Date of print 27-05-2021-12/36/43

УТВЕРЖДАЮ Заместитель директора

ФГУП ВНИИМС Руководитель ГЦИ СИ B.H. Яншин 2002 r.

КАЛИБРАТОРЫ ТЕМПЕРАТУРЫ

серии ATC-R моделей АТС $155,156,157,320,650$ (исполнения А и B) фирмы AMETEK Denmark A/S, Дания

Методика поверки

$$
2 \mu .20262-02
$$

Настоящая методика распространяется на калибраторы температуры серии ATC-R моделей ATC $155,156,157,320,650$ (исполнения А и B) фирмы AMETEK Denmark A/S, Дания и устанавивает методику их поверки.

Периодичность поверки не реже одного раза в два года.

1. ОПЕРАЦИИ И СРЕДСТВА ПОВЕРКИ

Операции, выполняемые при поверке, и применяемые средства поверки, указаны в табл.1.
Таблица 1

$\begin{aligned} & \text { NoNo } \\ & \mathrm{H} / \mathrm{m} \end{aligned}$	Наименование Операции	№ пункта методики	Средства поверки и их технические характеристики
1.	Внещний осмотр	5.1	Визуально
2.	Определение погрешности установления заданной температуры по внутреннему термометру сопротивления	5.2	Цифровой прецизионный термометр сопротивления DTI-1000, диапазон измерений минус $50-650$ ${ }^{\circ} \mathrm{C}$, предел допускаемой основной погрешности $\pm 0,03^{\circ} \mathrm{C}$ в диапазоне от минус $50^{\circ} \mathrm{C}$ до $300^{\circ} \mathrm{C}$, $\pm 0,1^{\circ} \mathrm{C}$ в диапазоне выше $300^{\circ} \mathrm{C}$ до $650^{\circ} \mathrm{C}$. Платиновые термометры сопротивления ТСПН-5В. диапазон измерений от -200 до $0^{\circ} \mathrm{C} ;$ ПТС-10M, диапазон измерений от 0 до $419,53^{\circ} \mathrm{C}$; ВТС, диапазон измерений от 0 до $961,78^{\circ} \mathrm{C}$ - эталонные 1-го разряда. Гитрометр психрометрический ВИТ-2, диапазон измерений: относительной влажности - от 40% до 90%, температуры - от $15^{\circ} \mathrm{C}$ до $40^{\circ} \mathrm{C}$; цена деления $0,2^{\circ} \mathrm{C}$
3.	Проверка стабильности поддержания заданной температуры.	-5.3	Цифровой-прецизионный термометр сопротивления DTI- 1000 с программным обеспечением, компьютер.
4.	Определение основной абсолютной погрешности каналов измерений сопротивления эталонного термометра и поверяемого термопреобразователя сопротивления	5.4	Мера электрического сопротивления многозначная Р3026. Пульт измерительный УТТ-6 с компаратором напряжений Р3003 кл. 0,0005 . Четырехпроводные соединительные провода с разъемом типа "LEMO".
5.	Определение основной абсолютной погрешнос- ти в режйме измерений милливольтовых сигналов от термопар и компенсации температуры холодных спаев	5.5	Компаратор напряжений Р3003, кл. $0,0005$. Нормальный элемент кл 0,001. Термопара с НСХ согласно МИ 2559-99. Нулевой термостат ТН-12 или сосуд Дьюара.
6.	Определение основной абсолютной погрешности в режиме измерений входных сигналов в мА.	5.6	Калибратор тока ЕР 3003 , погрешность не более 0,002\%

Date of print 27-05-2021-12/36/44

7.	Определение основной абсолютной погрешности в режиме измерения входных сигналов в в.	5.7	Компаратор напряжений P3003, кл. 0,0005 . Источник питания постоянного тока Б5-48.	ноств Ікым \qquad
8.	Определение основной абсолютной погрешности канала измерений температуры с внешним термопреобразователем сопротивления утлового типа.	5.8	То же, что в п. 5.2	

2. TРЕБОВАНИЯ БЕЗОПАСНОСТИ

При поверке необходимо выполнять "Правила технической эксплуатации электроустановок потребителей", "Правила техники безопасности при эксплуатации электроустановок потребителей", утвержденные Главэнергонадзором, а также соблюдать правила безопасности, содержациеся в эксплуатапионной документации на поверяемый калибратор температуры й на средства поверкй.

