OKII 1225210026
n

Прибор универсальный
измерительный P4833
сеп mсор. 8.
Ilacnopt
2.736.033 IC

$$
p .7494-79
$$

 63402, Tonckam Qundre:

Приоор универсальный измерительный P 483 дредназначен для
 теплотеяническик приборов.

Páбоие условия применеиия прибора:

относительная владносля (65 ± 15) \% в рабочем диатазоне темпе paтyp;

атмосферное дав денíe $86-100 \mathrm{kP}$. $(650-800 \mathrm{~mm} \mathrm{Hg})$.

2. TEXHUYECKAS XAPAKTEPUCTUKA

2. 3. Kласс точности приоора при исполвзовании в качестве: моста постояннопо тока 0,1
потенииометра постоянного тека 0,05 ;
магазина сопротивления $0,02 / 4,5,10^{-4}$.
1. 2. Диапазон:

измерения сопротивлении при использовании прибора в качестве моста от 10^{-4} до $10^{6} \Omega$;

измерения ЭДС и напряжений при использовании прибора в канеcrse morenдиометра от 0 до $111,10 \mathrm{mV}$;

Ноказании сопротивления при использовании прибора в качестве питидекадного магазиа сопротиления от начального ($\leqq 0,015 \Omega$) до 1111,100 .
6. 2 . 3 .

мри измерении сопротивлений сответствует значениям, указанным B Tabn.

при Һзмерении \exists и иапрпжений с исползованием внешнего гилввнометра определяется по формуле:

$$
\begin{equation*}
\Delta U= \pm\left(5 \cdot 10^{-4} U+0,5 U \mathrm{Umin}\right), \quad V \tag{1}
\end{equation*}
$$

r де V данное покдзание потенииометра, V;
Umin пена одной ступени младшей декады (10-5 V).
Hормальнве условия применения:
температура окружаюмею о воздуха $(20 \pm 5)^{\circ} \mathrm{C}$;
относительная влажноств $(65 \pm 15) \%$:
4. рабочее положение горизонтальное.

Допускаемая основиая погрепиость при измерении ЭДС и напряжений с использованием встроениогя гальванометра определяегся по формуле:

$$
\begin{align*}
& \Delta \mathrm{U}=\sqrt{5}(5 \cdot 0 \operatorname{dy}+1,5 \mathrm{Umin}), \text { или } \tag{2}\\
& \Delta U==\left(5 \cdot 10^{-4} U^{2}+15 \cdot 10^{-6}\right), \quad V \tag{3}
\end{align*}
$$

2. 4. Предел допускаемого отклонения действительного значения сопротивления δ в процентах от номинального при использовании прибора в качестве магазина сопротивления определяется по :формуле:

$$
\begin{equation*}
\delta= \pm\left\{0,02+1,5 \cdot 10^{-4}\left(\frac{\mathrm{P11,10}}{\mathrm{Re}}-1\right)\right\} \tag{4}
\end{equation*}
$$

где RK - номинальное значение включенного сопротивления, Ω.
. Отклонение действительного значенй сопротивления от номинального не превышает значения, опредейяемого по формуле (4) в нормальных условиях применения:

температура окружающего воздуха $(20 \pm 2){ }^{\circ} \mathrm{C}$;
относительная влажность $(60 \pm 20) \%$.
установившетося теплового равновесия и мощностй рассенвания не выше номинальной. .
2. 5. Допускаемая основная погрешноств резисторов плеч отншения не более $\pm 0,025 \%$ (за жсключенйем резистора с номинальным значением $0,0985 \Omega$, допускаемая погрешность которого не оолее $\pm 0,25 \%$) в нормальных условиях применения, по п. 2.4 .
2. 6. Допускаемая основная погрешносты резисторов магазина 2,5 и $7,5 \Omega$ не более $\pm 0,1 \%$.
2. 7. Встроенный в прибор источник регулируемого напряжения ИРН («mV») при напряжении источника питания не менее $1,3 \mathrm{~V}$ и сопротивлении нагрузки не менее 25 а обеспечивает на зажимах «-X», \& mV » напряжение от минуе 5 до плие 100 mV .

