлення r_1 . Снла тока, проходящего по этим последовательно соединенным катушкам сопротивления, устанавливается

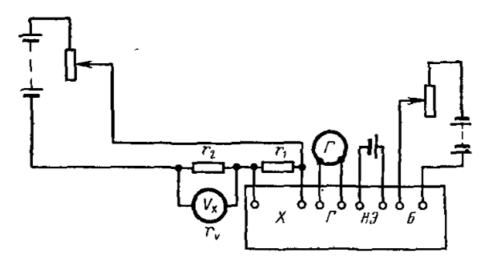


Рис 2. Схема поверки милливольтметров компенсациопным методом

такой, чтобы получить нужное отклонение поверяемого вольтметра. Действительное значение напряжения $U_{\mathbf{z}}$, соответствующее данному показанию вольтметра, вычисляется по формуле

$$U_{x} = N \frac{r_{2}}{r_{1}} \cdot \left(1 - \frac{r_{2}}{r_{v}}\right),$$

где $r_{\rm s}$ — сопротивление милливольтметра вместе с калиброванными проводами.

Рекомендуется сопротивление катушки r_1 выбирать равным 0,01 ом, при этом отношение $\frac{r_2}{r_1}$ должно быть не более 0,01, а сопротивление r_2 таким, чтобы отсчет на потенцнометре, соответствующий конечному значению шкалы поверяемого прибора, был не более верхиего предела измерения потенциометра и чтобы в то же время выполнялось условие второго абзаца п. 24.

При поверке милливольтметров, предназначенных для примеиения с наружными шунтами, присоединение их к зажимам образцовой катушки сопротивления следует осуществлять теми же проводами, которыми они будут присоединяться к шунтам, или проводами, имеющими равное им сопротивление.

26. Поверка вольтметра с коиечным значением шкалы, превышающим верхиий предел измерения потенциометра, проводится по схеме рис. 3. В этом случае потенциометром измеряют напряжение, снимаемое с делителя напряжения ДН.

Коэффициент деления *D* делителя изпряжения выбирается так, чтобы снимаемое с него измеряемое потеициометром напряжение *N* для коиечного зиачения шкалы поверяемого прибора не превос3-1805

ходило иомниального напряжения потенциометра и в то же время выполнялось условие второго абзаца п. 24.

Действительное значение иапряжения, соответствующее данному показанию вольтметра, вычисляется по формуле

$$U_n = D \cdot N$$
.

27. Вольтметры вновь изготовлениые и после ремонта, предназначенные для работы со взаимозаменяемыми добавочными сопротивлениями, должиы поверяться на всех отметках шкалы по току потребления в соответствующих схемах включения.

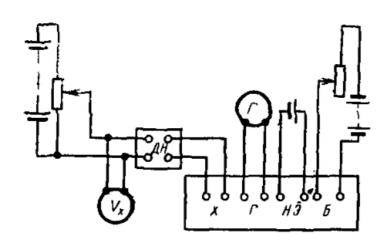


Рис. 3. Схема поверки вольтметров с конечным значением шкалы, превышающим верхний предел измерения потенциометра

28. При применении в качестве образцовых автоматических или ступенчатых потенциометров, обеспечивающих непосредственный отсчет поправки в делениях шкалы поверяемого прибора, вычисление действительного значения измеряемой величины не требуется.

При использовании в качестве образцовых приборов устройств, на выходе которых получают определенное заданное значение измеряемой величины, допускается определение поправок по показанням поверяемого прибора.

Поверка амперметров

29. Поверка амперметров компенсациониым методом проводится по схеме, изображенной на рис. 4.

Амперметр (или амперметр совместно с шунтом) включается последовательно с образцовой катушкой сопротивления, падение иапряжения между потенциальными зажимами которой измеряется потенциометром.

Действительное значение силы тока (см. п. 28) вычисляется по формуле

 $I_{1}=\frac{N}{r_{06}},$

где N — показание потеициометра s;

rob — значение сопротивления образцовой катушки,

30. Образцовые катушки сопротивления, применяемые при поверке амперметров, выбираются так, чтобы падеиие иапряжения на них, соответствующее конечному значению шкалы поверяемого прибора, не превосходило верхнего предела измерения потенциометра и чтобы в то же время удовлетворялись требования второго абзаца п. 24. При этом мощиость, рассенваемая в катушке, ие должна превышать допускаемой величины.

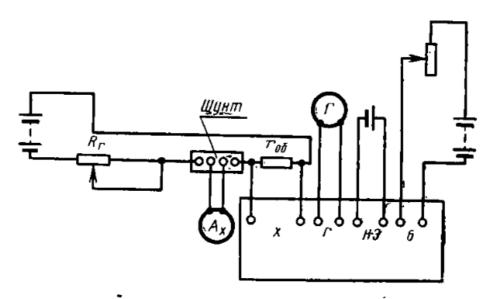


Рис. 4. Схема поверки амперметров компенсационным методом

В табл. 2 приведены рекомендуемые значения сопротивлений образцовых катушек при применении пятидекадного потеициометра с верхним пределом измерения не ниже 1,0 в и при поверке приборов классов не точнее 0,2.

Таблица 2

Копечное эначение шкалы для амперметров или номинальный ток ваттметров в а	Номинальное значение сопротивления рекомендуемой катушки в ом с наибольшей допустимой мощностью катушки не ниже 1 вт
От 30 (50) до 20	0,001
» 10 (15) » 3	0,01
» 3 (5) » 1	0,1
» 1 » 0,1	1
» 0,1 » 0,01	10
» 0,01 » 0,001	100
» 0,001 » 0,0001	1000
» 0,0001 » 0,00001	10000
» 0,00001 » 0,000001	100000

Примечание. В скобках указаны значения токов при применении катушек сопротивления, для которых допустимая мощность установлена в 3 вт.

31. Амперметры, примеияемые с отдельными калиброванными шунтами, должны поверяться раздельно. В этом случае измерители поверяются в соответствии с пп. 24 и 25, а шуиты — согласно п. 100.

Поверка ваттметров

32. Поверка ваттметров компенсационным методом проводится по схеме на рис. 5.

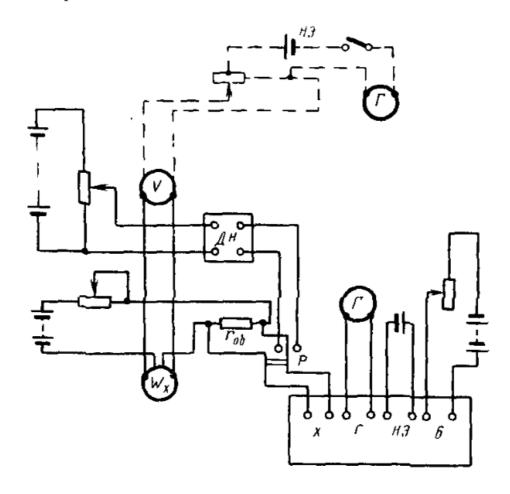


Рис. 5. Схема поверки ваттметров компенсационным методом

Примечание. Контроль цепи напряження может производиться с помощью вспомогательного потенциометра или магазина и нормального элемента (по схеме, показанной на рис, 5 пунктиром), а также с помощью потенциометра со специальной схемой для контроля напряжения.

Порядок поверки:

а) по показаниям вольтметра регулируют напряжение так, чтобы оно было равно номинальному для данного ваттметра, и производят точное измерение иапряжения с помощью потенциометра постояиного тока, подключаемого к выходным зажимам делителя иапряжения $\mathcal{L}H$;

- б) изменяя силу тока в последовательной цепи ваттметра, устанавливают его стрелку на поверяемую отметку шкалы;
- в) переключают потеициометр на зажимы образцовой катушки сопротнвления и, измеряя с его помощью падение напряжения на катушке, определяют силу тока, проходящего по последовательной цепи поверяемого ваттметра;
- г) отключают потенциометр от образцовой катушки сопротивления и присоединяют его к делителю напряжения для повторного нзмерения напряжения;
 - д) вычисляют действительное значение мощности по формуле

$$P_{A} = \frac{N_{f}}{r_{col}} \cdot N_{H}D_{h}$$

где $P_{\mathtt{A}}$ — действительное значение мощности; N_1 — показание потенциометра при присоединении его к зажимам образцовой катушки сопротивления в θ ;

 r_{ob} — значение сопротивления образцовой катушки;

 $N_{\rm H}$ — показание потеициометра при присоединении его к делителю напряжения;

D — коэффициент делителя напряжения.

Для ваттметров вновь изготовлениых и после ремоита, предназиачениых для работы со взаимозаменяемыми добавочными сопротивлениями, необходимо дополнительно проверять отклонение от номинального тока потребления параллельной цепи при номинальиом напряжении и токе в последовательной цепи.

При этом отклонение, выраженное в процентах от номинального значения, не должно превышать половины величины допускаемой основной погрешности.

33. При поверке ваттметров необходимо тщательно следить за постоянством тока и напряжения путем повториых измерений. Применение вспомогательной аппаратуры (см. примечание к п. 32) дает возможность в течение всей поверки поддерживать иапряжение неизменным, отличающимся от номинального не более чем иа 0,02 или 0,05% (в зависимостн от класса точности поверяемого прибора).

При постояистве напряжения нет надобности вычислять действительное зиачение мощности, а достаточно определить действительное значение силы тока по формуле

$$I_{\rm m}=\frac{N_I}{r_{\rm o6}},$$

где N_1 — показание потенциометра при присоединении его к зажимам образцовой катушки сопротивления в в;

 $I_{\rm A}$ — действительное зиачение тока в a. Погрешность вычисляется следующим образом:

Выбор образцовой катушки для определения действительного значения силы тока производится в соответствии с требованиями п. 30.

$$\gamma = \frac{I_{\rm H}^{'} - I_{\rm A}}{I_{\rm E}} \cdot 100\%,$$

где $I'_{\rm H}$ — номинальный ток для данного показання ваттметра; $I_{\rm H}$ — номинальный ток для конечного значения шкалы ваттметра.

Для ваттметров класса 0,1 значение напряжения должно устанавливаться с погрешиостью, не превосходящей 0,01%, поэтому оно должно измеряться с помощью потенциометра, обеспечивающего эту точность измерения. При этом иеобходимо вводить поправки к показаниям потенциометра и делителя напряжения. Однако и в этом случае точное значение напряжения должно определяться только один раз, причем иеизмениость значения напряжения может фиксироваться с помощью вспомогательной цепи, изображенной на рис. 5.

34. При наличин специальной аппаратуры поверка ваттметров компенсационным методом может быть выполнена по методу «сум-

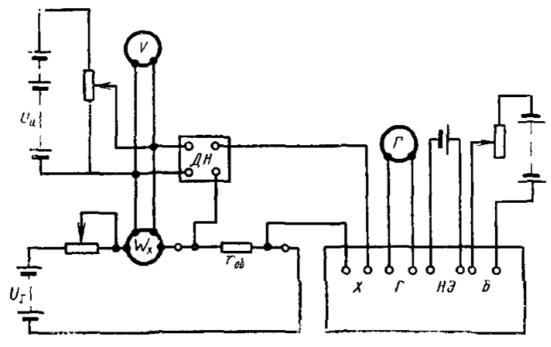


Рис. 6. Схема поверки ваттметров с помощью компенсатора по методу «суммы»

мы». При этом компенсационным методом измеряется не отдельно ток и напряжение, а сумма падений напряжений, снятых с образцовой катушки сопротивления, включенной последовательно в цепь тока, и с делителя напряжения, включенного параллельно с цепью напряжения поверяемого прибора (рис. 6). При этом коэффициент делителя необходимо выбрать так, чтобы суммируемые напряжения отличались между собой не более чем на 1%. При этом методе не требуется строго следить за постоянством тока и напряжения.

Значение мощности, измеренное по методу «суммы», выражается формулой

 $P_{\rm A}=\frac{DN^2}{4r_{\rm of}},$

где N — показание потенциометра в e.

Для этого метода иужен 4-декадный делитель напряжения или регулируемое образцовое сопротивление r_{06} , при помощи которых можио обеспечить равенство между падением напряжения иа образцовой катушке сопротивления и вторичным напряжением делителя напряжения. В соответствии с методикой поверки ваттметров падение напряжения на образцовой катушке постоянного значения изменяется от точки к точке, поэтому в процессе поверки следует также изменять коэффициент деления делителя.

Поверка приборов на переменном токе термоэлектрическим методом компарирования

35. Принцип термоэлектрического метода компарирования заключается в замене измерения переменного тока измерением равного ему по действующему зиачению постоянного тока.

Равенство действующих значений тока или напряжения устанавливается по неизменности т. э. д. с. термопреобразователя. Равенство действующих значений мощности устанавливается по неизменной разиости т. э. д. с. двух термопреобразователей.

Постоянный ток, эквивалентный измеряемому переменному току, определяется с помощью потенциометра или, при менее точных измерениях, образцовыми показывающими приборами постоянного тока.

Точность измерения с помощью термоэлектрического метода зависит как от характеристик элементов цепей компарирования, так и от их взаимиого расположения, защиты и экранировки.

Для поверки термоэлектрическим методом следует применять специальную аппаратуру, основным узлом которой являются термокомпараторы (например, ТЭК, ТЭКМ, Т119 и ТЭКФ — последиий для малых значений измеряемых тока или напряжения).

36. Термоэлектрическим методом производится поверка приборов классов 0,1 0,2 и 0,5, предназначенных только для переменного, а также для постоянного и переменного токов, если характер погрешности приборов прн переключении их из цепи постоянного в цепь переменного тока иеизвестен (см. п. 15).

При отсутствии образцовых приборов для поверки методом сличения на повышенной частоте приборы менее точных классов могут также поверяться термоэлектрическим методом. При этом действительное значение измеряемой величины может определяться иа постоянном токе по показывающему образцовому прибору.

37. Стабильность источников переменного тока, служащих для питания термоэлектрических компарирующих установок, должна быть такой, чтобы изменение силы тока в цепи поверяемых приборов не превосходило 0,02% за 1 мин.

Поверка вольтметров

38. Поверка вольтметров с пределами измерения от 0,5 до 300 в термоэлектрическим методом проводится по схеме на рис. 7.

