УТВЕРЖДАЮ Генеральный директор 000 «Автопрогресс-М» А.С. Никитин 2015 г. « 14

Системы автоматического ультразвукового контроля Rotoscan

МЕТОДИКА ПОВЕРКИ

МП АПМ 83-15

r.p.63489-16

г. Москва 2015 г. Настоящая методика распространяется на системы автоматического ультразвукового контроля Rotoscan (далее – системы) и устанавливает методику их первичной и периодической поверки.

Интервал между периодическими поверками - 1 год.

1. Операции поверки

При проведении поверки должны выполняться операции, указанные в таблице 1.

		Таблица 1.
	Наименование этапа поверки	№ пункта документа по поверке
1	Внешний осмотр, проверка маркировки и комплектности	7.1
2	Опробование, проверка работоспособности функциональных режимов, идентификация программного обеспечения	7.2
3	Определение метрологических характеристик	7.3
3.1	Определение отклонений допускаемых значений амплитуд им- пульсов возбуждения генератора дефектоскопа от номинального значения на нагрузке 50 ± 1 Ом	7.3.1
3.2	Определение абсолютной погрешности измерений амплитуд сигналов на входе приемника дефектоскопа	7.3.2
3.3	Определение абсолютной погрешности измерений установки усиления приемника дефектоскопа в диапазоне от 0 до 40 дБ с шагом 5 дБ	7.3.3
3.4	Определение абсолютной погрешности измерений временных интервалов	7.3.4
3.5	Определение угла ввода и точки ввода при работе с ПЭП и пре- образователями на фазированной решетке	7.3.5
3.6	Определение абсолютной погрешности измерений глубины за- легания отражателей пьезоэлектрическими преобразователями и преобразователями на фазированной решетке	7.3.6
3.7	Определение абсолютной погрешности измерений расстояний датчиком пути сканера	7.3.7

2. Средства поверки

При проведении поверки должны применяться эталоны и вспомогательные средства, приведенные в таблице 2.

Таблица 2

	Tuomidu 2:
№ пункта до-	Наименование эталонов, вспомогательных средств поверки и их основные
кумента по	метрологические и технические характеристики
поверке	
7.3.1.	Осциллограф цифровой DS2202, полоса пропускания 200 МГц, ПГ $\pm 25 \cdot 10^{-6}$
	Гц;
	Делитель напряжения 1:10, $R_{BX} = 10$ МОм, $C_{BX} = 1215$ пФ;
	Резистивная нагрузка 50 Ом ± 0,15%;
7.3.2.	Осциллограф цифровой DS2202, полоса пропускания 200 МГц, ПГ $\pm 25 \cdot 10^{-6}$
	Гц;
	Генератор сигналов произвольной формы DG4102, диапазон частот 1 мГц ÷
	200 МГц, ПГ \pm (0,01 · U _{ver} + 2 мВ), выходное напряжение 1 мВ \div 10 В;
	Резистивная нагрузка 50 Ом ± 0,15%;
7.3.3.	Осциллограф цифровой DS2202, полоса пропускания 200 МГц, ПГ $\pm 25 \cdot 10^{-6}$
	Гц;

	Генератор сигналов произвольной формы DG4102, диапазон частот 1 мГц ÷
	200 МГц, ПГ \pm (0,01 · U _{yct} + 2 мВ), выходное напряжение 1 мВ \div 10 В;
	Резистивная нагрузка 50 Ом $\pm 0,15\%$;
7.3.4.	Осциллограф цифровой DS2202, полоса пропускания 200 МГц, ПГ $\pm 25 \cdot 10^{-6}$
	Гц;
	Генератор сигналов произвольной формы DG4102, диапазон частот 1 мГц ÷
	200 МГц, ПГ \pm (0,01 · U _{ycr} + 2 мВ), выходное напряжение 1 мВ \div 10 В;
	Резистивная нагрузка 50 Ом ± 0,15%;
7.3.5	Комплект контрольных образцов и вспомогательных устройств КОУ-2: кон-
	трольный образец СО-2, СО-3 из набора КОУ-2, скорость продольных УЗК
	= (5900 ±118) м/с; затухание продольной ультразвуковой волны на частоте
	(2,5±0,5) МГц не более ±2,0 дБ; интервал времени между первым и третьим
	донным эхосигналом (40±1) мкс.
7.3.6	Комплект контрольных образцов и вспомогательных устройств КОУ-2: кон-
	трольный образец СО-2, СО-3 из набора КОУ-2, скорость продольных УЗК
	= (5900 ±118) м/с; затухание продольной ультразвуковой волны на частоте
	(2,5±0,5) МГц не более ±2,0 дБ; интервал времени между первым и третьим
	донным эхосигналом (40±1) мкс.
7.3.7	Штангенциркуль ШЦ-II, (0 — 250) мм, ПГ ± 0,05 мм