3. УСЛОВИЯ ПОВЕРКИ

При проведении поверки калибраторов температуры серии АТС-R должны соблюдаться следующие условия:

Температура окружающего воздуха, ${ }^{\circ} \mathrm{C}$
$20 \pm 5 ;$
Относительная влажность воздуха, \%
65 ± 15;
Атмосферное давление, кПа
$101,3 \pm 4 ;$
Напряжение питания, В
220_{-15}^{+10}.

4. ПОДГОТОВКА К ПОВЕРКЕ

4.1 Подтотовить к работе эталонные средства измерений и поверяемьй калибратор в соответствии с эксплуатационной документацией.
4.2 Выбрать металлические сменные блоки с соответствующими диаметрами посадочного гнезда для эталонного термометра сопротивления. Кольцевой зазор между защитной оболочкой эталонного термометра сопротивления и внутренними стенками блока не должен превышать 0,1 мм.
4.3 Перед проведением поверки калибраторы должны быть выдержаны при нормальной температуре не менее 3 пасов.

5. ПРОВЕДЕНИЕ ПОВЕРКИ

5.1 Внешний осмотр.

При внежшнем осмотре необходимо убедитъся в отсутствии видимых повреждений калибратора.
$5: 2$ Определение погрешности установления заданной температуры по внутреннему A $^{\prime}$ рмометру сопротивления
у ...Погрешность установления заданной температуры определяется с помощью эалонного платинового термометра сопротивления не менее чем при пяти значениях температуры, равномерно расположенных в диапазоне воспроизводимых температур, включая начало и конец диапазона При каждой температуре осуществляют записв в память микропроцессорного термометра температуры по эталонному платиновому термометру сопротивления в течение 10 минут:-При этом применяют сменный блок с одним центральным каналом для эталонных термометров.
$-\quad$ 5:21. Помешают сменный блок в калибратор, затем погржаат эталонный-термометр сопротивления в отверстие центрального канала блока сравнения и задают необходимое значение температуры, соответствующее первой поверяемой температурной точке.
5.2.2. Нзмерение дейетвительного--значения-температуры-производят после-звукового сигнала стабилизации температуры и отображении на дисплее калибратора символа режима етабинизадии.

Результат измерений при каждой температуре определяется как среднее арифметическое из записанных значений температуры значений температуры эталонным термометром.
5.2.3. Погрешность установления заданного значения температуры (Δ_{y}) определяется кәү разность-между значением темперағуры по внутреннему термометру-калибратора $\left(t_{3}\right)$ ии среднкнарифметическим значением температуры, измеренным эталонным термометром (\bar{t}_{0}).

Погрешность установления заданного значения температуры вычисляется по формуле:

$$
\Delta_{y}=\left|t_{s}-\overline{t_{0}}\right|
$$

Погрешность установления заданной температуры не должна превышать значения указанного в технической документации на калибратор.
5.3 Проверка стабильности поддержания заданной температуры.

Стабильность поддержания температуры определяют при трех значениях температур, соответствующих крайним значениям диапазона воспроизводимых температур и среднему значению.
5.3.1 Для определения стабильности поддержания заданной температуры производят автоматическую запись показаний эталонного термометра сопротивления в течение 30 минут с интервалом 30 с в установившемся температурном режиме с использованием программнот обеспечения DTI-1000.
5.3.2 Макссмальное отклонение от заданного значения температуры (†айс) характеризует стабильность поддержания заданной температуры.

Полученное значение не должно превышать значения, нормированного в технической документации на калибратор температуры.
5.4. Определение основной абсолютной погрешности каналов измерений сопротивления эталонного термометра и поверяемого термопреобразователя сопротивления.

Абсолютную погрешность опредепяют в десяти точках диапазона измерений сопротивления близких к следующим значениям: 10,$0 ; 17,0 ; 60,0 ; 92,0 ; 100,0 ; 140,0 ; 177,0 ; 213,0$; 284,$0 ; 333,0$ Ом, что в температурном эквиваленте соответствует диапазону измерений от минус 200 до $650^{\circ} \mathrm{C}$ платинового термометра сопротивления с номинальным значением $\mathrm{R}_{0}=100 \mathrm{Om}$.
5.4.1 Калибратор устанавливают в режим измерений сопротивления с разрешением 0,001 Ом. Многозначную меру электрического сопротивления (далее - магазин сопротивлений)

подключают по четырехпроводной схеме к пульту измерительному УТТ-6 (для измзность сопротивления компенсационным методом) и измеряют выставпенное на магазине знянкым сопротивления, соответствующее первой поверяемой точке.