39. Добавочное сопротивление $r_{\rm A}$, включаемое последовательно с нагревателем термопреобразователя, выбирается таким, чтобы для конечного значения шкалы приборов $V_{\rm max}$ ток в нагревателе был приблизительно равеи номинальному току термопреобразователя $I_{\rm H}$:

$$r_{\rm x}=\frac{V_{\rm max}}{I_{\rm H}}.$$

Порядок поверки:

а) поверяемый вольтметр и нагреватель преобразователя совместно с добавочным сопротивлением $r_{\rm A}$ (переключатель Π в положении I) включают в цепь переменного тока;

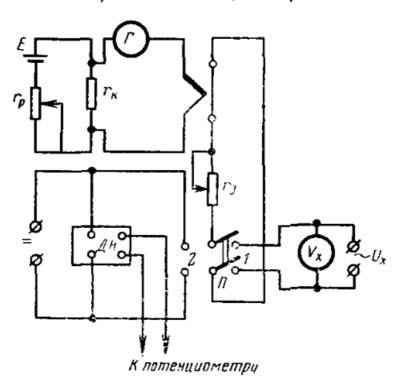


Рис. 7. Схема поверки вольтметров с пределами измерения от 0,5 до 300 в гермоэлектрическим методом

 б) регулируя напряжение источника питания, устанавливают указатель поверяемого прибора на поверяемую отметку шкалы;

в) с помощью регулируемого сопротивления r_p в цепи вспомогательного источника E добиваются компенсации т. э. д. с. преобразователя падения напряжения на сопротивлении r_{κ} ;

г) иагреватель термопреобразователя с добавочным сопротивлением переключают в цепь постоянного тока (переключатель Π в положении 2);

д) напряжение постоянного тока регулируют так, чтобы получить ту же т.э.д.с., которая была зафиксирована на перемениом токе, т. е. добиваются того, чтобы при иеизменном значении сопротивления $r_{\rm p}$ показаиие гальванометра Γ было нулевым;

е) с помощью потенциометра постоянного тока и делителя напряження $\mathcal{L}H$ измеряют полученное напряжение.

Действительное значение напряжения, соответствующее данному показанию прибора, вычисляется по п. 26.

40. Поверка вольтметров повышенной частоты с конечным значением шкалы, превышающим 300 в, проводится по схеме на рис. 8.

Поверяемый прибор включается параллельно первичной обмотке образцового трансформатора иапряжения, аттестованного при той частоте и в том диапазоне напряжения, при которых поверяется вольтметр.

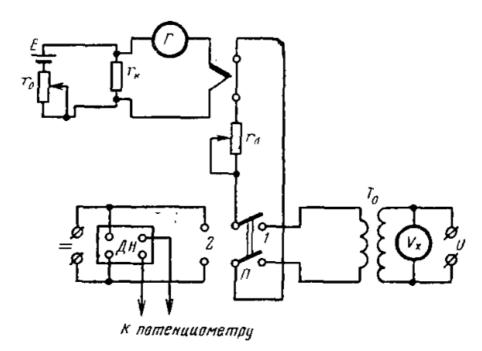


Рис. 8. Схема поверки вольтметров конечным значением шкалы, превышающим 300 в термоэлектрическим методом

При переключателе Π в положении I нагреватель термопреобразователя с последовательно включенным добавочным сопротивлением $r_{\mathbf{x}}$ включается во вторичную цепь образцового трансформатора напряжения. Добавочное сопротивление $r_{\mathbf{x}}$ выбирается в соответствии с номинальным вторичным напряжением трансформатора.

Порядок поверки тот же, что в п. 39.

Действительное значение напряжения, соответствующее данному показанию прибора, определяется путем умножения значения, получениого по формуле, приведениой в п. 26, на действительное значение коэффициента трансформации трансформатора напряжения.

41. Поверка вольтметров с конечным значением шкалы, меяьшим 0,5 в, и милливольтметров может проводиться с помощью термоэлектрических компараторов с фотокомпенсационными усилителями по схеме на рис. 9.

4-1805

Поверяемый вольтметр включается параллельно образцовому безреактивному сопротивлению r_0 , значение этого сопротивления выбирается таким, чтобы при токе примерно в 10 раз меньшем иоминального для даниого термопреобразователя падение иапряжения на нем было равно конечному значению шкалы прибора.

Порядок поверки:

- а) операции те же, что в п. 39;
- б) операции те же, что в п. 39;
- в) операции те же, что в п. 39;
- r) нагреватель термопреобразователя включают в цень постоянного тока (переключатель Π в положении 2);

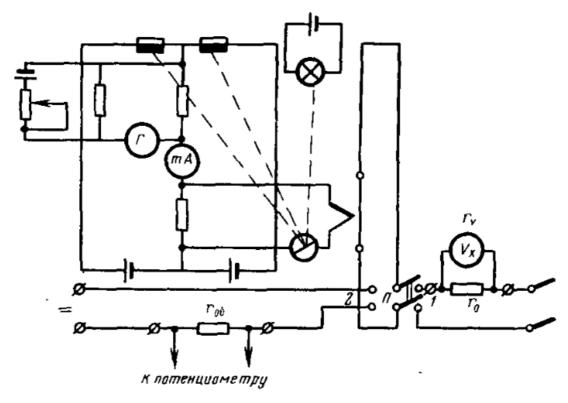


Рис. 9. Схема поверки милливольтметров и вольтметров с конечным значением шкалы меньшим 0,5 в термоэлектрическим методом

- д) иапряжение постояниого тока регулируют так, чтобы получить ту же т.э. д. с., которая была зафиксирована на переменном токе;
- е) с помощью потенциометра постоянного тока измеряют падение напряжения на образцовой катушке сопротивления $r_{\rm ob}$.

Если отношение сопротивления цепи вольтметра и сопротивление r_0 более 5000, то действительное значение напряжения $U_{\rm x}$, соответствующее данному показанию поверяемого прибора, будет

$$U_{x} = \frac{N}{r_{00}} \cdot r_{0}$$

Если указаиное отиошение лежит в пределах 1000 ÷ 5000, то

$$U_{A} = \frac{N}{r_{ob}} \cdot r_{o} \left(1 - \frac{r_{o}}{r_{v}} \right).$$

42. Поверка вольтметров при отношении сопротивления цепи вольтметра к сопротивлению r_0 менее 1000 может проводиться по схеме на рис. 10.

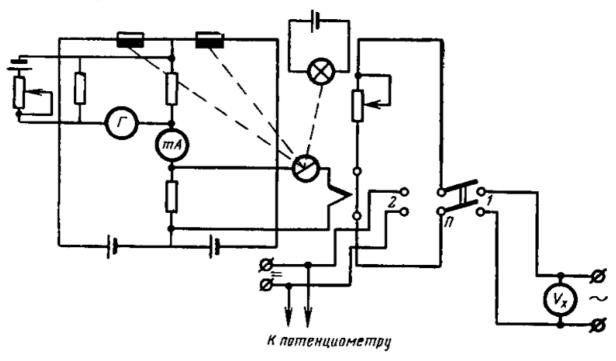


Рис. 10. Схема поверки милливольтметров термоэлектрическим методом

Порядок операции тот же, что в п. 39.

Действительное значение напряжения $U_{\rm A}$, соответствующее даниому показанию поверяемого прибора, будет равио показанию потенциометра постоянного тока.

Поверка амперметров

43. Поверка амперметров с коиечиым значением шкалы от $10\ ma$ до $10\ a$ проводится термоэлектрическим методом по схеме на рис. 11.

Номинальный ток шуита должен быть равен номинальному току поверяемого прибора или может превышать его не более чем на 25%.

- 44. Порядок поверки:
- а) поверяемый амперметр и шунтированный нагреватель преобразователя включают в цепь переменного тока (переключатель Π в положении I);
- б) регулируя ток, устанавливают указатель прибора на поверяемую отметку шкалы;
- в) с помощью регулируемого сопротивления $r_{\rm p}$ в цепи вспо- 4^*

могательного источника E добиваются компенсации τ . э. д. с. преобразователя падения напряжения на сопротивлении r_{κ} ;

г) шунтированный нагреватель термопреобразователя компаратора переключают в цепь постоянного тока (переключатель Пв положении 2);

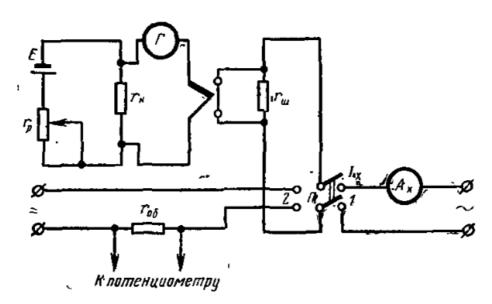


Рис. 11. Схема амперметров с конечным значением шкалы от 10 ма до 10 а термоэлектрическим методом

- д) регулируют постояниый ток так, чтобы получнть ту же т.э.д.с., которая была зафиксирована при перемениом токе;
- е) с помощью потенциометра постоянного тока измеряют значение полученного тока.

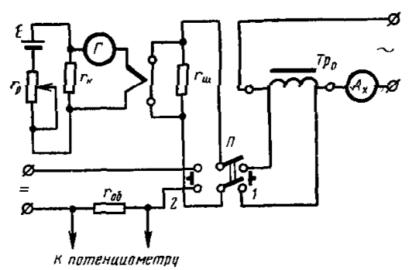


Рис. 12. Схема поверки амперметров с конечным значением дікалы, превышающим 10 а термоэлектрическим методом

Действительное значение тока, соответствующее даиному показанию прибора, вычисляют по формуле, указанной в п. 29.

45. Поверка амперметров переменного тока для повышенной частоты тока с верхним пределом измерения, превышающим 10 а, проводится по схеме на рис. 12.

Поверяемый прибор соединяется последовательно с первичной обмоткой образцового трансформатора тока Tp_0 , аттестованного при той частоте, при которой проводится поверка амперметра. При переключателе Π в положении I шунтированный нагреватель термопреобразователя включается в цепь вторичной обмотки образцового трансформатора. Шунт к нагревателю термопреобразователя выбирается в соответствии с номинальным вторичным током трансформатора. Конструкция переключателя Π должиа обеспечивать замыкание накоротко вторичной обмотки трансформатора при отключении цепи шунтированного нагревателя.

Порядок поверки тот же, что в п. 44.

Действительное значение тока, соответствующее данному показанию прибора, определяется путем умножения значения, полученного по формуле, указанной в п. 29, на действительный коэффициент трансформации образцового трансформатора.

46. Поверка приборов с конечным значением шкалы, меньшим 10 ма (до 20 мка), проводится по схеме на рис. 13.

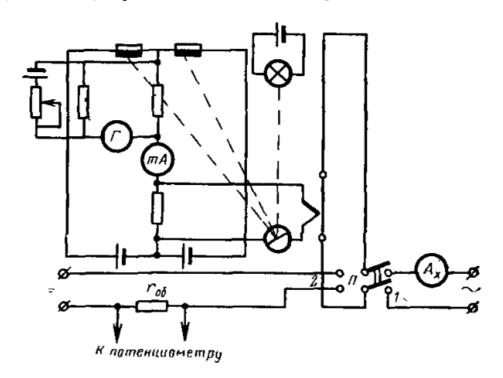


Рис. 13. Схема поверки амперметров с конечным значением шкалы меньшни 10 ма (до 20 мка) термоэлектрическим методом.

Поверяемый прибор A_x включается в цепь переменного тока и при переключателе Π в положении 1 последовательно с ним включается нагреватель термопреобразователя.

Порядок поверки тот же, что в п. 44.

Поверка ваттметров

- 47. Поверка ваттметров термоэлектрическим методом проводится по схеме на рис. 14 при помощи термоэлектрического компаратора мощности.
- 48. Выбор шунта $r_{\rm m}$ для термоэлектрического компаратора мощностн проводится в соответствин с п. 43, а выбор добавочного сопротивления $r_{\rm m}$ по номниальному напряжению поверяемого прибора.

Порядок поверки ваттметров при коэффициенте мощности, равном единице (cosp = 1):

- а) включают поверяемый ваттметр W_x и нагреватели термопреобразователей с шунтом и добавочным сопротивлением в цепь переменного тока (переключатели Π_1 и Π_2 в верхнем положении);
- б) регулируют напряжение источника питания так, чтобы оно стало равным номинальному напряжению ваттметра; контролируют напряжение по вольтметру V;

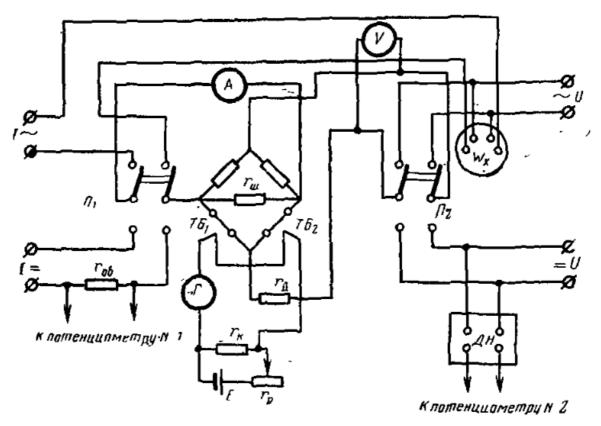


Рис. 14. Схема поверки ваттметров при 0,5 < совф < I термоэлектрическим методом

- в) по показаниям амперметра A устанавливают ток, равный номинальному току ваттметра;
- г) сохраняя ток и напряжение равными номинальным значениям, наменяют угол сдвига фаз между током и напряжением до тех пор, пока соѕф не станет равным единице, т. е. пока указатель 20

поверяемого ваттметра не установится на крайнюю отметку шкалы:

- д) с помощью регулнруемого сопротивления r_p в цепи вспомогательного источника E добиваются компенсации разности т.э.д.с. двух преобразователей TB_1 и TB_2 падеинем напряжения на сопротивлении r_k ;
- е) нагреватели термопреобразователей с шунтом и добавочным сопротивлением включают в цень постоянного тока (переключатели Π_1 н Π_2 в нижнем положении);
- ж) регулнруют напряжение постоянного тока до тех пор, пока оно не станет равным номинальному, точное значение напряжения постоянного тока должно измеряться с помощью потенциометра № 2;
- з) регулируя постоянный ток, устанавливают значение т. э. д. с., которое было зафиксировано на переменном токе;
- и) нзмерение мощности на постоянном токе проводится в порядке, описанном в пп. 32, 33.
- 49. Ваттметры с номинальным значением соѕф меньшим единицы поверяются при номинальных значениях соѕф и напряжения и при токах, соответствующих числовым отметкам шкалы прибора.
- 50. Установка номинального значения коэффициента мощности проводится по поверяемому ваттметру при номинальных напряжении и токе
- 51. Ваттметры с номниальным коэффициентом мощности меньшим 0,5 поверяют по схеме на рис. 15, в которой один из термо-

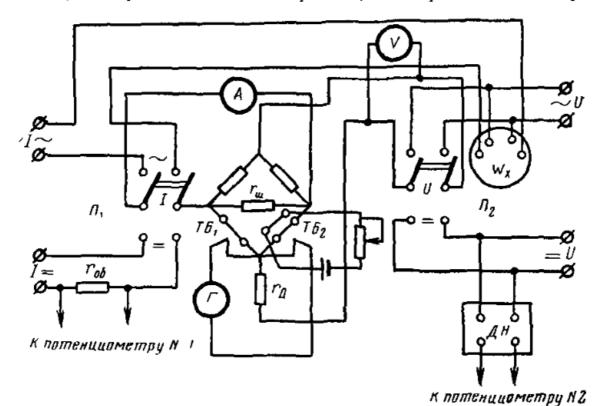


Рис. 15. Схема поверки ваттметров при $0,1 < \cos \phi < 0,5$ термоэлектрическим методом

преобразователей выполнен с двумя нагревателями. По дополнительному нагревателю пропускают вспомогательный постоянный ток.