Примечание: Допускается применять другие средства поверки, обеспечивающие определение метрологических характеристик с точностью удовлетворяющей требованиям настоящей методики.

3. Требования к квалификации поверителей

К проведению поверки допускаются лица, изучившие эксплуатационные документы на системы автоматического ультразвукового контроля Rotoscan, имеющие достаточные знания и опыт работы с подобными устройствами, аттестованные на право выполнения поверочных работ.

4. Требования безопасности

4.1. Перед проведением поверки следует изучить техническое описание и руководство по эксплуатации на поверяемую систему автоматического ультразвукового контроля Rotoscan и приборы, применяемые при поверке.

4.2. К поверке допускаются лица, прошедшие инструктаж по технике безопасности при работе на электроустановках.

5. Условия проведения поверки

При проведении поверки должны соблюдаться следующие нормальные условия измерений:

-	температура окружающей среды, °С	$20 \pm 5;$
-	относительная влажность воздуха,%	не более 70;
-	атмосферное давление, кПа	96,0104,0.

Внешние электрические и магнитные поля должны отсутствовать, либо находиться в пределах, не влияющих на работу системы автоматического ультразвукового контроля Rotoscan.

6. Подготовка к поверке

Перед проведением поверки должны быть выполнены следующие подготовительные работы:

проверить наличие действующих свидетельств о поверке на средства поверки;

- систему автоматического ультразвукового контроля Rotoscan и средства поверки привести в рабочее состояние в соответствии с их эксплуатационной документацией;

- система автоматического ультразвукового контроля Rotoscan и средства поверки должны быть выдержаны в помещении не менее 1ч.

7. Проведение поверки

7.1. Внешний осмотр, проверка маркировки и комплектности

При внешнем осмотре должно быть установлено соответствие системы автоматического ультразвукового контроля Rotoscan следующим требованиям:

- наличие маркировки (наименование или товарный знак изготовителя, тип и заводской номер);

- комплектность системы автоматического ультразвукового контроля Rotoscan должна соответствовать Руководству по эксплуатации;

- отсутствие механических повреждений, а также других повреждений, затрудняющих отсчет показаний и влияющих на их точность;

наличие четких надписей и отметок на органах управления.

В случае обнаружения несоответствия систем автоматического ультразвукового контроля Rotoscan перечисленным требованиям они к поверке не допускаются.

7.2. Опробование, проверка работоспособности функциональных режимов, идентификация программного обеспечения

7.2.1. Выполнить все операции по подготовке системы автоматического ультразвукового контроля Rotoscan к работе согласно руководству по эксплуатации. В случае успешного завершения самоконтроля системы разрешается проводить дальнейшие операции.

7.2.2. Проверку идентификационных данных программного обеспечения проводить следующим образом:

Включить систему автоматического ультразвукового контроля Rotoscan в соответствии с руководством по эксплуатации. После загрузки идентификационные данные программного обеспечения появятся на экране жидкокристаллического дисплея. Данные, полученные по результатам идентификации ПО, должны соответствовать таблице 3.

Таблица 3

Идентификационное наименование ПО	Rotoscan	Rotoclient
Номер версии (идентификационный номер ПО), не ниже	5.3	3

7.2.3. Проверить пределы изменений регулируемых параметров и режимы контроля согласно руководству по эксплуатации.

7.2.4. Произвести внутреннюю проверку преобразователей на фазированной решетке, для этого необходимо: создать новый файл: открыть пункт меню «File» – «New» или

нажать на кнопку, обозначенную пиктограммой _____. Задать первичные параметры.

7.2.5. Ввести следующие значения в появившееся окно и нажать «Next».