Затем это же значение сопротивления измеряют калибратором температуры, подклиать магазин сопротивлений через разъем LEMO к каналу сопротивления внешнего эталон термометра сопротивления, а затем к каналу измерений сопротивления, поверяем термопреобразователя сопротивления.
5.4.2 Измеренное компенсационным методом сопротивление, установленное на магазии м вычисляют по формуле:

$$
R_{x}=R_{3 T} * U_{x} / 1 U_{3 m}
$$

где R_{31} - значение сопротивления эталонной меры сопротивления;
U_{X} н $\mathrm{U}_{3 \mathrm{~T}}$ - падение напряжения на магазине сопротивлений и падение напряжения на эталонной мере сопротивления.
5.4.3 Повторяют операцию по п.5.4.1 и вычисления по п.5.4.2, для остальных поверяемых точек.
5.4.4 Абсолютную погрешность (Δ_{R}) капибратора при измерении сопротивления вычисляют по формуле:

$$
\Delta_{R}= \pm\left(R_{X}-R_{M C}\right),
$$

где R_{x} - показание калибратора;
R_{MC},- значение сопротивления магазина сопротивлений, измеренное компенсационным методом.

Знагенне Δ_{R} - поверяемых точках-не должны превышать значении, рассчитанных по формулам:

- для канала измерения эталонного термометра:
$\pm(0,003 \%$ от измеряемого значения $+0,002 \%$ от диапазона измерений) Ом;
- дия каналаизмеренияповеряемого термометра
$\pm(0,005 \%$ от измеряемого значения $+0,005 \%$ от диапазона измерений) Ом.
5.5 Определение основной абсолютной погрешности в режиме измерений милливольтовых ситналов термопар.
5.5.1 Абсолютную погрешность калибратора при измерении милливольтового сигнала определяют в десяти точках диапазона измерений от -78 до 78 mB , равномерно расположенных во всем диапазоне.
5.5.2 Для выполнения этой операции в автономном режиме с помощью клавиатуры калибратора выбирают из меню вид выходного сигнала без конвертации в температуру:
5.5 .3 Выход компаратора напряжений соединяют с термопарным входом калибратора температуры.
5.5.4 Милливольтовый сигнал от компаратора напряжений, соответствуюний первой поверяемой точке, подают на термопарный вход калибратора и снимают показания. Повторяют эту операцию для остальных поверяемьх точек.
5.5.5 Абсолютная погрешноств в каждой поверяемой точке определяется как разность между значением напряжения, измеренного калибратором, и. действительным значением напряжения на выходе компаратора.
5.5.6 Значения абсолютной погрешности во всех поверяемых точках не должны превышать значений, рассчитанных по формуле:

$$
\pm\left(0,01 \% \mathrm{U}_{\mathrm{x}}+0,005 \% \mathrm{U}_{\mathrm{K}}\right), \mathrm{MB}
$$

где U_{x} - измеренное напряжение, в мВ;
U_{x} - диапазон измерений, в мВ
A
у 5.5.7 Определение абсолютной погрешности автоматической компенсации температуры олодных спаев термопар.
p 5.5.7.1 Абсолютная погрешность определяется для термопары любого одного типа НСХ.
5.5.7.2 Для выполнения этой операцин в автоматическом режиме с помощью клавиатуры малибратора выбирают из меню вид входного сигнала (термопара) с компенсацией холодных спаев.
5.5.7.3 Термопару погружают в сосуд Дьюара со смесью мелко дробленного льда и воды, приготовленной по ГОСТ 8.461.82. Подключают свободные кониы с помощью переходной колодки соответствуюшего типа к термопарному входу калибратора и выдерживают во вкпоченном состоянии не менее 15 минут.
5.5.7.4 Снимают показания термопары с дисплея калибратора в ${ }^{\circ} \mathrm{C}$ и записывают в журнал наблюдений.
5.5.7.5 Абсолютная погрешность компенсации холодных спаев не должна превышать $\pm 0,4^{\circ} \mathrm{C}$.
5.6 Определение основной абсолютной погрешности в режиме измерений входных сигналов в мА.
5.6.1 Абсолютную погрешность калибратора при измерении токового сигнала определяют в шести точках диапазона измерений, соответствующим следующим значениям: 1,$0 ; 5,0 ; 10,0 ; 15,0$ 20,0; 24,0 MA.
5.6 .2 Для выполнения этой операции в автономном режиме с помощью клавиатуры калибратора выбирают из меню вид выходного сигнала в мА.
5.6.3 Токовый выход калибратора соединяют с токовым входом калибратора температуры.
5.6.4 Синнал от калибратора тока, соответствующий первой поверяемой точке, подают на токовый вход калибратора температуры и снимают показания. Повторяют эту операцию для остальных поверяемых точек.
5.6.5 Абсолютная погрешность в каждой поверяемой точке определяется как разность между значением тока, измеренного калибратором температуры, и действительным значением тока на вьходе программмируемого калибратора.
5.6 .6 Значения абсолютной погрешности во всех поверяемых точках не должны превышать значений, рассчитанных по формуле:

$$
\pm\left(0,01 \% \mathrm{I}_{\mathrm{x}}+0,015 \% \mathrm{I}_{\mathrm{k}}\right), \mathrm{MA},
$$

где I_{x} - измеренный ток, в мА;
I_{k} - диапазон измерений, в мА.
5.7 Определение основной абсолютной погрешности в режиме измерений входных ситналоввв.
5.7.1 Абсолютную погрешность калибратора при измерении сигнала напряжения постоянного тока определяют в десяти точках диапазона измерений, соответствуюшим следуюцим значениям: 1,$0 ; 2,0 ; 3,0 ; 4,0 ; 5,0 ; 6,0 ; 7,0 ; 8,0 ; 9,0 ; 10,0$ В.
5.7.2 Для выполнения этой операции в автономном режиме с помощью клавиатуры калибратора выбирают из меню вид выходного сигнала в B.
5.7.3 Компаратор напряжений соединяют с входом сигнала напряжения калибратора температуры.
5.7.4 Сигнал от компаратора, соответствующий первой поверяемой точке, подают на вход калибратора температуры при помощи источника питания постоянного тока и снимают показания. Повторяют эту операцию для остальных поверяемых точек.
5.7.5 Абсолютная погрешность в каждой поверяемой точке определяется как разность между значением напряжения, измеренного калибратором температуры, и действительнкым значением напряжения на выходе вольтметра.
5.7.6 Значения абсолютной погрешности во всех поверяемьх точках не должны превышать значений, рассчитанных по формуле:
$\pm(0,005 \%$ от измеряемого значения $+0,015 \%$ от диапазона измерений) В.
5.8 Определение абсолютной погрешности канала измерений температуры со штатным платиновым термопреобразователем сопротивления утлового типа.

Определеңие абсолютной погрешности канала измерений температуры со штатным платиновым термопреобразователем сопротивления углового или стержневого типа проводят после положительного результата проверки канала измерений сопротивления эталонного термометра.

Абсолютную погрешность определяют в калибраторах температуры с использованием 2 -х канального блока сравнения и платинового термометра сопротивления эталонного 1 -го разряда в диапазоне, соответствующему диапазону температур, воспроизводимых данной модельіо калибратора, не менее чем в 5 -ти точках для калибраторов АТС-155B, АТС-156B, АТС-157B и не менее чем в 6 -ти точках для калибраторов АТС-320В и АТС-650В.
5.8.1 Эталонный термометр сопротивления и штатный термопреобразователь помещают в двухканальный блок сравнения с кольцевыми зазорами не более 0,1 мм. Эталонный 1 -го разряда эатиновый термометр сопротивления подключают к DTI-1000, штатный термопреобразователь сопротивления - к входу для эталонного термометра калибратора температуры (Ref. Input). Перед началом измерений необходимо с помощью программы AmeTrim-ATC (у.1.02) ввести пары значений температура-сопротивление («calculated») для штатного термопреобразователя сопротивлений, взятые из сертификатао о калибровке этого термопреобразователя.
5.8 .2 Устанавливают температуру в калибраторе, соответствующую первой температурной точке. После десяти минутной выдержпи термометров при установившейся температуре в калибраторе снимают (не менее 10 отсчетов) показаний эталонного термометра (с дисплея DTI1000) и штатного термопреобразователя сопротивления (с дисплея калибратора) и вычисляют средние арифметические значения температур.