Порядок поверки:

- а) операцин те же, что в п. 48;
- б) операции те же, что в п. 48;
- в) операцин те же, что в п. 48;
- г) сохраняя ток и напряжение равными иоминальным значениям, изменяют угол сдвига фаз между током и напряжением до тех пор, пока соѕф не станет равным номинальному, т. е. пока стрелка поверяемого ваттметра не установится на крайнюю отметку шкалы;
- д) регулируют силу тока в цепи дополнительного нагревателя до тех пор, пока ток в цепи встречно включенных термопар не станет равным нулю;
 - е) ставят переключатели Π_1 н Π_2 в нижнее положение;
- ж) регулируют напряжение постоянного тока до тех пор, пока оно не станет равным номинальному, точное значение иапряжения постоянного тока должно нзмеряться с помощью потенциометра № 2;
- з) регулируют постоянный ток до тех пор, пока при иеизменном токе в дополиительном нагревателе не добьются отсутствия тока в цепи термопар;
- и) нзмерение мощности на постоянном токе проводится в порядке, описанном в пп. 32, 33.
- 52. При коэффициенте мощности, равном нулю, поверяются ваттметры всех классов после ремонта.

Коэффициент мощности, равиый нулю, устанавливается по нулевому показанию образцового прибора или термоэлектрического компаратора при номинальных значениях силы тока и напряжения.

Отклонение указателя поверяемого прибора от нулевой отметки не должно при этом превосходить величии, допускаемых для данного класса и типа приборов.

Поверка приборов на постоянном н переменном токе методом сличении

- 53. При поверке методом сличения в качестве образцовых следует применять приборы с допускаемой погрешностью, не превышающей указанной в п. 14. Во всех случаях класс образцового прибора должен быть не ниже указанного в табл. 3.
- 54. Поверка амперметров, вольтметров, ваттметров н варметров методом сличения проводится, как правило, на переменном токе. На постоянном токе поверяют приборы, предназначенные только для постоянного тока, нли для постоянного и переменного, если отсутствуют соответствующие образцовые приборы переменного тока (см. п. 15).
- 55. При поверке приборов магнитоэлектрической системы на постоянном токе в качестве образцовых должны применяться при-

22

Страница 25

боры этой же системы и приборы электродинамической или электромагнитной систем при поверке приборов всех других систем (кроме магнитоэлектрической).

Таблица 3

	Класс образцового прибора	
Класс коверяемого прибора	без введения поправок	с ввежением
0,5	0,1	0,2
1,0 1,5 2.5	0,2 . 0,2 0,5	0,5 1,01
4,0	0,5	1,51

Допускается применение приборов магнитоэлектрической системы в качестве образцовых для поверки приборов других систем, если источником питания являются аккумуляторные или гальванические батареи.

56. В качестве образцовых приборов, применяемых для поверки методом сличения, нужно выбирать такие приборы, вариация показаний которых не превышает половины допускаемой погрешности.

57. Конечные значення шкал образцовых и поверяемого приборов должны отличаться не более чем на 25%. Если отсутствуют образцовые приборы с соответствующим пределом измерення, может быть выбран прибор с более высоким пределом измерення, но по своему классу он должен быть соответственно более точным.

В этом случае для выбора образцового прибора можно пользоваться следующими формулами:

а) образцовым прибором пользуются без учета поправок:

$$K_0 \leqslant \frac{K_{\rm n}}{5} \cdot \frac{A_{\rm n}}{A_0};$$

б) образцовым прибором пользуются с учетом поправок:

$$K_{\rm o} \ll \frac{K_{\rm n}}{2.5} \cdot \frac{A_{\rm n}}{A_{\rm o}}$$

где A_n н A_0 — соответственно конечные значення шкалы поверяемого и образцового приборов;

 K_n н K_0 — численные обозначення классов поверяемого и образцового приборов.

58. Частота переменного тока при поверке должна равняться указанной на приборе; при отсутствин этого указания поверка проводится при частоте 50 гц.

Если на шкале указан днапазон частот, определять основную погрешность можно при любой частоте этого диапазона.

Приборы, в отношенин которых известно, что изменение показаний для двух крайних частот относительно средней частоты дна-

5 - 1805

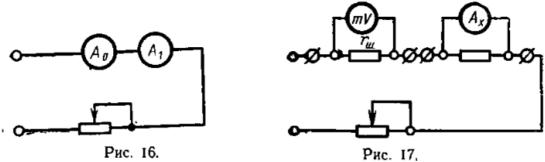
¹ Применение приборов классов 1,0 и 1,5 в качестве образцовых допущено в виде исключения при поверке приборов на переменном токе повышенной частоты и приборов с малыми пределами измерения.

пазона не превосходит $^{1}/_{3}$ K_{n} , где K_{n} — чнсло, обозначающее класс прибора, рекомендуется поверять в зависимостн от внда прибора на постоянном или переменном токе частотой 50 гц. Определение погрешностей во всей номинальной области частот для таких приборов, выполняемое с помощью компараторов или образцовых приборов для соответствующих частот, рекомендуется производить только при государствениых испытаниях.

Приборы, в отношении которых поверочные органы не располагают даниыми об изменении их частотной погрешности или для которых эти изменения больше $^{\rm I}/_{\rm 3}$ $K_{\rm n}$, следует поверять при двух предельных зиачениях частоты.

59. При поверке переносных приборов, за исключением электронных и термоэлектрических приборов классов 1,0÷4,0, их предварительный прогрев не требуется.

Термоэлектрические приборы классов 1,0 — 4,0 должны быть подвергнуты предварительному нагреву номинальным током или напряжением в течение 5 мин. Электронные приборы должны поверяться после того, как они были подвергнуты нагреву при номинальном напряжении источника питания в течеиие времени, указанного в инструкции по эксплуатации.


- 60. Щитовые приборы должны поверяться после того, как они в течение 15 мин находились под номинальной нагрузкой.
- 61. С разрешения Комитета стандартов, мер и измерительных приборов при Совете Министров СССР допускается при определении основной погрешности при выпуске из производства предварительный нагрев приборов не производить, внося соответствующие поправки.

Приборы, изменение показаний которых при длительном вклю чении не превышает ¹/₅ основной погрешности, предварительному нагреву могут не подвергаться.

62. Приборы, предназначенные для кратковременной или повторно-кратковременной работы, должны поверяться сразу после включения без предварительного нагрева.

Поверка амперметров и вольтметров

63. Поверка амперметров и вольтметров методом сличения с образцовыми проводится по схемам на рис. 16—21.

Схемы поверки амперметров методом сличения

64. Действительные значения силы тока $I_{\rm A}$ по показаниям образцовых амперметров при непосредственном их включении по схеме на рис. 16 вычисляются по формуле

$$I_{\rm R} = C_{\rm H}I(\alpha + \Delta) a$$
.

Допускается вычисление значения поправки Δ_n к показанням поверяемого прибора без определения действительного значения по формуле

 $\Delta_{n} = n (\alpha + \Delta) - \alpha_{n}.$

В формулах приняты следующие обозначения:

Сыл — номинальная цена деления шкалы образцового прибора в амперах на деление;

 а — отсчет по шкале образцового прибора в делениях шкалы;

 — поправка образцового прибора в деленнях для данной отметки шкалы;

 a_n — показанне поверяемого прибора в делениях шкалы; $n=rac{a_{\mathrm{nH}}}{a_{\mathrm{H}}}$ — отношение чисел деления шкал поверяемого a_{nH} , и образцового a_{n} приборов, соответствующих их конечным отметкам.

65. Действительное значение силы тока $I_{\rm A}$, определяемое по показаниям образцового амперметра, представляющего собой мил-

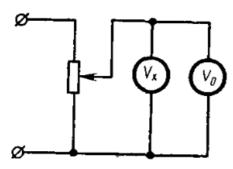


Рис. 18. Схема поверки вольтметров методом сличения

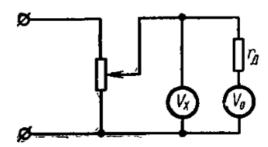


Рис. 19. Схема поверки вольтметров методом сличения

ливольтметр с взаимоз меняемым шунтом (рис. 17), вычисляется по формуле

 $I_{A} = \frac{C_{HH} \cdot (\alpha + \Delta)}{r_{HH}} \cdot 10^{-3} a,$

где $C_{\rm ни}$ — номинальная цена делення шкалы образцового милливольтметра в милливольтах на деление;

а — отсчет по шкале образцового прибора в делениях;

 — поправка мнлливольтметра в делениях для данной отметки шкалы;

 r_{w_n} — действительное значение сопротивления шунта в ом.

66. Действительное значение напряжения по показаниям образцового вольтметра (рнс. 18) определяется по формуле

5* 25

$$U_{\mathtt{A}} = C_{\mathtt{H}_{\overline{\mathtt{V}}}}(\alpha + \Delta) \, \mathbf{B}$$

где $C_{\text{н}v}$ — номинальная цена деления шкалы образцового вольтметра в вольтах на деление;

 отсчет по шкале образцового прибора в делениях шкалы;

 — поправка образцового прибора в деленнях для данной отметки шкалы.

Допускается значение поправки Δ_n к показанням поверяемого прибора вычислять без определення действительного значения по той же формуле, что дана в п. 64.

67. Действительное значение напряження, определяемое по показанням образцового вольтметра, включаемого с отдельным добавочным сопротивлением (рнс. 19), вычисляется по формуле

$$U_{A} = C_{H_{\overline{v}}}(\alpha + \Delta) \cdot \frac{r_{A} + r_{\pi p}}{r_{\pi p}} \theta,$$

где $C_{\text{н}\sigma}$ — иоминальная пена деления шкалы образцового вольтметра в вольтах на деление;

а — отсчет по шкале образцового прибора в деленнях;

 — поправка образцового вольтметра в делениях для данной отметки шкалы;

 $r_{\rm np}$ — действительное значение сопротивления образцового прибора в ом;

 $r_{\rm A}$ — действительное значение дабавочного сопротивления в om.

68. При включении образцовых приборов через трансформаторы тока или напряжения (рис. 20 и 21) действительное зиачение первичного тока I_{π} или напряжения U_{π} вычисляется по формулам:

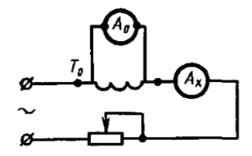


Рис. 20. Схема поверки амперметра методом сличения

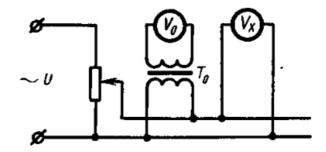
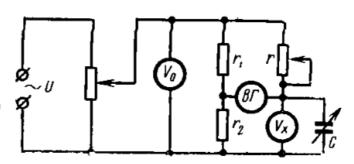


Рис. 21. Схема поверки вольтметров методом сличения

$$\begin{split} I_{\text{A}} &= C_{\text{H}I} \cdot (\alpha + \Delta_I) \cdot \mathcal{K}_I \cdot \left(f - \frac{f_I}{100} \right); \\ U_{\text{A}} &= C_{\text{H}v} \cdot (\alpha + \Delta_v) \cdot \mathcal{K}_v \cdot \left(f - \frac{f_v}{100} \right). \end{split}$$

где C_{HI} , C_{Hv} — номинальная цена деления шкал образцового амперметра или вольтметра соответственно;

 K_I , K_v — номинальные коэффициенты трансформации измерительных трансформаторов;


 $f_I,\ f_v$ — погрешности коэффициентов трансформации трансформаторов тока или напряжения в процентах;

 Δ_I , Δ_v — поправка в делениях шкалы для амперметра и вольтметра соответственно.

69. В формулах (пп. 64—68) могут не учитываться погрешности образцовых приборов и вспомогательной аппаратуры, если эти погрешности не превосходят ¹/₅ допускаемой погрешности поверяемого прибора.

70. Поверка вольтметров, предназначенных для переменного тока частоты 50 гц при сильно отличающихся пределах измерения поверяемого и образцового приборов проводится по схеме на рис. 22, предназначенной для случая, когда конечное значение шкалы образцового прибора A_0 больше поверяемого A_r .

Рис. 22. Схема поверки вольтметров, предназначенных для переменного тока частоты 50 гц, при различных конечных значениях шкал поверяемого и образцового приборов

Сопротивления r_1 и r_2 , из которых составлен точный делитель напряжения, должны быть подобраны так, чтобы

$$\frac{r_2}{r_1+r_2}=\frac{A_x}{A_0}.$$

Регулнруя переменное сопротивление r и емкость C, добиваются нулевого отклонения вибрацнонного гальванометра; при этом действительное значение напряжения на зажимах вольтметра $U_{\rm A}$ будет равно напряжению на сопротивлении $r_{\rm 2}$ и может быть вычислено по формуле

$$U_{\mathtt{A}} = U_{\mathtt{O}} \frac{r_{\mathtt{2}}}{r_{\mathtt{1}} + r_{\mathtt{2}}},$$

где U_0 — показанне образцового вольтметра.