No. of Totd gates	2	÷
No. of Map gates	0	4
No. of Pulse Echo gates (x2)	2	÷
No. of <u>R</u> oot gates (x2)	0	•
 No. of <u>C</u> oupling gates	0	4

В появившемся окне задать следующие параметры и нажать «Next».

	Mapping all channels
	If this feature is enabled it will allow you to toggle between the standard presentation of a pulse echo gate or a 'mapping' presentation of the same pulse echo gate.
	• Disabled
	C Enabled
	Cied in Support Enabled
В появившемся	а окне задать следующие параметры и нажать «Next; Phased Anay
	Use phased array probes instead of conventional probes.
	• Enabled
	If you wan't the ability to check the elements of your phased array probe you need extra element check gates.
	C Element check disabled

Element check enabled

После задания всех первичных параметров, нажать кнопку «Finish».

7.2.6. Задать параметры датчиков. Выбираем пункт меню «Settings» - «Probes». В появившемся окне во вкладках «Phased array 1» и «Phased array 2» задать следующие параметры фазированной решетки и нажать «OK».

Probe serial number		
Type array	Single linear array	┣
Nr. of elements per array	64	Ì
Pitch first element (mm)	0.85	È
Pitch last element (mm)	0.85	÷
Ultrasonic frequency (MHz)	4.0	÷
Angle (*)	37.00	Ð
Hor. index (mm)	64.0	È
Vert. index (mm)	25.0	
Soundspeed wedge (m/s)	2475.0	Ê
Weld distance (mm)	15.0	÷
Skips allowed	Yes	

7.2.7. Для настройки внутренней проверки элементов предназначены каналы 7 и 8. Для канала 8 задать амплитуду эхосигнала на уровне 30 дБ в графе «Gain» во вкладке «Gates», чтобы увеличить сигнал на выбранном элементе фазированной решетки. Затем перейти во вкладку «Beam» и задать параметры:

Gates	Glo	bai	Area
Constant of	-		
Start ala	ment	57	
diame	ten .		
- CHEATHER	ACI1	Ľ	

7.2.8. Вернуться к таблице параметров и отрегулировать начало и длительность строба (значения «Start» и «Size» на вкладке «Gates») так, чтобы он включал сигнал от последнего элемента фазированной решетки:

7.2.9. Увеличить амплитуду «Gain» 7-го канала до 35 дБ. Для канала 8 копировать настройки с канала 7. Проверить, входит ли сигнал от первого и последнего элемента в зону строба. При этом на вкладке «Beam» должны быть установлены значения «Start element» равными 1 и 64 соответственно.

7.2.10. Установить значение «Start element» равным 64.

7.2.11. Выбрать пункт меню «Inspect» - «РА Element Check», предварительно закрыв режим дефектоскопа

jettings	Inspect	⊻iew	Channel	Indicati	ons
	aiaa PA B	Element (Check Shi	ft+F10	ľ
	🕲 <u>W</u> el	đ		F10	
1	Mex	t Weld		F11	
	🙆 <u>C</u> ali	brate		F9	
	🍪 Stor	: inspec	tion		Ì

7.2.12. Завершить проверку каждого элемента.

6

7.2.13. По окончании проверки на экран выводится окно, содержащее отчет о проведенной процедуре. Напротив каждого элемента должно быть значение «TRUE».

Если напротив некоторых элементов присутствует значение «FALSE», то следует повысить амплитуду эхосигнала в каналах, предназначенных для настройки данной проверки.

7.2.14. Если после увеличения амплитуды эхосигнала в отчете присутствуют значения «FALSE», то необходимо выполнить аналогичную проверку в ручном режиме или воспользоваться другой фазированной решеткой с аналогичными параметрами.

Если перечисленные требования не выполняются, систему признают непригодной к применению, дальнейшие операции поверки не производят.

7.3. Определение метрологических характеристик

7.3.1. Определение отклонений допускаемых значений амплитуд импульсов возбуждения генератора дефектоскопа от номинального значения на нагрузке 50 ± 1 Ом

7.3.1.1. Для определения отклонений допускаемых значений амплитуды импульсов возбуждения от номинального значения на нагрузке 50 ± 1 Ом необходимо выполнить соединения в соответствии со схемой на Рис. 1.:

Рис. 1. Схема соединений при проверке параметров импульсов возбуждения

Для предотвращения повреждения осциллографа перед подключением к выходу генератора дефектоскопа убедиться, что используется делитель напряжения 1:10.