Операции по п.5.8.2 выполняют для остальных значений температуры.
5.8.3 Абсолютная погрешность канала нзмерений температуры со штатным платиновым термопреобразователем сопротивления углового типа вычисляется как разность между средними арифметическими значениями температуры штатного термопреобразователя сопротивления и эталонного термометра.

Абсолютная погрешность канала измерений температуры (Δt_{κ} этс) не должна превышать ъедующих значений:
$\pm 0,06{ }^{\circ} \mathrm{C}$ - для калибраторов температуры АТС-155B;
$\pm 0,04^{\circ} \mathrm{C}$ - для калибраторов температуры АТС-156B;
$\pm 0,04^{\circ} \mathrm{C}$ - для калибраторов температуры АТС-157B;
$\pm 0,07^{\circ} \mathrm{C}$ - для калибраторов температуры АТС-320B;
$\pm 0,11^{\circ} \mathrm{C}$ - для калибраторов температуры АТС-650В.
В случаях, если $\Delta \mathrm{t}$.этс превышает данное значение, следует переградуировать итатный термометр.
5.8 .4 Градуировку штатного платинового термопреобразователя сопротивления углового типа выполняют в калибраторах температуры серии ATC-R с использованием 2 -х канапьного блока сравнения и платинового термометра сопротивления эталонного 1-го разряда в диапазоне, соответствующему диапазону температур, воспроизводимых данной моделью калибратора, не менее чем в 5 -ти точках для термопреобразователя, входящего в комплект калибраторов АТС155 B , АТС-156B, АТС-157B и не менее чем в $6-т и$ точках для термопреобразователей, входяцих в комплект калибраторов АТС-320B и 650 B .
58.5 Танонны термометр сопротивления и поверяемьи - термометр помешают в двукканальный блок сравнения с кольцевыми зазорами не более 0.4 мм Этатонный 1 ро разряда платиновый-термометр-сопротивления; градуируемый термопреобразователь сопротивлений каната "TRUE" подключают к соответствуюшим канатам (1 и 2) прецизионного нзмерителя сопротивлений, обеспечивающего измерение сопротивлений не хуже $\pm 0,0005 \%$.
5.8.6 По внутреннему термолреоиразователю сопротивления калибратора задают гемпературу, соответствуюшую первой температурной точке, запускают программу работы DT11000 с компьютером и посредством вызсва файла dti. bat выбирают режим измерений.
5.8 .7 Входят в режим перекалибिровки датчиков и осуществляют перекалибровку: термопреобразователя 2 -го канала по методике, изложенной в инструкции по эксплуатации на DTI-1000. Для определения градуировочных коэффициентов термопреобразователей сопротивления канала 2 выполняют измерения и регистрацию результатов измерений по эталонному и поверяемому термопреобразователям не менее, чем в 5 -ти (6 -ти) температурных точках, расположенньхх в рабочем диапазоне измерений. Регистрадия в каждой точке выполняется после стабилизации показаний и выполнения критерия стабильности показаний поверяемого термопреобразователя (канал 2). Далее из файла с расширением *.clo выписывают пять (шесть) значений температур ($\mathrm{t}_{\boldsymbol{\pi}}$) (второй столбец) и соответствуюших им пять (шесть) значений сопротивлений ($\mathrm{R}_{\text {пов }}$) (третий столбец), которые в дальнейшем используют дия переградуиро, і теряопреобразователя сопротивлений канала "TRUE".
5.9 При помощи программного обеспечения AmeTrim-ATC (v.1.02) для калиораторов температуры серии ATC-R вводят и загружают пары значений температура-сопротивление для нового термометра - переградуированного термопреобразователя сопротивлений канала "TRUE".
5.10 После введения новых значений выполняется повторная проверка абсолютной погрешности канала измерений температуры (в соответствии с п.5.8).

ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

6.1 При положительном результате поверки калибратора оформляют свидетельство о поверке в соответствии с ПР 50.2 .006 .
6.2 При отрицательном результате поверки калибратор к применению не допускаит. Свидетельство о поверке аннулируют и выдают извешение о непригодности с указанием причю. в соответствии с ПР 50.2.006.

E.B. Васитьев