Если учитываются поправки к показаниям образцового прибора и погрешность сопротивлений делителя, то действительное значение вычисляется по формуле

$$U_{A}=C_{Hv}(\alpha+\Delta)\cdot\frac{r_{2A}}{r_{1A}+r_{2A}},$$

где $C_{\rm He}$ — иоминальная цена деления образцового вольтметра в вольтах на деление;

показанне в делениях шкалы;

 Δ — поправка образцового вольтметра в делениях для данной отметки шкалы;

 r_{1g} ; r_{2g} — действительное значение (по свидетельству) образцовых сопротивлений r_1 и r_2 на перемениом токе.

Если коиечное значение шкалы поверяемого вольтметра больше. чем верхний предел образцового, то приборы нужно поменять местами. Тогда действительное значение напряжения будет:

$$U_{A} = U_{o} \cdot \frac{r_{1} + r_{2}}{r_{2}}$$

или

$$U_{\mathrm{A}} = C_{\mathrm{H}_{\mathrm{U}}}(\alpha + \Delta) \cdot \frac{r_{\mathrm{1A}} + r_{\mathrm{2A}}}{r_{\mathrm{2A}}}.$$

В качестве сопротивлення г служит обычный реостат, сопротивление которого

$$r \approx r_v \cdot \frac{r_1}{r_2}$$
.

Значение емкости, служащей для компенсации реактивности вольтметра, определяется по формуле

$$C \approx \frac{L_v}{r_v^2}$$

- где r_v , L_v соответственно сопротнвление в омах и индуктивность в генри вольтметра, имеющего меньший пределизмерения.
- 71. Амперметры с отдельными шунтами следует при поверке соединять теми же проводниками, которыми они будут соединяться при эксплуатации, или проводниками, имеющими такое же сопротивление.
- 72. Когда в цепи потенциальных проводников нет встроенных в шунт добавочных сопротнвлений, допускается раздельная поверка милливольтметров и отдельных шунтов, причем милливольтметр поверяется методом сличении с образцовым, а шунт в соответствии с п. 100 инструкции.

Поверка миллиамперметров переменного тока

73. Поверка миллиамперметров, предназиаченных для переменного тока частоты 50 гц, при различных конечных значениях шкал поверяемого и образцового приборов проводится по схеме на рис. 23.

Значения образцовых сопротивлений r_2 и r_3 (нзмернтельных катушек сопротивления) выбираются из соотношения $\frac{A_0}{A_x} \approx \frac{r_3}{r_2}$, где A_o и A_x конечиые значения шкал образцового и поверяемого приборов, причем указанное соотношение должно выдерживаться с погрешностью не более 25%.

После установки стрелки прибора A_x на поверяемую отметку шкалы (сопротивлением r_1) производится уравнивание напряжений на сопротивлениях r_2 и r_3 при помощи регулирующего устройства PY и фазорегулятора ΦP до тех пор, пока ток в вибрационном гальванометре $B\Gamma$ не уменьшится до нуля.

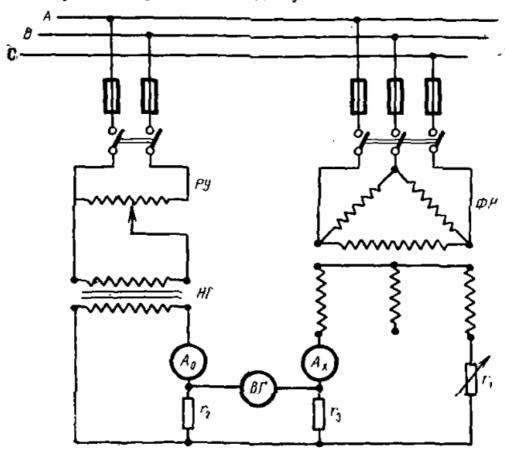


Рис. 23. Схема поверки милливольтметров, предназначенных для переменного тока частоты 50 гц при различных конечных значениях шкал поверяемого и образцового приборов

Действительно значение тока определяется по формуле

$$I_{n}=I_{o}\cdot\frac{r_{2}}{r_{3}},$$

где I_0 — действительное значение тока, измеряемого образцовым прибором.

Поверка киловольтметров переменного тока

74. Поверка киловольтметров переменного тока проводится после испытания прочности изолящин первичной цепи трансформатора, питающего осветитель каждого прибора, по отношению к корпусу. Испытательное напряжение должно прикладываться между закороченными входами цепи осветителя и корпусом прибора. Условия испытания приведены в пп. 106—109.

Схема включения приборов при поверке дана на рис. 24.

На схеме приняты следующие обозначения:

РУ — регулирующее устройство;

ОВ — защитное ограждение установки высокого напряжения;

 $T\rho$ — повышающий трансформатор;

Тро — образцовый трансформатор напряження;

V_ж— поверяемый прибор;

 V_0^{π} — образцовый прибор.

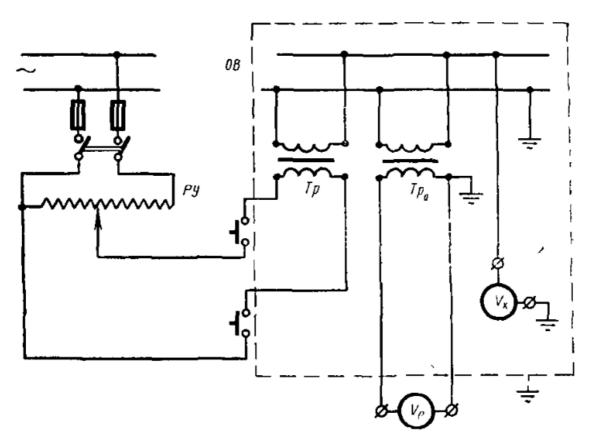
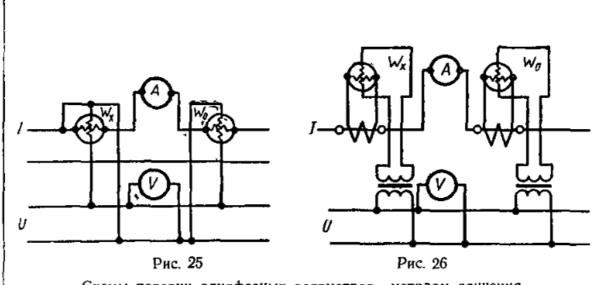


Рис 24. Схема поверки киловольтметров переменного тока


Действительное значение напряжения определяется по формуле, приведениой в п. 68.

Примечание. При проведении поверки должны строго соблюдаться правила техники безопасности. Все соединения с контуром заземления должны быть выполнены надежно.

Поверка ваттметров и варметров

75. Схемы поверки ваттметров н варметров приведены на рнс. 25—33.

Формулы для определения действительных значений мощиости в зависимости от схемы включения даны в графе 8 сводной табл. 4. Условия, при которых поверяются ваттметры и варметры методом сличения, указаны в пп. 53—62.

Схемы поверки однофазных ваттметров методом сличения

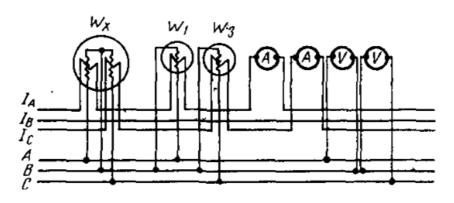


Рис. 27. Схема поверки двухэлементиого ваттметра методом сличения

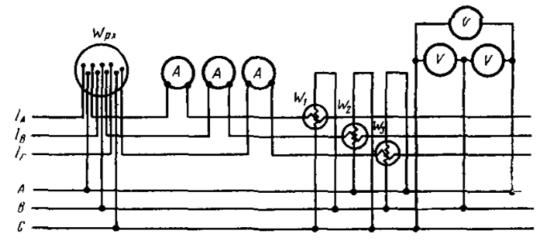


Рис. 28. Схема поверки трехэлементного варметра по трем ваттметрам методом сличения

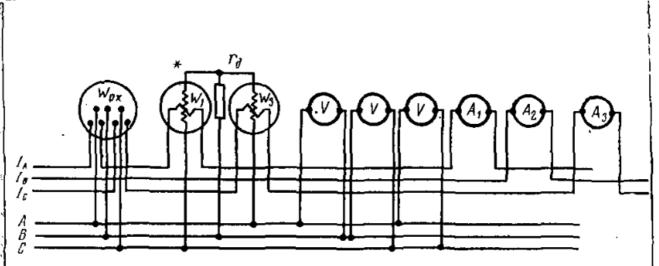


Рис. 29. Схема поверки двухэлементного варметра по двум ваттметрам методом сличения

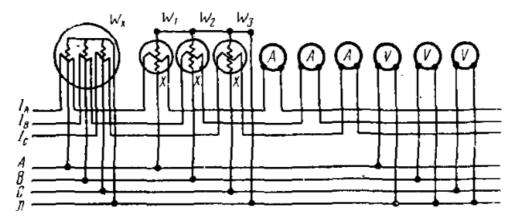


Рис. 30. Схема поверки ваттметра для четырехпроводной сети по трем ваттметрам методом сличения

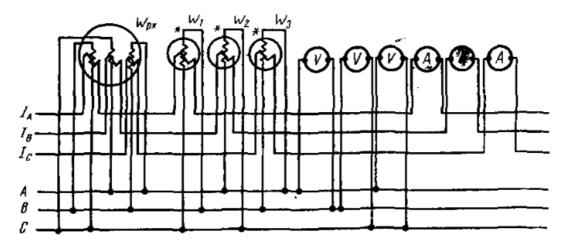


Рис. 31. Схема поверки трехэлементного варметра по трем образцовым ваттметрам

76. Определение погрешности трехфазных ваттметров и варметров с двумя или тремя измернтельными элементами проводится при равномериой нагрузке фаз по схемам на рис. 27—31.

Примечание. При поверке ваттметров по схеме на рис. 29 используются два ваттметра класса 0,5 и одно сопротивление $r_{\rm A}$ класса 0,2. Сопротивления параллельной цепи ваттметров $r_{\rm 0}$ могут отличаться не более чем на 0,2%. В противном случае будет иметь место погрешность, выраженная в процентах, равная

$$\Delta = 0.2(a + b) + 0.3(a - b) \operatorname{ctg} \varphi$$

где a и b отклонения в процентах сопротивлений r_1 и r_2 параллельной цепи ваттметров W_1 и W_2 от r_{A} . Отклонения a и b считаются положительными, если значения r_1 и r_2 превышают r_{A} .

- 77. Кроме того, проводится дополнительная поверка для одной отметки шкалы при неравномерной нагрузке, при номинальном коэффициенте мощности и следующих условиях:
- а) для щитовых приборов при токе 50% от номинального в одном элементе и при номинальном токе в остальных элементах;
- б) для переносных приборов при токе равном нулю в одном элементе и при номинальном токе в остальных. Изменение показаний приборов при неравномерной нагрузке по сравнению с показаниями при равномерной нагрузке не должно превышать допускаемой основной погрешности.
- 78. Схема включения образцовых приборов должна, как правило, соответствовать схеме включения отдельных злементов поверяемого ваттметра. Когда схема включения образцовых приборов отличается от схемы включения отдельных элементов поверяемого прибора или когда неизвестно, совпадают ли эти схемы, при поверке необходимо обеспечить симметрию токов и напряжения с погрешностью, не превосходящей $^{1}/_{5}$ K_{n} %, где K_{n} численное обозначение класса поверяемого прибора. Величиной $^{1}/_{5}$ K_{n} % следует руководствоваться при выборе контрольных амперметров и вольтметров.
- 79. При поверке многоэлементных ваттметров, предназначенных для измерения активной мощности, вместо указанного в п. 87 может быть применен метод, при котором ие требуется большого числа образцовых ваттметров и контрольных приборов. В этом случае соединяют последовательно токовые цепи многоэлементного ваттметра и параллельно цепи напряжения. При этом создаются условия поверки многоэлементных ваттметров при равиомерной нагрузке без учета взаимного влияния элементов друг на друга.

Схема поверки двухэлементного ваттметра приведена на рис 32, трехэлементного — на рис. 33

При поверке по этим схемам максимальное отклоиение ваттметров при $\cos \varphi \approx 1$ достигается при мощности, равной $\frac{P_{\rm H}}{n}$ (где $P_{\rm H}$ — номинальная мощность для данного предела измерения, n — число элементов поверяемого ваттметра).

80. Для определення влияния отдельных элементов друг на друга (в двухэлементном ваттметре) следует в одном из элементов поверяемого двухэлементного ваттметра оставить включенным

ток и выключить напряжение, а во втором выключить ток и оставить включенным напряжение. При номинальных значениях тока и напряжения определить смещение стрелки с иулевой отметки шкалы. Оно не должно превосходить допускаемого для прибора данного класса при сосфета.

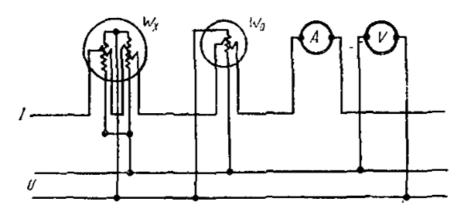


Рис. 32. Схема поверки двухэлементного ваттметра по одному образцовому ваттметру

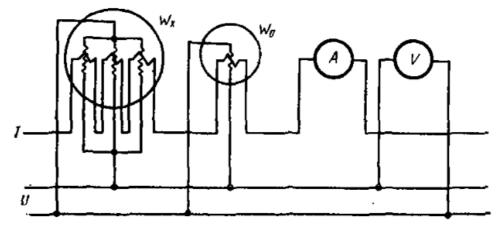


Рис. 33. Схема поверки трехэлементного ваттметра по одному образцовому ваттметру

81. При определении взаимного влияния отдельных элементов в трехэлементных ваттметрах оставляют включенным ток, равный номинальному, в том из элементов, к которому не прикладывается напряжение; в двух остальных элементах ток должен быть равен нулю, а напряжение должно быть равно номинальному. Элементы выбнрают в соответствии с табл. 5.