- подключить нагрузку 50 Ом к выходу генератора системы;

- провести измерения на 5-ом канале системы. 3-ий канал предназначен для проверки электронного блока.

	Beam	Global							1000	
Gate	Туре	Seq.	Start(m	Size(mm	Gain(dł	PA/CON	Tx	Rx	Wave	Delay(mi
1	P.E.1	1	37.6	100.0	0.0	PA	1	1	S	0
2	P.E.2	2	37.6	100.0	0.0	PA	2	2	S	0
3	P.E.4	3	1.0	20.0	0.0	CON	1	5	S	0
4	P.E.3	4	1.0	20.0	0.0	CON	1	1	S	0
5	Tofd1	5	1.0	20.0	0.0	CON	1	5	S	0
6	Tofd2	6	1.0	20.0	0.0	CON	1	1	S	0
7	PA Chk	7	10.0	20.0	20.0	PA	1	1	С	0
8	PA Chk	8	10.0	20.0	20.0	PA	2	2	с	0

Физический канал под номером 1 является генератором (графа « T_x ») и канал 5 является приемником (графа « R_x »).

- выбрать пункт меню «Settings» «Ultrasonics»;
- скопировать настройки 3-го канала в 5-ый канал;
- перейти во вкладку «Global»;

- последовательно установить значения амплитуды 50, 100, 150, 200 В в поле «Pulser voltage (V)» (А_{ном}).

Base line offset (V)	0.00	
Input impedance (Ohm)	50 Ohm	
Main gain (dB)	0.0	Ľ
Inspection sensitivity +(dB)	0	ŀ
Attenuator	None	
Shear wave (m/s)	3230	ŀ
Compr. wave (m/s)	5950	
Sample frequency (MHz)	50	
PRF (Hz)	3000	
Pulser voltage (V)	200	
WT Mode dead time (mm)	5.0	Ļ

- осциллографом измерить напряжение на разъеме канала 5 подключения преобразователя (А_{изм}).

7.3.1.2. Определить относительную погрешность амплитуды импульсов возбуждения от номинального значения по формуле:

$$\delta_{\rm A} = \frac{A_{u_{2M}} - A_{u_{0M}}}{A_{u_{0M}}} \cdot 100$$

где δ_A – относительная погрешность амплитуды импульсов возбуждения от номинального значения, %;

Аизм – значение напряжения, измеренное осциллографом, В;

А_{ном} – номинальное значение напряжения системы, В.

Пределы допускаемого отклонения значений амплитуд импульсов возбуждения от номинального значения на нагрузке 50 ± 1 Ом не должны превышать $\pm 10\%$ от измеренной величины во всем диапазоне.

Если требование п. 7.3.1.2. не выполняются, систему признают непригодной к применению, дальнейшие операции поверки не производят.

7.3.2. Определение абсолютной погрешности измерений амплитуды сигнала на входе приемника дефектоскопа

7.3.2.1. Для определения абсолютной погрешности измерений амплитуды сигнала на входе приемника необходимо выполнить соединения в соответствии со схемой на Рис. 2.:

Осциллограф RIGOL DS2202

Рис. 2. Схема соединений для определения абсолютной погрешности измерений амплитуды сигнала на входе приемника

7.3.2.2. Установить на генераторе DG4102:

- синхронизация внешняя;
- опорный сигнал внутренний;
- число периодов в пачке 1;
- частота заполнения импульсов 2 МГц;
- амплитуда импульсов 360 мВ;
- задержка 1 мкс.

7.3.2.3. Изменяя усиление канала «Gain» (дБ) на вкладке «Gates», добиться того, чтобы анализируемый сигнал имел высоту 50% экрана. Выставить строб на 50% экрана.

7.3.2.4. Согласно таблице 4 изменять суммарный фактор затухания А, компенсируя его увеличением усиление канала «Gain» (дБ) А_{дБ}, таким образом, чтобы полученный сигнал имел высоту 50% экрана.