Дискретность регулирования напряжения не более $0,05 \%$ от наибольшего напряжения на зажимах «-X», «mV》.
2. 8. Встроенный в прибор источник регулируемого напряжения ИРН («V») при напояжении источника питания не менее $5,6 \mathrm{~V}$ обеспечиваетна зажимах 《-X», «V» вапряжения от 0,5 до 5 V .
2. 9. Допускаемая основная погрешность резистора сравнения в схеме лри измерении сопротивления соединительных линий для автоматических мостов и логометров не более $\pm 0,02 \%$.
2. 10. Начальное напряяжение прибора при использовании в качестве потенциометра не более $2,4 \cdot 10^{-6} \mathrm{~V}$.
2.11. Регулируемая часть установочного conротивления потенциометра обеспечивает возможность применения нормальных элементов с Э1С в диапазоне от 1,0184 до 1,0194 V. и переключается ступенями по $(100 \pm 20) \mu \mathrm{V}$.
2. 12 . Среднее значение начального сопротивления R_{0} плеча сравНения прибора, т. е сопротивление при устаповке всех декадных переключателей на нулевые показания, не более $0,015 \Omega$
2. 13. Вариация начального сопротивления $\Delta \mathrm{R}_{0}$ плеча сравнения, вызванная изменением переходных сопротивлений контакгов переключающих устройств, не более $0,0015 \Omega$.
2. 14 Номинальная мощность рассеивания на одну ступень декады не более: $0,001 \mathrm{~W}$ для $0,01 \Omega ; 0,01 \mathrm{~W}$ для $0,1 \Omega ; 0,05 \mathrm{~W}$ для 1Ω м выше.

2． 25 Масса прибора，не более 8 kg ．
2．26．Сведення о содержании драгоценных материалов приведены в приложении 1.

3．КОМПЛЕКТ ПОСТАВКИ

Прибор универсальный измерительный Р4833 ．．．．． 1 шт．
Провод калиброванный $(0,0012-0,0015 \Omega)$ ：．．．． 2%
Провод калиброванный $(0,027-0,033 \Omega) \quad \therefore \therefore 2$ ．
Щетка поверочная ．．．．．．．．．．．．．．

Пнур соединительный（в отсеке прибора）．．．．
Элемент 373 （в кассете прибора）．．．．．．．．．．． 9 ．
Предохранитель ПМ0，15 ．，．．．．．．．．．

Паспорт нормального элемента ．．．．．．．．．．．．．

Прммечание．Поставка комплекта Зип для ремонта пронзводится по огдельному заказу（1 комплект ЗИП на 10 изделий）．

4．УСТРОИСТВО И ПРИНLИП РАБОТЫ

4．1．Декады прибора и другие основные органь управления рас－ положены на панели，которая поменена в корпус．

Прибор имеет ручку для переноски и крышку．
Прибор состоит из магазина соирротивленй，моста и потенциометра постоянного тока，источников регулируемого напрлжения ИРН（（mV»） и ИРН（«V»）．Устройство и работа прибора рассматриваются сов－ местно с рисунками и приложениями $2,3,4$.

Магазин сопротивления состоит из пяти декад：« $\times 100 \Omega », ~ « \times 10 \Omega »$ ，《 $\times 1 \Omega », « \times 0,1 \Omega », « \times 0,01 \Omega »$ с сопрохивлением одной ступени $100 ; 10$ ； 1； $0,1,0,01 \Omega$ соответственно，которые нспользуются в качестве плеча сравнения моста．В качестве измерительны декад потенциометра ис－ пользуются декады магазина сопротивления « $\times 10 \Omega$ »，《 $\times 1 \Omega$ »，« $\times 0,1 \Omega$ »， «＜0，01 $»$ »．