Таблица 5

Ток проходит	Напряжение приложено
в элементе	к элементам
]	(1, 1)(
}	(, (()
	(, ()

Примечание. Испытаниям по пп. 77, 80 и 81 следует подвергать только приборы, поверяемые при выпуске из производства и после ремонта. 82. При поверке приборов классов 2,5 и 4,0 погрешности измерительных траисформаторов, через которые включены образцовые приборы, не учитываются. При поверке приборов всех других классов следует учитывать погрешности измерительных трансформато ров: при $\cos \varphi = 1$ только погрешности коэффициентов трансформации, а при $\cos \varphi = 0,5$ и угловые погрешности. Погрешности измерительных трансформаторов учитываются по формулам, приведенным в табл. 4.

Порядок и условия поверки

- 83. Приборы всех классов точности, нспользуемые в качестве рабочих, поверяются при одном направлении тока в приборе. Определяют погрешности два раза¹;
- а) при подводе стрелки к каждой поверяемой отметке со стороны больших значений (поверка «винз по шкале»);
- б) при подводе стрелки к каждой поверяемой точке со стороны меньших значений (поверка «вверх по шкале»).
- 84. Погрешности приборов определяют при каждом из двух измерений отдельно для поверки «вниз по шкале» и для поверки «вверх по шкале».

Ни одно нз значений погрешности, получению таким образом, не должно превосходить величины допускаемой погрешности для прибора данного класса точности.

85. Приборы классов 0,05÷0,5, служащие в качестве образцовых и снабжаемые таблицами поправок, поверяют при двух направлениях тока в приборе, причем при каждом направлении проводят поверку вниз и верх по шкале (всего четыре раза).

Вычисляют два ряда погрешностей:

- а) для двух поверок «вниз по шкале», причем для каждой отметки берется среднее арифметическое из двух значений, полученных при разных направлениях тока в приборе;
- б) для двух поверок «вверх по шкале», причем для каждой отметки берется средиее арифметическое из двух зиачений, полученных при разных иаправлениях тока в приборе;

Ни одно из значений этих двух рядов погрешностей не должно превышать допускаемой погрешности.

- 86. Поправки определяют для каждой отметки по среднему арифметическому из четырех значений, указанных в предыдущем пункте.
- 87. Для приборов магнитоэлектрической системы изменение иаправления тока, служащее для исключения внешних магнитных полей, заменяется изменением положения прибора путем поворота его на 180° в горизонтальной плоскости.

¹ Для приборов электромагнитной и электродинамической систем без защиты от влияния внешних магнитных полей рабочне приборы классов 0,2—0,5 поверяют в соответствии с п. 85.

- 88. При поверке приборов класса 0,5 на переменном токе методом сличения перемена направления тока производится одновременно как для поверяемого, так и для образдового приборов.
- 89. Вариация определяется как разиость действительных значений измеряемой величины при одном и том же показании прибора или как разность показаний прибора при одном и том же значении нзмеряемой величины, в том и другом случае при неизменной поляриости и с соблюдением условий п. 91.

Вариация определяется в процессе определения основной погрешности.

- 90. Основная погрешность определяется для каждой числовой отметки шкалы поверяемого прибора.
- 91. При определении основной погрещности, вариации и невозвращения указателя к иулевой отметке шкалы должны быть соблюдены следующие условия:
- а) все влияющие величны должны иметь нормальные значения (согласно табл. 6).

Приборы перемеиного тока, имеющие номинальную область частот, поверяются при двух значениях частоты f_1 и f_2 , причем

$$f_1 = \sqrt{f_{\mathsf{R}} \cdot f_{\mathsf{K}}}; \quad f_2 = f_{\mathsf{K}},$$

где $f_{\rm H}$, $f_{\rm K}$ — нижняя и верхняя границы номинальной области частот;

- б) прибор должен быть установлен в рабочее положение; если рабочее положение не указано, переносные приборы поверяются при горизонтальном положении, а щитовые при вертикальном;
- в) указатель прибора, установленный корректором до предварительного нагрева (если такой предусмотрен), не должен во время поверки вновь устанавливаться на эту отметку.

Приборы, снабженные регулировочными приспособлениями, должны быть предварительно отрегулированы в соответствин с правилами пользования!:

- г) приборы, градуированные с калиброванными проводами, должны поверяться совместно с последними. Приборы, градуированные с определенным сопротивлением соединительных проводов, должны поверяться совместно с замещающим сопротивлением. равным указанному на шкале прибора;
- д) ваттметры должны поверяться при номинальном напряжении и номинальном коэффициенте мощности;
- е) ферромагиитные массы и внешние магнитиые поля (кроме земного магнитного поля), а также влияние прибора на прибор практически должны отсутствовать; если на приборе есть условный знак (стрелка), указывающий положение прибора в земном маг-

Приборы с малыми пределами измерения должны тщательно защищаться от токов утечки и т. э. д. с. в соответствии с заводскими инструкциями к приборам.

нитном поле, то прибор следует установить таким образом, чтобы эта стрелка была направлена по магнитиому меридиану;

ж) электростатические приборы должны поверяться при практическом отсутствии внешних электрических полей.

Таблица 6.

Нормальные значения влияющих величин

Нормальное значение					
Влияющая величина	для приборов классов 0,05-0,5	для приборов классов 1,0—4,0			
	Указанное на шкале				
Рабочее положение -	± 1°±0,21	±2°			
The state of the s	Если указания отсутствуют — любое положение				
	Указанно	е на шкале			
Температура -	2°C	±5°C			
Температура	Если указания отсутствуют				
	от +18 до +22°C	от +15 до +25°C			
Напряжение	Указанное на шкале				
Паприжение	±2%	±2%			
	Указанное на шкале				
Частота	±2%	±2%			
Incloid.	Если указания отсутствуют				
	49—51 гц	49—51 <i>г</i> ц			
Форма кривой тока	Синусоидальное с коэффициентом искажения не более				
или напряжения	5 % 1 % ²	5 % 2 % ²			
Коэффициент перемен- ной составляющей посто- янного тока или напря- жения	Не более 1%	Не более 3%			

92. По окончании поверки следует отметить положение стрелки, которое она займет после плавного уменьшения измеряемой величины до нуля. Для приборов, устойчивых к механическим воздействиям, миниатюрных и малогабаритиых, приборов с углом шкалы более 120° и приборов с подвижной частью на растяжках смещеиие от нуля не должно превосходить значения, определяемого по формуле

 $\gamma = \frac{Kl}{100} MM,$

Для приборов с подвижной частью на подвесе — в пределах чувствительности уровня поверяемого прибора.
2 Для электронных и выпрямительных приборов.

ггде l - длина шкалы в мм;

К — числеиное обозначение класса прибора.

Для всех остальных приборов смещение от нуля не должно превосходить половнны указанного значения.

93. Когда определяются поправки или погрешиости многопредельных вольтметров или ваттметров классов 0,1; 0,2 и 0,5 компенсационным методом на постояниом токе или термоэлектрическим методом на переменном токе частоты 50 гц, можно производить непосредственные измерения не на всех пределах измерення, если изменение пределов измерения осуществляется при помощи изменения внутрениего добавочного сопротивления. В этом случае при пределах измерения по напряжению не ниже 3 в множитель определяется по формуле

$$K=\frac{r_2}{r_1}\cdot\frac{C_1}{C_2},$$

итде r_1 — действительное зиачение сопротивления прибора для предела намерения, при котором поверяются все числовые отметки;

r₂ — действительное значение сопротнвлення прибора для предела измерення, для которого определяется множитель;
 rC₁, C₂ — иоминальная цена деления шкалы для первого и второго

пределов измерения.

Поправки того предела измерения, для которого определен множитель K, определяются по формуле

$$\Delta_2 = \Delta_1 + (K-1)\alpha_1,$$

где Δ_2 — поправка в делениях шкалы для точки α на том пределе измерення, для которого известно значение множителя K;

Δ₁ — поправка в делениях шкалы для точки α на том пределе измерения, на котором проведена поверка на всех числовых отметках шкалы и по отношению к которому определен множитель К.

94. Когда определяют погрешности многопредельных амперметров, вольтметров и ваттметров, можно проводить непосредственную поверку на всех числовых отметках шкалы лишь на одном пределе измерення, а на остальных пределах намерения можно провести поверку на двух числовых отметках шкалы: на конечном значении шкалы и на отметке, в которой можно ожидать наибольшей погрешности.

Чнеловая отметка, на которой можно ожидать наибольшую погрешность, определяется следующим образом.

Исходя из таблицы погрешностей γ_1 , полученных на всех числовых отметках одного предела измерення, подсчитывают ожидае мые погрешности γ_2 на тех же числовых отметках другого предела измерения по формуле

$$\gamma_2 = \gamma_1 + (\gamma_{\kappa_2} - \gamma_{\kappa_1}) \frac{A}{A_{\kappa}},$$

где $\gamma_{\kappa 1}$; $\gamma_{\kappa 2}$ — погрешности на конечной отметке шкалы для первого и второго пределов измерения соответственно;

А; A_n — значения измеряемой величины для данной и конечной отметки шкалы соответственно.

Наименее благоприятной на втором пределе измерения будет отметка, для которой по вышеприведенной формуле будет получено наибольшее абсолютное значение погрешности γ₂.

Для каждой из этих отметок шкалы вычисляется отношение $\frac{B_2}{B_1}$ (где B_2 — действительное значение измеряемой величины, полученное для этого предела измерения и выражениое в делениях шкалы; B_1 — действительное значение измеряемой величины, полученное на этой же отметке шкалы для предела измерения, который поверялся на всех числовых отметках шкалы, также выраженное в делениях шкалы).

Если полученные таким образом значения множителя для обенх отметок шкалы отличаются менее чем на 1/3 $K_{\rm n}$ % (где $K_{\rm n}$ — численное обозначение класса поверяемого прибора), то определяется поправочный множитель для данного предела измерения как среднее арифметнческое из полученных двух значений. Если же эти расхождения превосходят 1/3

О соответствии прибора его классу точности можно судить, применяя вышеприведенную формулу для определения поправки через множитель *K*.

- 95. Можно определять соответствие многопредельного прибора классу точности с помощью приспособлений, указанных в схемах приложения 2.
- 96. В том случае, когда применяется приспособление, указанное в приложении 4, поверка прибора на одном из пределов измерения проводится полностью, на других пределах измерения— на двух числовых отметках шкалы: на конечной и на той отметке, где предполагается наибольшая погрешность.

Устанавливается приспособление по конечной отметке шкалы. Если погрешность, полученная при помощи приспособления, для второй точки отличается от полученной непосредственной поверкой больше чем на 1/3 допускаемой погрешности, прибор следует поверить на всех числовых отметках шкалы каждого предела измерения.

- 97. Прибор с несколькими пределами измерения признается годным, если погрешности его показаний для каждого предела намерения не превышают допускаемых значений в соответствии с классом точности.
- 98. Определение изменения показаний, вызванных влиянием коэффициента мощности, должно производиться на двух отметках на нулевой отметке и соответствующей примерио геометри-

ческой середине шкалы при исключении вариации и всех вышеперечисленных влияний, кроме определяемого.

Определение изменения показаний, как правило, производится без отдельных калибровочных шунтов, добавочных сопротивлений измерительных трансформаторов.

99. При массовой поверке вновь изготовленных приборов допустимы (по специальному разрешению Комитета стандартов, мер и измерительных приборов при Совете Министров СССР) отдельные отступления и изменения по сравнению с указанным выше общим порядком выполнения поверки или отдельных ее операций, связанные с особенностями условий поверки, возможной и необходимой рационализации ее, применением специальной аппаратуры для поверки и пр.

ДОПОЛНИТЕЛЬНЫЕ ИСПЫТАНИЯ ПРИ ПОВЕРКЕ ПРИБОРОВ

Определение сопротивления приборов и их вспомогательных частей

100. Измерение сопротивления приборов и их вспомогательных частей (шунтов и отдельных добавочных сопротивлений) производится способами, указанными в табл. 7.

Измерение сопротивления шунтов должно производиться после прогрева их током и достнжения установившегося значения сопротивления шуита.

Таблица 7

Измеряемое сопротивление	Рекомендуемый способ измерения	Допустимая погреш- ность определения сопротивления	
Сопротивление амперметра и по- следовательной цепи ваттметра и вар-	Одинарный или двойной мост	±1,0%	
метра любого класса Сопротивление вольтметра, парал- лельной цепи ваттметра и варметра классов 1,0÷4,0 и отдельных доба- вочных сопротивлений к ким	Одинарный мост	±1/5Kπ%	
Сопротивление вольтметра, парал- лельной цепи ваттметра классов 0,1; 0,2 и 0,5 и отдельных добавочных со- противлений к ним	Компенсационная установка или одинар- ный мост кл. 0,05	$\pm 1/s K_0\%$ (K_0 — число, обозначающее класс точности прибора или добавочного устройства к ним)	
Сопротивление шунтов на силу то- ка до 50а	Компенсациониая установка или двой- ной мост	1/5K 111 %	
Сопротивление шунтов на силу то- ка св. 50a		1/5K m % (Кm — чис- ленное обозначе- ние класса шунта)	

Примечание. Если в маркировке шунта указан номинальный ток прибора, то при измерении сопротивления шунта необходимо подключить к шунту прибор или сопротивление, равное $r_{\rm H}=10^{-3}\frac{U_{\rm H}}{I_{\rm H}-I_{\rm H}}$,

где $I_{\rm H}$ — номинальный ток шунта в a;

U_н— номинальное падение напряжения в мв;

ін — номинальный ток потребления прибора.

- 101. Отклонение действительного значения внутреннего сопротивления вольтметров и параллельных цепей ваттметров и варметров, включаемых с отдельными калиброванными добавочными сопротивлениями, выраженное в процентах, ие должио отличаться от указанных на приборах значений на величину больше, чем на 0,5 численного обозначения класса прибора.
- 102. Основная погрешиость шуитов и добавочных сопротивлений при нагрузках 20 и 100% от номинальной не должна превышать значений, указанных в табл. 8.

Класс вспомогательной основняя погрещность в %

0,02 ±0,02
0,05 ±0,05
0,1 ±0,1
0,2 ±0,2
0,5 ±0,5
1.0 ±1,0

Основная погрешность для шунтов и довабочных сопротивлений выражается в процентах от номинальных значений их сопро-

Определение влияния наклона на показания приборов

103. Приборы, снабженные уровнем, нспытанию из наклон не подвергаются.