			Габлица 4
Значение ослабления, дБ	- 6	+ 6	+ 12

7.3.2.5. Определить абсолютную погрешность измерений амплитуды сигнала на входе приемника по формуле:

$$\Delta A_1 = A_1 - A_{\partial \mathcal{B}}$$

где *∆А*₁ – абсолютная погрешность измерений амплитуды сигнала на входе приемника, дБ;

*A*₁ – значение задаваемого ослабления амплитуды сигнала на выходе генератора, дБ;

*А*_{*оБ*} - значение усиления амплитуды сигнала на входе приемника дефектоскопа, дБ.

7.3.2.6. Абсолютная погрешность измерений амплитуд сигналов на входе приемника дефектоскопа не должна превышать ± 2 %.

Если требование п. 7.3.2.6. не выполняются, систему признают непригодной к применению, дальнейшие операции поверки не производят.

7.3.3. Определение абсолютной погрешности измерений установки усиления приемника дефектоскопа в диапазоне от 0 до 40 дБ с шагом 5 дБ

7.3.3.1. Для определения абсолютной погрешности измерений установки усиления приемника в диапазоне от 0 до 40 дБ с шагом 5 дБ необходимо выполнить соединения в соответствии со схемой на Рис. 3:

Осциллограф RIGOL DS2202

7.3.3.2. Установить на генераторе DG4102:

- синхронизация внешняя;
- опорный сигнал внутренний;
- число периодов в пачке 1;
- частота заполнения импульсов 2 МГц;
- амплитуда импульсов 360 мВ;
- задержка 1 мкс.

7.3.3.3. На системе установить усреднение равным 1.

7.3.3.4. Изменяя усиление канала «Gain» (дБ) на вкладке «Gates», добиться того, чтобы анализируемый сигнал имел высоту 80% экрана. Выставить строб на 80% экрана.

7.3.3.5. Согласно таблице 5 последовательно изменять суммарный фактор затухания **A**, компенсируя его увеличением усиление канала «Gain» (дБ) $A_{д B}$ таким образом, чтобы полученный сигнал имел высоту 80% экрана.

								tomique o
Значения ослабления, дБ 0	5	10	15	20	25	30	35	40

7.3.3.6. Абсолютная погрешности измерений установки усиления приемника дефектоскопа определяется по формуле:

$$\Delta A_{\partial \mathcal{B}} = A - A_{\partial \mathcal{B}}$$

где $\Delta A_{\partial b}$ – абсолютная погрешности измерений установки усиления приемника дефектоскопа, дБ;

А – значение суммарного фактора затухания амплитуды сигнала канала, дБ;

*А*_{*db*} – значение усиления амплитуды сигнала канала, дБ.

7.3.3.7. Абсолютная погрешность измерений установки усиления приемника не должна превышать ± (0,4 + 0,02·Nn), где Nn – установленное усиление приемника, дБ.

Если требование п. 7.3.3.7. не выполняются, систему признают непригодной к применению, дальнейшие операции поверки не производят.

7.3.4. Определение абсолютной погрешности измерений временных интервалов

7.3.4.1. Для определения абсолютной погрешности измерений временных интервалов необходимо выполнить соединения в соответствии со схемой на Рис. 4:

Рис. 4. Схема соединений для определения абсолютной погрешности измерений временных интервалов

- 7.3.4.2. Установить на генераторе DG4102:
- синхронизация внешняя;
- опорный сигнал внутренний;
- число периодов в пачке 1;
- частота заполнения импульсов 2 МГц;
- амплитуда импульсов 360 мВ;
- задержка 10 мкс.

7.3.4.3. Во вкладке «Global» установить скорость звука «Shear wave» для продольной волны равную 2000 м/с.

Base line offset (V)	0,00	÷
Input impedance (Ohm)	50 Chm	
Main gain (d8)	0,0	÷
Inspection sensitivity +(dB)	0	÷
Attenuator	None	
Shear wave (m/s)	2000	÷
Compr. wave (m/s)	5950	÷
Sample frequency (MHz)	50	•
PRF (Hz)	3000	÷
Pulser votage (V)	0	÷
WT Mode dead time (mm)	5,0	÷

7.3.4.4. На канале 3 установить длину строба 200 мм.