Испытание на влияние наклона приборов, нормальное рабочее положение которых указано на шкале, проводится следующим образом. Для числовой отметки, близкой к 50% от конечного зиачения шкалы, при нормальном положении прибора определяется действительное значение величины, измеряемой прибором. За действительное значение B принимается среднее арифметическое двух измерений: первого — при плавном увеличении измеряемой величины от нуля до данной отметки и второго — при уменьшении ее от конечного значения шкалы до той же отметки. Затем прибор наклоняют поочередно в каждую из четырех сторон и определяют в этих четырех положениях указанным способом действительные значения B_1 для выбранной ранее отметки шкалы.

тивления.

Изменение показаний в, обусловленное влиянием наклона прибора, определяется по формуле

$$\beta = \frac{B - B_1}{A_B} \cdot 100\%,$$

где $A_{\rm H}$ — конечное значение шкалы поверяемого прибора.

104. Изменение показаний в прибора при отклонении его от указанного на нем рабочего положения в любом направлении не должно превышать значений, указанных в табл. 4 приложения 5 или в технических условиях, по которым прибор выпущен.

105. Для приборов классов 0,5 ÷ 4,0 влияние иаклона можно определять также следующим образом: при неизменном значении измеряемой величины прибор наклоняют поочередно во все четыре стороны, наблюдая при этом изменение показаний прибора.

Испытание электрической прочиости изоляции

106. Испытание электрической прочности изоляции приборов проводится, как правило, на переменном токе.

Испытание постоянным током проводится только при наличии на то особых указаний.

- 107. Установка для производства испытаний иа электрическую прочиость изоляции должиа иметь следующие основные технические характеристики:
- а) мощность установки (на стороие высокого напряження) должна соответствовать напряжениям, указанным в табл. 9.

	Таблица 9
Нолытательное	Мощность установки в ква
напряжение в ка	(не менее)
От 0,5 до 3	0,25
Св. 3	0,5

- б) регулировочное устройство должно допускать плавную регулировку напряжения от нуля до наибольшего значения испытательного напряжения;
- в) конструкция установки должна обеспечивать надежный электрический контакт испытательного электрода с корпусом прибора:
- г) форма кривой испытательного напряжения установок переменного тока должиа быть такой, чтобы отношение амплитуды к действующему значению иаходилось в пределах 1,34—1,48;
- д) в установке должиы быть соблюдены все требования техники безопасности, предъявляемые к высоковольтным установкам;
- е) при испытании постоянным током, преобразованным из переменного, коэффициент пульсации напряжения должен быть не выше 10%.

- 108. Испытание электрической прочности изоляции прибора проводят следующим образом:
- а) все зажимы прибора соединяются между собой проводниками и подключаются к высоковольтному выводу повышающего трансформатора, другой вывод которого должен быть соединен с корпусом прибора (или с металлическим экраиом, который должен покрывать всю поверхность корпуса, если корпус прибора сделан из изолирующего материала);
- б) регулировочное устройство установки ставится в начальное положение, соответствующее нулевому значению напряжения на повышающем трансформаторе;
- в) установка включается под напряжение сети после принятия иеобходимых мер по технике безопасности. При помощи регулировочного устройства напряжение на трансформаторе повышается с такой скоростью, чтобы иапряжение изменялось примерно от нуля до необходимого значения испытательного напряжения за время от 5 до 20 сек, и выдерживается в течение 1 мин. Значения испытательных напряжений указаны в табл. 2 или 5 приложения 5.
- 109. Указанием на неудовлетворительное состояние изоляции прибора служит внезапное возрастание силы тока в инзковольтной обмотке повышающего траисформатора или сиижение напряжения на зажимах той же обмотки. Отклонение стрелки испытуемого прибора, дрожание ее или появление шума не указывают на неудовлетворительность изоляции прибора.
- 110. Для ваттметров проводят дополнительное испытание электрической прочности изоляции между последовательными и параллельными цепями, если эти цепи не соединены постоянно между собой, а также между раздельными последовательными цепями многоэлементных ваттметров, если эти обмотки не предназначены для включения к заземленным обмоткам трансформаторов тока. В противном случае испытание изоляции между последовательными цепями многоэлементных ваттметров не проводят.

Определение времени успокоения

- 111. Определять время успокоения можио как на постоянном, так и на перемениом токе в соответствии с назначением приборов-
- 112. Источник питания, применяемый при испытании, должен иметь такое постояиство напряжения, чтобы изменения показаний прибора за 1 мин не превышали 0,1% от конечного значения шкалы.
- 113. Определение времени успокоения должио производиться для приборов:
- а) с одиосторонней шкалой при включении измеряемой величины, обусловливающей отклонение указателя приблизительно на геометрическую середину шкалы;
- б) с симметричной двухсторонней шкалой при выключении измеряемой величины, соответствующей конечному значению шкалы:

- в) с несимметричной двухсторонней шкалой при выключении измеряемой величины, обусловливающей перемещение указателя приблизительно из половину длины шкалы;
- г) с безнулевой шкалой при изменении измеряемой величины, вызывающем передвижение указателя с начальной отметки приблизительно на геометрическую середину шкалы.

Порядок определения времени успокоения следующий:

д) прибор присоединяют к источнику питания и в зависимости от конструкции отсчетного устройства (п. 113 а, б, в, г) устанавливают указатель на соответствующую отметку шкалы;

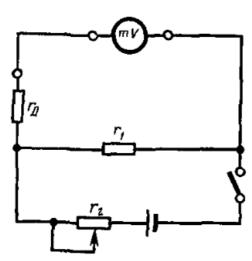


Рис. 34. Схема включения прибора при определении времени успокоения

е) оставляя иеизменным положение регулировочного устройства, прибор отключают и после успокоения колебаний указателя вновь включают, наблюдая за движением указателя для определения его характера (периодическое колебание или апериодическое).

Движение считается апериодическим, если указатель прибора после включения (или выключения) тока подходит с одной стороны шкалы к точке, на которой он установится после прекращения движения;

- ж) убедившись, что значение измеряемой прибором величины остается нензменным и стрелка после успокоения колебаний останавливается на выбранной отметке шкалы, прибор отключают;
- з) приборы, удовлетворяющие требованию п. 113 а, включают, и одновременно пускают в ход секундомер для определения времени успокоения.

Для определения времени успокоения приборов, удовлетворяющих требованиям п. 113 6, 8, e, секундомер включают одновременно с выключением прибора (п. 113 π).

114. Для приборов с периодическими колебаниями стрелки за время успокоения принимают промежуток времени с момента включения прибора до того момента, когда стрелка в последиий раз отклонилась от своего окончательного положения на расстояние, превышающее 1% от длины шкалы.

Для приборов с апериодическим движением стрелки за время успохоения принимают промежуток времени с момента включення до того момента, когда стрелка приблизится к своему окончательному положению на расстояние, составляющее 1% от длины шкалы.

Определение времени успокоения приборов, имеющих ограниченное сопротивление внешней цепи, и магнитоэлектрических

милливольтметров проводится в порядке, указанном в п. 113. Схема включения должна соответствовать рис. 34.

На этой схеме приняты следующие обозначения:

 r_1 — добавочное сопротивление в цепи прибора;

 r₁ — сопротивление, падение напряжения на котором служит для получения необходимого отклонения прибора;

 r_2 — регулируемое сопротивление.

Сопротивление r_1 должно составлять не более 1% сопротивления прибора. Добавочное сопротивление $r_{\rm A}$ должно быть равно сопротивлению внешией цепи прибора, указанному на шкале прибора (например, сопротивление термопары и соединительных проводов), с погрешностью не более $\pm 1\%$.

116. За действительное значение времени успокоения колебаний стрелки прибора принимается среднее арифметическое из резуль-

татов трех его определений.

IV. ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

117. Данные поверки приборов классов 0,05—0,5 заносят в протокол, который хранится не менее 24 месяцев организацней, проводившей поверку.

118. Запись данных поверки приборов классов 1,0; 1,5; 2,5 и 4,0, проходящих поверку в контрольных лабораториях, может прово-

диться в любой форме.

119. Приборы всех классов, удовлетворяющие всем требованиям, предъявляемым к ним данной инструкцией, пломбируются с наложением клейма.

На приборы, используемые в качестве образцовых, выдается свидетельство с указанием наибольшей погрешности и вариации.

На рабочие и образцовые приборы классов 0,1—0,2 могут быть выданы свидетельства с поправками по требованию, указанному заказчиками при сдаче приборов в поверку.

Поправки в свидетельствах должны указываться с погрешностью 0,05 деления для приборов класса 0,1 и 0,1 деления для приборов остальных классов.

120. При выпуске из производства приборы класса 0.1; 0,2 и 0,5 снабжают выпускными аттестатами, в которых должиы быть

указаны наибольшие погрешности и вариация показаний.

121. Если прибор в результате поверки признан непригодным к применению, имеющиеся на нем клейма гасятся специальным знаком, и владельцу может быть выдана справка с указанием причии непригодности.

приложение і

методика определения изменения показаний, вызванных воздействием внешних условий

Определение влияния формы кривой

1. Определять влияние формы кривой напряжения или тока для амперметров, вольтметров и ваттметров рекомендуется при двух раздельных источниках питания. Схема включения вольтметра приведена на рис. 1, амперметра — на рис. 2, ваттметра — на рис. 3.

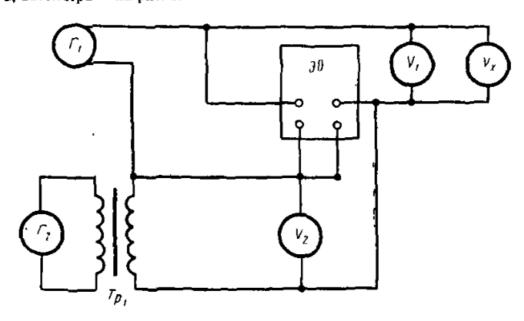


Рис. 1. Схема включения вольтметров для испытания на влияние формы кривой напряжения

На схемах приняты следующие обозначения:

 Γ_1 — генератор основной частоты;

Га — генератор кратной частоты:

Тр₁ — трансформатор понижающий с коэффициентом трансформации в пределах от 5 до 10;

ЭО — электронный осциллограф;

 V_1 и V_2 — контрольные вольтметры, показывающие действующее значение V_x . A_x , W_x — испытуемые приборы;

Тр2 — трансформатор понижающий; Р — сопротивление регулируемое (реостат);

А -- амперметр контрольный, показывающий действующее значение тока;

Tp — трансформатор разделительный (применение на рис. 3 не обязательно). При испытании приборов в случае необходимости могут быть использованы переходные трансформаторы, делители напряжения, реостаты и т. д.

2. Генератор Γ_2 настранвают на частоту, кратную номинальной частоте генератора Γ_1 , поочередио на 2-ю, 3-ю и 5-ю гармоинческие. При отключенном генераторе Γ_1 устанавливают по вольтметру V_2 напряжение, равное 0,1 или 0,2 номинального напряжения испытуемого прибора (рис. 1) или первичной обмотки трансформатора Тр2 (рис. 2), в зависимости от того, какая величина оговорена

в технических условиях. Затем включают генератор Γ_1 и доводят напряжение по вольтметру V_1 до номинального. Показания вольтметра V_2 при этом должны оставаться без изменения — в случае необходимости следует немного изменить напряжение генератора Γ_2 . На экране осциллографа при работе обоих генераторов получается медленно вращающаяся замкнутая фигура. Плавным изменением частоты генератора Γ_2 добиваются того, чтобы скорость вращения фигуры не превышала Γ_3 оборота в пернод, равный фактическому времени успокоения испытуемого прибора.

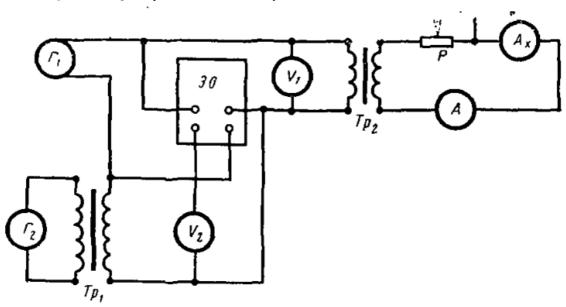


Рис. 2. Схема включення ампорметра для испытания на влияние формы кривой тока

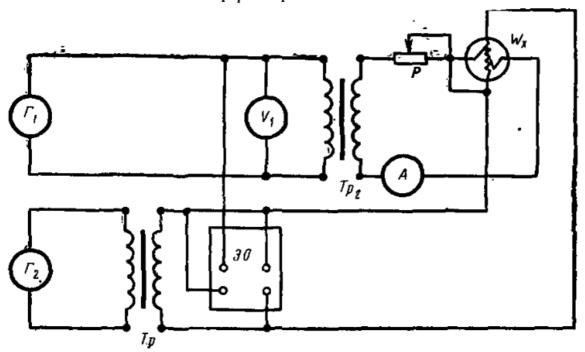


Рис. 3. Схема включения ваттметра для испытания на влияние формы кривой

Половина размаха колебаний указателя испытуемого прибора принимается за изменение показаний от влияния искаженной формы кривой, содержащей 10 или 20% высшей гармонической той или иной кратности.

Допускается также определение влияния формы кривой как разности между показаниями испытуемого прибора сначала при работающем генераторе Γ_2 , затем при снижении напряжения генератора Γ_2 до нуля — в обоих случаях при неизменном показании вольтметра V_1 .

3. При испытании ваттметров последовательную цепь испытуемого прибора питают номинальным током при номинальной частоте от одного генератора. Параллельную цепь подключают ко второму генератору, частота которого по-очередно устанавливается равной 2-, 3- и 5-кратному значению частоты генератора, питающего последовательную цепь.

Кратность частот контролируется электронным осциллографом, на экране которого (при подаче на вертикальные пластины напряжения одного из генераторов, а на горизонтальные — напряжения другого генератора) получается мед-

ленно вращающаяся замкнутая фигура.

Регулировкой частоты одного из генераторов добиваются, чтобы скорость вращения фигуры на экране ие превышала ¹/₃ оборота в период, равный фактическому времени успокоения испытуемого прибора, и фиксируют наибольшее отклонение указателя от нулевой отметки.