100	<u>د ا</u>								un ann an a	ab mbmo.co.	<u></u>	ana nananina		nestesiäte s	in and				ili n in nh n kon		
	3																				
Maitas																					
50	×																				
States,	1																				
	-																				
	1																				
Ø	* <u>'</u>]																				
	0 mm				· •	50 mm			• •		100	anan		\$. '		150 mm		• • •		Salata	200 mm
	Beam	Globel	2																		
Gate	Туре	Seq.	Startina	Size(mm	Gain(di	PACON	Tx	Rx	Wave	Delay(m	HPF	LPF	Pulse width	Title	Th r .(?)	Mode	G/HG(%	<1	Palet	Averag	
1	P.E.1	1	37.6	100.0	0.0	PA	1	1	S	0	Disabled	Disabled	125	PE4	2	н	20	*>	•	1	
2	P.E.2	2	37.6	190.0	0.0	: PA	2	2	S	0	Disabled	Disabled	125	PE4	2	н	20	*>	•	: 1	
3	P.E.4	3	0.0	300.0	0.0	CON	5	1	S	0	Disabled	Disabled	125	PE1	· 2	H	20	4(#	·	1	
*	PE.3	4	13.1	35.0	20.9	CON	1 r	1	S	0	Disabled	Disabled	125	PE1	2	н	20	- «C.W		1	
\$ ************************************	Total	5	1.0	20.0	0.0	CON	5	1	5	.U 	Disabled	Disabled	125	TOFD1		•	-	-			
7			1.0	20.0	0.0	CON					Nadoleo		120	10102						. *	
	PACH	7	21.0	85.0	35.0	PA	1	. 1	с	0	Disabled	Disabled	125	PA-Chk1	10	н	20	·		1	
:	PA Chk PA Chk	7	21.0 21.0	85.0 85.0	35.0 35.0	PA	1	1	c c	0	Disabled Disabled	Disabled Disabled	125 125	PA-Chk1 PA-Chk2	10 10	н н	20 20	-	•	1 . 1	

7.3.4.5. Нажать правой кнопкой мыши на осциллограмму и в появившемся меню выбрать пункт «Custom».

7.3.4.6. Установить значение «Length» равным 315 мм для всей развертки

7.3.4.7. Отобразить ось абсцисс в режиме времени в мкс.

7.3.4.8. Изменяя усиление канала «Gain» (дБ) во вкладке «Gates», добиться того, чтобы анализируемый сигнал имел высоту 80% экрана. Выставить строб на 80% экрана.

7.3.4.9. Установить последовательно задержку A₂ в мкс на генераторе таким образом, чтобы полученный сигнал эхо-импульса последовательно изменял свои значения во всем заданном диапазоне. Одновременно с этим произвести регистрацию положения анализируемого сигнала (A_{изм2}).

7.3.4.10. Определить абсолютную погрешность измерений временных интервалов по формуле:

$$\Delta A_2 = A_{u_3w_2} - A_2$$

7.3.4.11. Абсолютная погрешность измерений временных интервалов не должна превышать $\pm 0,2$ мкс.

Если требование п. 7.3.4.11. не выполняются, систему признают непригодной к применению, дальнейшие операции поверки не производят.

7.3.5. Определение угла ввода и точки ввода при работе с ПЭП и преобразователями на фазированной решетке

7.3.5.1. Для определения угла ввода и точки ввода первой фазированной решетки выбрать первый канал на вкладке «Gates». Значения в графах «R_x» и «T_x» означают номер фазированной решетки приемника и генератора соответственно.

	Beam	Global								
Gate	Туре	Seq.	Start(mr	Size(mm	Gain(df	PA/CON	Tx	Rx	Wave	Delay(mi
1	PEI	1	37.6	100.0	0.0	PA	1	1	S	0
2	P.E.2	2	37.6	100.0	0.0	PA	2	2	S	0
3	P.E.4	3	1.0	20.0	0.0	CON	1	5	S	0
4	P.E.3	4	1.0	20.0	0.0	CON	1	1	S	0
5	Tofd1	5	1.0	20.0	0.0	CON	1	5	S	0
6	Tofd2	6	1.0	20.0	0.0	CON	1	1	S	0
7	PA Chk	7	10.0	20.0	20.0	PA	1	1	С	0
8	PA Chk	8	10.0	20.0	20.0	PA	2	2	С	0

7.3.5.2. Установить преобразователь с фазированной решеткой на образец СО-3 и найти максимальный сигнал.

7.3.5.3.Установить такое значение «GATE START», чтобы показания «T.D.» соответствовали радиусу образца СО-3.

7.3.5.4. Нанести на корпус фазированной решетки риску (маркером или наклейкой), соответствующую нулевой риске образца СО-3. Если на корпусе уже имеется риска и погрешность совпадения с нулевой риской образца составляет ± 1 мм, то в необходимости нанесения новой риски отсутствует.

7.3.5.5. Установить фазированную решетку на образец СО-2 и найти сигнал от отверстия диаметром 6мм, анализируя показания «T.D.».

7.3.5.6. По шкале образца СО-2 определить угол ввода. Значение угла ввода соответствует риске на шкале образца СО-2 при максимальном эхосигнале от отверстия 6 мм.

7.3.5.7. Для определения угла ввода и точки ввода второй фазированной решетки выбрать второй канал на вкладке «Gates».

7.3.5.8. Повторить пункты 7.3.5.2. – 7.3.5.6. для второй фазированной решетки.

7.3.5.9. Для определения угла ввода и точки ввода стандартных ПЭП выбрать канал 4 на вкладке «Gates». В графе «Wave» выбрать «S» для датчиков, использующих поперечную волну или «C» для датчиков, использующих продольную волну.

7.3.5.10. Повторить пункты 7.3.5.2. – 7.3.5.6. для второй фазированной решетки.

Примечание: В случае невозможности выполнения операций, описанных в пункте 7.3.5, следует заменить пьезоэлектрический преобразователь.

7.3.6. Определение абсолютной погрешности измерений глубины залегания отражателей пьезоэлектрическими преобразователями и преобразователями на фазированной решетке

7.3.6.1. Для поверки первой фазированной решетки выбрать первый канал во вкладке «Gates».

15

1	Beam	Global						(1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.		
Gate	Туре	Seq.	Start(mr	Size(mm	Gain(dl	PA/CON	Tx	Rx	Wave	Delay(m)
1	P.E.1	1	37.6	100.0	0.0	PA	1	1	S	0
2	P.E.2	2	37.6	100.0	0.0	PA	2	2	S	0
3	P.E.4	3	1.0	20.0	0.0	CON	1	5	S	0
4	P.E.3	4	1.0	20.0	0.0	CON	1	1	S	0
5	Tofd1	5	1.0	20.0	0.0	CON	1	5	S	0
6	Tofd2	6	1.0	20.0	0.0	CON	1	1	S	0
7 ,	PA Chk	7	10.0	20.0	20.0	PA	1	1	с	0
8	PA Chk	8	10.0	20.0	20.0	PA	2	2	с	0

7.3.6.2. Перейти во вкладку «Beam» и задать следующие параметры. В параметре «Angle» указать значение угла, полученное в пункте 7.3.5.6. данной методики поверки, либо из паспорта на выбранный пьезоэлектрический преобразователь или фазированную решетку.

	Transm	t	Receive	
Angle (*)	45.00]	spine	16
Skips	o]÷		H
Direct	yes	•	yes	Τ
Delta focus (mm)	0.00	Ì.		1
Della start	0	Ĩ Ţ		Ę
Delta Zx	35.00	1		Ţ.
Dette Zy	0.00	1 •		1
# elementen	16	÷		ŦŖ
Oate start (mm)	37.6	Ì÷		
Gate size (mm)	100.0	T÷	1997	
Gain (dB)	0.0	1 0		
Tandem				
E Fordine				

7.3.6.3. Установить фазированную решетку на образец СО-3 и найти максимальный сигнал.

7.3.6.4. Установить такое значение «GATE START», чтобы показания «T.D.» соот-

ветствовали радиусу образца СО-3.

7.3.6.5. Установить фазированную решетку на образец СО-2 и найти сигнал от отверстия диаметром 6мм, анализируя показания «T.D.».

7.3.6.6. Для поверки второй фазированной решетки выбрать второй канал на вкладке «Gates».