4. Изменение показаний приборов, вызванное отклонением формы кривой тока или напряжения, не должно превышать значений, указанных в стандартах на отдельные группы приборов или в технических условнях.

Определение влияния внешней температуры

5. Определение влияния внешней температуры на показания прибора заключается в определении изменения его показаний при повышении или понижении температуры среды, окружающей прибор, не менее чем на 10° С в пределах рабочих температур, указанных в табл. 6 приложения 5.

 Термостаты и криостаты, применяемые для определения влияния внешней температуры, должны обеспечить постоянство температуры в них с точностью до 1° С. Термометр, которым измеряется температура, должен иметь цену деле-

ния 0,5° С и должен быть поверен.

7. Определение влияния внешней температуры на показания испытуемого

прибора должно проводиться в следующем порядке:

- а) прибор помещается в термостат или криостат, в котором выдерживается при заданной температуре не менее 2 ч. Затем по образцовым приборам определяется действительное значение измеряемой величины для двух отметок шкалы, из которых одна находится приблизительно на геометрической середине, а другая у конечного значения шкалы; действительная величина определяется с исключением вариации и всех внешних влияний, кроме определяемого (т. е. в соответствии с п. 91), после установки указателя корректором на начальную отметку шкалы;
- б) после снятия показаний в термостате при повышениой температуре прибор должен быть подвергнут естественному охлаждению не менее 4 ч до температуры 20±5° С, после чего должны быть вторично определены действительные значения для тех же отметок шкалы прибора;
- в) изменение показаний β_t , вызванное изменением температуры на 10° , определяется по формуле

$$\beta_t = 10 \frac{B_0 - B_t}{A_H \Delta t} \cdot 100\%,$$

где B_t , B_0 — действительные значения, определенные при температуре t криостата или термостата и температуре t_0 окружающего воздуха; $A_{\rm H}$ — конечное значение шкалы поверяемого прибора; $\Delta t = t - t^{\circ}$.

Определение внешних магнитных и электрических влияний

- 8. Для определения влияния внешних магнитных полей испытуемый прибор должен быть помещен в центре катушки, создающей равномерное магнитное поле.
- 9. Конструкция двойной катушки и столнка, расположенного в центре ее, 48

должна допускать возможность их вращения. Обмотка катушки должна обеспечивать возможность получения в центре ее магнитного поля напряженностью до $400\ a/m$.

Расстояние между средними плоскостями колец должно быть равно половине среднего днаметра катушки, обмотки колец включают согласно.

В цепь катушки должен быть включен амперметр для контроля тока и фазовращатель для изменения фазы тока в катушке. Обычно внутренний диаметр катушки \mathcal{L} , создающей магнитное поле постоянного тока или промышленной частоты, равен 1 ± 0.01 м, ширина $0.1\div0.15$ м. Средний диаметр кольца должен быть по крайней мере в 2.5 раза больше наибольшего габарита испытуемото прибора.

Вычисление напряженности магнитного поля производится по формуле

$$H = 1,43 \frac{nI}{D_{\rm cp}},$$

где H — напряженность магнитного поля в a/x

Ток в амперах в каждой секции;

п — число витков обмотки одной секции;

 D_{CD} — средний диаметр катушки в м.

При испытании прибора переменного тока прибор и катушка питаются переменным током одной частоты, если в технических условиях не оговорено иных требований.

10. Определение влияния внешнего магнитного поля на показания прибора производится в двух отметках шкалы (одна находится приблизительно на геометрической середине шкалы, а другая — в конце шкалы) в следующем порядке:

а) испытуемый прибор помещают на столике катушки так, чтобы его измерительная часть находилась в центре катушки, и включают совместно с образцовыми приборами в соответствующую схему для определения погрешности;

б) по образцовым приборам устанавливают и поддерживают требуемые значения напряжения, тока или мощности постоянными и равными примерно 100%, а затем 50% конечного значения шкалы испытуемого прибора; испытание ваттметров проводится при номинальных напряжении и коэффициенте мощности;

в) заметив показание испытуемого прибора, в обмотку катушки включают ток и устанавливают силу его так, чтобы она соответствовала необходимой на-

пряженности магнитного поля;

- г) наблюдают изменение показаний испытуемого прибора, происшедшее после включения тока в катушку, и, поворачивая столик, на котором расположен прибор, и катушку, находят такое положение, при котором это изменение показания будет наибольшим;
- д) изменяя фазовращателем фазу тока в катушке, добиваются дальнейшего изменения показания прибора;
- е) получив при помощи поворота столика и катушки, а также изменением фазы тока в катушке наибольшее возможное изменение показаний испытуемого прибора, записывают полученное показание α_1 ;

ж) выключают ток в катушке и записывают новое показание испытуемого

прибора α₀.

- 11. При испытании приборов магнитоэлектрической системы питание катушки осуществляется постоянным током. Определение влияния внешнего магнитного поля в этом случае производится таким же порядком, как это указано в п. 10 приложения, за исключением операции, указанной в п. 10 д.
- 12. Определение влияния магнитного поля на приборы переменного тока с магнитоэлектрическим измерительным механизмом должно проводиться в поле как постоянного, так и переменного тока.

Приборы электростатической системы не подвергаются испытанию на влияние магнитного поля.

13. Измен ние показаний прибора от влияния внешнего магнитного поля подсчитивается по формуле

$$\beta_{\Phi} = \frac{\alpha_1 - \alpha_0}{A_H} \cdot 100\%$$

где Ав - конечное значение шкалы прибора.

Допускается проведение испытания без фазорегулятора. В этом случае катушка и испытуемый прибор питаются от двух различных генераторов, настроенных приблизительно на одну и ту же частоту. Совпадение частот обоих генераторов устанавливают, подключив напряжение одного из них к вертикальным, а второго — к горизонтальным отклоняющим пластинам электронного осциллографа. При этом эллипс на экране осциллографа должен медленно деформироваться и вращаться со скоростью не более 1/3 оборота в период времени, равный фактическому времени успокоения испытуемого прибора. Половина размаха колебаний указателя испытуемого прибора принимается за изменение показаний от влияния внешнего магнитного поля.

14. Изменение показания прибора под влияние внешнего магнитного поля напряженностью 400 а/м, образованного током того же рода, что и ток, протекающий по испытуемому прибору, при самых неблагоприятных фазе и направлении поля не должно превышать значений, указанных в табл. 3 приложения 5.

15. Для определения влияния внешних электрических полей на электростатические приборы испытуемый прибор должен быть помещен в электрическое поле плоского конденсатора, образованного между двумя изолированными друг от друга металлическими дисками, к которым приложено напряжение.

Диаметр дисков должен превышать не менее чем на 20% наибольший размер испытуемого прибора, а расстояние между дисками не должно превышать

радиуса диска.

Напряженность электрического поля E в $\kappa \theta / \mu$ подсчитывается по формуле

$$E=\frac{U}{l}$$

где U — приложенное к дискам напряжение в κs ;

I — расстояние между дисками в м.

16. Конструкция установки должна обеспечить возможность поворота прибора вокруг вертикальной оси, а конденсатора — вокруг горизонтальной оси, параллельной плоскости дисков.

17. При испытании приборов на переменном токе питание установки со стороны повышающего трансформатора должно проводиться через фазорегулятор.

Определение влияния изменения частоты переменного тока

18. Определение влияния отклонения частоты тока от номинальной производится в соответствии с п. 91 инструкции в двух отметках шкалы, находящихся в конце шкалы и приблизительно на ее геометрической середине в следующем порядке:

а) определяется по образцовым приборам действительное значение измеряе-

мой величины при номинальной для данного прибора частоте тока;
б) определяется действительное значение измеряемой величины при тастоте тока, для которой проводится испытание;

в) изменение показаний β_f , вызванное изменением частоты тока, вычисляется по формуле

$$\beta_f = \frac{B_0 - B_1}{A_0} 100\%$$

где B_0 — действительное значение при номинальной частоте тока;

 B_1 — действительное значение для той же отметки при частоте тока, дли которой проводится испытание;

Ан -- конечное значение шкалы прибора.

19. Изменение показаний прибора, вызванное отклонением частоты тока от номинальной на $\pm 10\%$, не должно превышать значений, допускаемых для приборов данного класса точности.

Если в приборе, кроме номинальной частоты, указана расширенная область частот, то изменение показаний, вызванное отклонением частоты от номинальной до любого значения частоты в расширенной области, не должно превышать допускаемого для приборов данного класса точности.

Если в приборе, кроме номинальной области частот, указана и расширенная область частот, то изменение показаний, вызванное изменением частоты от границы номинальной области до любого значения в смежной части расширенной области, не должно превышать допускаемого для приборов данного класса точности.

ПРИЛОЖЕНИЕ 3

приспособление для определения предельных значения множителей многопредельных приборов

Приспособление применяется, когда поверка проводится не на всех пределах измерения.

После определения поправок на всех числовых отметках шкалы одного предела измерения многопредельного прибора можно определить те два предельных значения множителя K_{\max} и K_{\min} , между которыми должны быть множители всех пределов измерения данного прибора, если он соответствует своему классу¹.

Это возможно сделать при помощи описанного ниже приспособления.

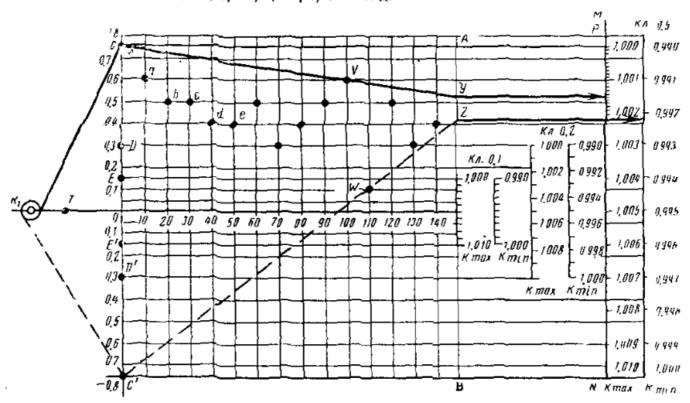
Если после поверки одного предела измерения до определения множителей других пределов измерения поверяемого прибора при помощи приспособления определены предельные значения множителей, то объем работы по поверке сокращается, так как поверка прибора сразу прекращается, как только будет обнаружено, что множитель какого-нибудь предела измерения выходит из допустимых границ.

Конструкция приспособления

В качестве примера описано построение приспособления для приборов классов 0,1; 0,2 и 0,5 с числом делений шкал 150.

На доске размером 500×350 мм укрепляется описанная ниже номограмма, закрытая тонким листом органического стекла или другого подобного материала.

По горизонтальной оси откладываются числовые отметки шкалы, по вертикальной — вверх откладываются положительные поправки в делениях шкалы, а вниз — отрицательные. В точках пересечения вертикалей, проведенных через все числовые отметки горизонтальной оси, и горизонталей проведенных через значения поправок: 0; ± 0.05 ; ± 0.1 ; ± 0.15 ; ± 0.2 ; ± 0.3 ; ± 0.4 ; ± 0.5 ; ± 0.6 ; ± 0.7 должны быть сделаны отверстия. При помощи тонких стальных шпилек, вставленных в эти отверстия, можно нанести точки кривой поправок a, b, c, d и т. д. того предела измерения, который поверен на всех числовых отметках. Справа от последней вертикали AB нужно провести для каждого класса приборов (0.1; 0.2 и 0.5) по две вертикальных линии. На одной вертикальной линии наносятся значения K_{max} , на другой K_{min} .


Для того, чтобы нанести для класса 0,5 на вертикальную линию MN шкалу аначения K_{\max} , нужно через точку C оси ординат (+0,75) провести горизонтальную линию до точки P пересечения с вертикальной линией MN. В точке P наносится для K_{\max} отметка 1,000.

Для того, чтобы нанести другую крайнюю отметку шкалы множителя K_{max} для класса 0,5, нужно через точку C оси ординат (—0,75) провести горизонтальную линию до шкалы множителя K_{max} и в точке их пересечения нанести отметку 1,010. Шкала множителя K_{max} между отметками 1,000 и 1,010 делится равиомерно, причем наносятся отметки 1,001; 1,002; 1,003 и т. д.

Для того, чтобы на другой вертикальной линии нанести шкалу значений

¹ Ошер И. Н. Поправочные множители многопредельных приборов. Измерительная техника, № 2, 1957 г., стр. 81—83.

множителя K_{\min} для класса 0.5 нужно в точках пересечения этой линин горизонтали, соответствующими поправкам (+0.75 и —0.75), нанести крайние отметки: 0.990 в первом случае (вверху) и 1.000 во втором случае (внизу). Шкала множителя K_{\min} между крайними отметками делится равномерно и наносятся отметки: 0.991; 0.992; 0.993; 0.994 и т. д.

Устройство для определения предельных значений множителей для многопредельных приборов

На оси ординат в точках C, C', D, D' и E, E', соответствующих допускаемым погрешностям прибора (для прибора класса 0,5 со шкалой, имеющей 150 делений, это точки ± 0.75 и ± 0.75), укрепляются остальные шпильки. Слева, на некотором расстоянии от оси ординат, в точке R_1 на шпильке находится катушка с ниткой, на конце которой привязано кольцо, одетое на шпильку, укрепленную в точке T.

Благодаря пружине нитка всегда намотана на катушку, но может быть

вытянута с катушки после снятия кольца со шпильки Т.

Шкалы множителя K_{max} и K_{min} для классов 0,1; 0,2 и 0,5 имеют разную длину, но помечены одинаковыми цифрами. Их длина определяется расстоянием между точками, соответствующими допускаемой погрешности, т. е. для класса 0,2 шкала K отрезается горизонталями \pm 0,3 и \pm 0,3, проходящими через точки D и D', а для класса 0,1 — горизонталями \pm 0,15 и \pm 0,15 (при 150 делениях шкалы), проходящими через точки E и E'. Построение проводится аналогично описанному для класса 0,5.

Приспособления нужно сделать отдельно для приборов со шкалой, имеющей 150 делений, отдельно для приборов, имеющих шкалу с числом делений 120, отдельно для приборов, имеющих шкалу с числом делений 100 и т. д. в зави-

симости от того, какие приборы поверяются.