7.3.6.7. Повторить пункты 7.3.6.1. - 7.3.6.5. для второй фазированной решетки.

7.3.6.8. Определить абсолютную погрешность измерений глубины залегания отражателей пьезоэлектрическими преобразователями и преобразователями на фазированной решетке по формуле:

$$\Delta A_3 = A_{u_{3M}3} - A_{CO}$$

где A_{CO} – действительное значение образца СО-2, мм;

 $A_{u_{3M3}}$ – значение измеренное системой, мм;

 ΔA_3 – абсолютная погрешность измерений, мм.

7.3.6.9. Абсолютная погрешность измерений глубины залегания отражателей пьезоэлектрическими преобразователями и преобразователями на фазированной решетке: при работе с прямым ПЭП не должна превышать $\pm (0,5 + 0,005 \cdot \text{H})$ мм; при работе с наклонным ПЭП и преобразователем на фазированной решетке не должна превышать $\pm (0,5 + 0,005 \cdot \text{H})$, где H – глубина залегания отражателя, мм.

Если требование п. 7.3.6.9. не выполняются, систему признают непригодной к применению, дальнейшие операции поверки не производят.

7.3.7. Определение абсолютной погрешности измерений расстояний датчиком пути сканера

7.3.7.1. С помощью штангенциркуля измерить диаметр датчика пути.

Определить длину окружности датчика пути по формуле:

$$l = \pi \cdot \mathbf{D},$$

где *l* – длина окружности датчика пути, мм;

D – диаметр датчика пути, измеренный штангециркулем, мм.

7.3.7.2. Установить систему на ровную поверхность. Провести калибровку датчика пути: выбрать пункт меню «Settings» - «Scanner».

Set	lings	Inspect	⊻iew <u>C</u> ha	H.
9	<u>E</u> nvir	onment	F2	
Ð	Job		F3	
	<u>U</u> ltra:	sonics	F4	
	<u>S</u> can	ner	F 5	
	<u>X</u> -Se	ction	F6	
	Probe	BS	F7	
Ľ,	<u>C</u> alibi	ration		
	Remo	te Control	I Ctrl+R	
L	Diagr	nose		

7.3.7.3. Затем перейти во вкладку «Encoder» и нажать на кнопку «Reset» для сброса на нуль для начала отсчета.

<u>M</u> odel		Automatic	. Lines	
2irection		Normal		
Resolution (counts	s i mm)	1.00		
Position (mm)		-2		
Celibration distanc	e (mm)	500		

7.3.7.4. На колесе датчика пути поставить тонкую метку. Произвести один полный оборот колеса датчика пути, пока метка датчика пути не соприкоснется с поверхностью. Значение «Position» (мм) соответствует пути, измеренному системой А_{изм4}.

7.3.7.5. Определить абсолютную погрешность измерений расстояний датчиком пути сканера по формуле:

$$\Delta A_4 = A_{u_{3M}4} - A_{u_4}$$

где ΔA_4 – значение абсолютной погрешности измерений расстояния датчиком пути сканера, мм;

А_ш – расчётное значение длины окружности датчика пути, мм;

 $A_{u_{3M4}}$ – значение расстояния, измеренное системой, мм.

7.3.7.6. Абсолютная погрешность измерений расстояния датчиком пути сканера не должна превышать ± 2 мм.

Если требование п. 7.3.7.6. не выполняются, систему признают непригодной к применению, дальнейшие операции поверки не производят

8. Оформление результатов поверки

8.1. Результаты поверки оформляются протоколом, составленным в виде сводной таблицы результатов поверки по каждому пункту раздела 7 настоящей методики поверки с указанием предельных числовых значений результатов измерений и их оценки по сравнению с предъявленными требованиями.

8.2. При положительных результатах поверки система автоматического ультразвукового контроля Rotoscan признается годной к применению и на неё выдается свидетельство о поверке, установленной формы.

Знак поверки наносится на свидетельство о поверке в виде наклейки и (или) оттиска поверительного клейма.

8.3. При отрицательных результатах поверки система автоматического ультразвукового контроля Rotoscan признается непригодной к применению и на неё выдается извещение о непригодности, установленной формы, с указанием основных причин.

Руководитель лаборатории ООО «Автопрогресс-М»

А.А. Саморуков