Одно и то же приспособление пригодио для приборов всех трех классов: 0,1; 0,2 и 0,5. Одно и то же приспособление пригодно для амперметров, вольтметров

и ваттметров.

При построении номограммы для приборов с числом делений шкалы 120 линия AB пройдет через отметку 120 оси абсцисс. На вертикальной оси точки C, C', D, D' и E, E' будут лежать на значениях поправок 0,6; 0,24 и 0,12.

Правила пользования приспособлением

Для того чтобы определить предельные значения множителей амперметра, вольтметра или ваттметра, нужно выбрать приспособление для такого числа делений шкалы, которое равно числу делений поверяемого прибора, например, 150.

Далее нужно расставить шпильки a, b, c, d, e и т. д. так, чтобы они изобразили точки кривой поправок (в делениях). На рисунке показан пример для прибора класса 0,5.

Затем нужно снять кольцо со шпильки T, вытянуть с катушки R_1 нитку на достаточную длину, захлестнуть нитку через шпильку C (+0,75), если прибор класса 0,5 (шпилька \mathcal{L} для класса 0,2 и шпилька \mathcal{E} для класса 0,1) и провести нитку через такую точку V кривой поправок, чтобы все остальные точки кривой поправок лежали ниже нитки. Через точку y пересечения нитки с вертикальной линией AB проводим горизонтальную линию до шкалы множителя K_{\max} для класса 0,5 (в данном примере) и на ней читаем искомое значение K_{\max} . Этой же ниткой пользуемся для того, чтобы найти K_{\min} . В этом случае нужно нитку захлестнуть за шпильку, укрепленную на оси ординат в точке C' (—0,75), и провести нитку через такую точку W кривой поправок, чтобы все остальные точки лежали выше нитки; через точку z пересечения нитки с линией AB проводим горизонтальную линию до шкалы K_{\min} и на ней читаем искомое наименьшее допустимое значение множителя для поверяемого прибора.

Приспособление может применяться только для приборов, у которых между действительными значениями, определенными для различных пределов измерения, существует линейная зависимость, т. е. для которых может быть определен поправочный множитель (пп. 93 и 94 инструкции).

ПРИЛОЖЕНИЕ 4

ПРИСПОСОБЛЕНИЕ ДЛЯ УПРОЩЕНИЯ РАСЧЕТОВ ПРИ ПОВЕРКЕ МНОГОПРЕДЕЛЬНЫХ ПРИБОРОВ

При поверке многопредельных приборов нужно производить большое количество вычислений, умножая для каждой отметки шкалы действительные значения измеряемой величины, полученные при поверке одного предела измерения, на поправочные множители для всех остальных пределов измерения

Для устранении этих вычислений служит простое приспособление, представляющее собой разлинованную доску с 15 вертикальными прорезями, соответствующими делениям шкалы (рис. 1). Нанесенные на доске на одинаковом расстоянии горизонтальные линин соответствуют поправкам к показаниям прибора.

Вдоль каждой вертикальной прорези может двигаться прямоугольная планка с отверстиями, расположенными на разной высоте, соответственно значенкю поправки. Центры всех планок скреплены с рычагом, один конец которого шарнирно закреплен на линии нулевой погрешности в точке, соответствующей нулевой отметке шкалы. На другом конце рычага находится ручка, с помощью которой рычаг поворачивается.

При горизонтальном расположении рычага в отверстия вертикальных подвижных планок вставляются штырьки в соответствии с поправками, полученными в результате поверки одного предела измерения. Затем рычаг поворачивают так, чтобы штырек, находящийся на планке, соответствующей крайнему делению шкалы, передвинулся до горизонтальной линии, соответствующей поправке, полученной для этого деления при новом пределе измерения. Тогда все остальные планки, передвинувшиеся с рычагом, расположатся так, что по положению штырьков относительно горизонтальных линий можно будет отсчитать поправки для всех отметок шкалы нового предела измерения,

Для контроля правильности полученных результатов для каждого предела намерения, кроме крайней отметки, поверяется еще одна отметка шкалы

Приспособление может применяться только для приборов, у которых между действительными значениями, определенными для различных пределов изме-

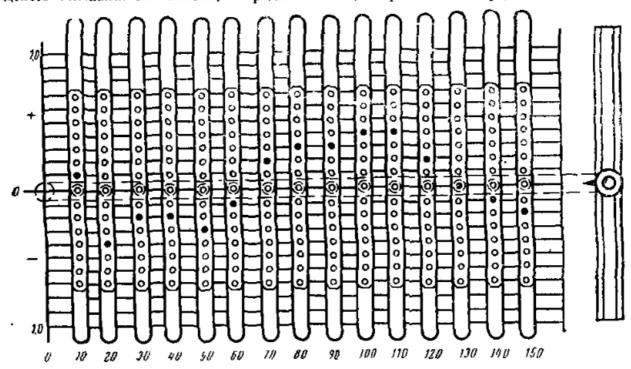


Рис. 1. Устройство для определения поправок для многопредельных приборов по результатам поверки на одном пределе измерения

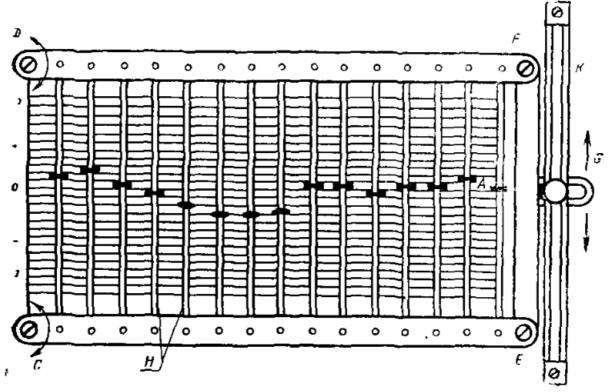


Рис. 2. Устройство для определения поправок для многопредельных приборов по результатам поверки на одном пределе измерения

рения, существует линейная зависимость, т. е. для которых может быть определен поправочный множитель (пп. 93 и 94).

Конструкция приспособления может быть выполнена несколько иначе (рис 2).

В этом случае вертикальные планки закреплены на рамке, которая можетповорачиваться вокруг точек D и C при перемещении рукоятки G.

Отметка поправок производится не с помощью штырьков, а с помощью хомутиков A, скользящих по планкам. Все действия из этом приспособлении производятся точно так же, как на первом.

ПРИЛОЖЕНИЕ 5

ТРЕБОВАНИЯ. ПРЕДЪЯВЛЯЕМЫЕ ПРИ ПОВЕРКЕ К ПРИБОРАМ, КОГДА НЕИЗВЕСТНЫ ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ, ПО КОТОРЫМ ОНИ ВЫПУЩЕНЫ ИЗ ПРОИЗВОДСТВА

Справочные материалы

Таблица 1 Допустимые погрешности и вариации показаний приборов, для которых неизвестны технические требования, по которым они вынущены

	Допустимые значения нормируемых величин в процентах для приборов классов						
Нормируемые величииы	0.1	0,2	0.5	1,0	1,5	2,5	4.0
Основная погрешность	±0,1	±0,2	±0,5	±1,0	±1,5	±2,5	±4,0
Вариация показаний	0,1	0,2	0,5	1,0	1,5	2,5	±4,0
Изменение показаний при- бора:						,	
а) от наклона ²	±0,1	±0,2	±0,5	±1,0	±1,5	±2,5	±4,0
б) для ваттметров при ко- эффициенте мощности, рав- ном нулю) 					
от изменения коэффициен- та мощности	±0,1	±0,2	±0,5	±1,0	±1,5	±2,5	±4,0

¹ Для приборов, устойчивых к механическим воздействиям, миниатюрных и малогабаритных приборов, приборов класса 0,1 переменного тока, а также приборов электромагнитной и ферродинамической систем, при поверке их на постоянном токе варнация показаний не должна превышать двойного абсолютного значения основной погрешности.

² Изменение показаний прибора от наклона указано в процентах от длины шкалы. Угол, при котором производится поверка прибора на влияние наклона, определяется в 5° от нормального положения прибора.

Таблица 2 Испытательное напряжение приборов, для которых неизвестны технические требования, по которым они выпущены

Номинальные напряжения прибора или номинальное напряжение сети в в	Испытательное напряжение (действующие значения) в кв
До 99 От 100 до 650 » 651 » 1000 » 1001 » 1500 » 1501 » 2000 » 2001 и более Приборы, предназначенные для включения через измерительные трансформаторы тока и напряжения Амперметры и заключенные в корпусы отдельные шунты, не предназначен-	0,5 2,0 3,0 4,0 5,0 Двойное номинальное напряжение плюс 1 кв
ные для работы в сетях с напряжением выше 650 в	2,0

Испытательное напряжение между рабочими цепями ваттметров должно быть равно удвоенному напряжению между обмотками измерительного механизма, но не менее 600 в.

Таблица 3 Допустимые погрешности и вариации приборов в соответствии с ГОСТ 1845—59, 8711—60 и 8476—60

	Допустимые значения иормируемых величин для приборов классов точности						
Нормируемые величины	0,1	0,2	0,5	1,0	1.5	2,5	4,0
Основная погрешность	±0,1	±0,2	±0,5	±1,0	±1,5	±2,5	±4,0
Вариация показаний ¹	0,1	0,2	0,5	1,0	1,5	2,5	4,0
Изменения показаний при- бора:							
а) от наклона ²	±0,1	±0,2	±0,5	±1,0	±1,5	±2,5	±4,0
б) от изменения температуры для приборов групп ³ А	±0,1	±0,2	±0,5	±1,0	±1,5	±2,5	±4,0
ą	–	±0,15	$\pm 0,4$	±0,8	±1,2	±2,0	±3,0
В	-	±0,15	± 0.3	±0,5	±0,8	±1,2	$\pm 2,0$
в) от отклонения частоты от номинальной	±0,1	±0,2	±0,5	±1,0	±1,5	±2,5	±4,0

Продолжение

Допустимые значения нормируеных величин для приборов классов точности						ин
0,1	0.2	0,5	1,0	1,5	2,5	4,0
±0,5			±1,0	į	±2,5	
±1,0			±2,5		±5,0	
±0,1	±0,2	±0,5	±1,0	±1,5	±2,5	±4,0
±0,1	±0,2	±0,5	±1,0	±1,5	±2,5	±4,0
±0,1	±0,2	±0,5	±1,0	±1,5	±2,5	±4,0
	±0,5 ±1,0 ±0,1 ±0,1	$\pm 0,5$ $\pm 1,0$ $\pm 0,1$ $\pm 0,2$	± 0.5 ± 1.0 ± 0.1 ± 0.2 ± 0.5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

 $^{^1}$ Для приборов, устойчивых к механическим воздействиям, миниатюрных малогабаритных и приборов класса 0,1 переменного тока электромагнитных, электродинамических и ферродинамических (при поверке их на постоянном токе) вариация может иметь полуторакратное значение указанных величин.

2 Допускаемый угол наклона для приборов различных классов указан в табл. 4 приложения 5.

³ Рабочий диапазон температур указан в табл. 6 приложения 5.

Таблица 4

Конструкция и условия применения	Угол наклона от рабочего положения. град			
Приборы с подвижной частью на подвесе	1			
Обыкновенные и обыкновенные с повы- шенной механической прочностью: приборы со световым указателем и компенсационные; приборы классов 0,05, 0,1 и 0,2; переносные приборы с подвижной частью на растяжках и самопишущие приборы с записью чер- нилами	5			
Остальные обыкновенные и обыкновен- ные с повышенной прочностью к механиче- ским воздействиям приборы	10			
Приборы, устойчивые к механическим воз- действиям: лереносные щитовые	класс 0,5—1.0 н	зласс 1,5—4,0 30 45		

Таблица 5 Испытательные напряжения для приборов, вынущенных по ГОСТ 1845—59

Номинальное напряже- нне прибора или поми-	Испытательно (действующее		
нальное напряжение сети <i>U</i>	при нормальной влажности	при повышенной влажности	Примечание
До 40 в Св. 40 до 650 в » 650 » 1000 в » 1 » 2 кв	0,5 2 3 5	0,5 1,5 2 3,5	
Св. 2 до 7 кв » 7 » 27 кв » 27 кв	$2U+1$ $2U+1-0,02U^{3}$ $1,5U$	$ \begin{array}{c} 1,5U+0,5\\ 1,5U+0,5-0,1U^2\\ 1,25U \end{array} $	С округлением до целого число кв в сторону увеличення
Для приборов, предназначенных для включения через измерительные тран-сформаторы	. 2	1,5	

. Таблица 6 Норма для рабочих и предельных климатических условий для различных групп приборов

	Группы приборов			В		
Параметры о возд		V P		В	B 2	
Рабочие	Температура:	От +10°C до +35° С	От—30°С до+40°С	От—40°С до+50°С	От—50°С до+60°С	
условия Относи	Относительная влаж- ность (при температуре)	80% (+30°C)	90% (+30°C)	95 % (+35° C)		
	Температура:	От—40°С до+60°С	От—40°С до +60°С	От—50°С до+60°С	От—60°С до +65°С	
Предель- ные условия	Относительная влаж- ность (при температуре)	95% (+30°С) в упа	95% (+35°С) ковке	95 (+60		

Примечание. Указанные значения влажности при испытаниях устанавливаются с точностью $\pm 3\%$.

Нормы времени успокоения

Время успокоения подвижной части приборов термоэлектрической, тепловой и электростатической систем, приборов с подвижной частью на подвесе и приборов с длиной стрелки более 150 мм не должно превышать 6 сек, а для остальных приборов — 4 сек. Для вольтметров электростатической системы, выпущенных по ГОСТ 1845—59 или ранее, с пределами измерения до 60 в время успокоения должно быть не более 10 сек.

ИНСТРУКЦНЯ 184-62

Редактор В. С. Липовкина
Техн. редактор Э. Г Кременчугская
Корректор В. Ф. Лобанова

Сдано в наб. 19/IV 1967 г. Подп. к печ 11/IX 1967 г. Формат 60×90 Бумага тип. № 2. 3,75 печ. л. + 3 вклейки 0,75. 3,3 уч-иэд л. Тир. 10 000. Зак.

Великолукская городская типография Мсковского областного управления по печати, г Великие Луки. Половская, 13 Цена 17 коп.