Плечи отношения моста выполнены в виде делителя，резисторы ко－ торого расположены на декадном переключателе．
－4．2．На панель прибора выведены：
гальванометр；
ручки пятидекадного магазина сопротивления；
ручки переключателя плеч отношения моста；
кнопки включения чувствительности прибора « »（грубо）
（\＃）»（точно）；
ручки регуляторов рабочего тока потенциометра первого 《1 》，
य и второго «2 》，«2 》 контуров；
ручки－регуляторов напряжения ИРН（《mV»）＜в \＆ ИРН（《V»）《＂

кнопки переключателя СОПРОТИВЛЕНИЕ ЛИНИИ «0，6®»， $《 1,6 \Omega »,<5 \Omega »,<15 \Omega »,<16,2 \Omega »,<25 \Omega)_{;}$
 «MO－4»，«П»，«MmV»，«J»，«ARJ»，《I RA»；

4. 5. ИРН («mV») елужй лля получения плавно регулируемого напряжения от минус 5 до плюс 100 mv , необходимого для поверки пирометрических милливольтметров, и выполнен по мостовой схеме (рис. 2.).

Грубая регулировка производится резистором R 2 , плавная - резистором R8, а для улучшения плавности включены резисторы R5, R7. Для уменьшения выходного сопротивления, а, следовательно, и влияния нагрузки на предел регулировки напряжения выход схемы зашунтирован резистором R4.
4. 6. Источник регулируемого напряжения ИРН («V») служит для получения плавно регулируемого напряжения $0,5-5 \mathrm{~V}$, используемого для питания логометров при их поверке, схемы при подгонке линий и измерении сопротивлений милливольтметров.

Схема источника выполнена на резисторах R1 (грубо) и R2 (точно) и представляет собой обычный регулируемый делитель (рис. 3).

Схема источника регулируемого напряжения ИРН («V»)

рис. 3.
R 1 - резистор грубой регулировки напряжения; R 2 - резнстор точной регулировки напряжения; $\mathrm{BI} . . \mathrm{D}$ Б - источники питания; U - вьходиое напряжение истопника питания.

При наружном истоюнике питания ИРН позволяет регулировать напряжение до 30 V .
4. 7. Пятидекадный магазин сопротивления (зажимы подключения «R» и «П») служит для набора сопротивленнй от начального до $1111,10 \Omega$ ступенями по $0,01 \Omega$ и используется:

при поверке теплотехнических приборов, работаюцих с термометрами сопротивления, для имитации сопротивления последних;

в качестве плеча сравнения в схеме моста;
в качестве измерительных декад потенциометра (кроме декады « $\times 100 \Omega$ »)

Схема магазина с резисторами ($\mathrm{R} 1, \mathrm{R} 2$), имитируюцими линию, приведена на рис. 4.

Рис. 4.
$R 1-R 7$ - резистсры
4. 8. Схема электрическая принцииальная моста постоянного тока для измерения сопротивления от 10^{-4} до $10^{2} \Omega$ (четырехзажимная тивлений от 10^{2} доя) приведена на рис. 5 а, а для измерения сопро pac. 56.

Схема электрическая принципиальная моста

a)

PRC. 5.
2- иетырехзажимная схема подключення для измерения сопротивлений ог 10^{-4} до 10^{2} до $10^{6} \Omega$; двухзажимвая схема подключения измерения сопротивлений от
 П1, П2 - потенинальныметр; Т1, Т2 -токовые зажимь; П1, П2 - потенииальные зажимы.
4. 9. Плечами отношения A и B моста служат резисторы R1 ... R9 6лока 6 .Jl (приложение 1). Множитель N плеч отношения ($10^{-4} ; 10^{-3}$; $10^{-2} ; 10^{-1} ; 1 ; 10^{2} ; 10^{3}$) устанавливается переключателем B1.

В качестве плеча сравнения используется пятидекадный магазин сопротивления блоков БЛ2 ... БЛ6 (приложение 1), в качестве нульиндикатора - встроенный в прибор гальванометр ИПП.

Выбор схемы и рода работы осуцествляется кнопками «MO-2» (мост одинарныи, двухзажимная схема измерения), «МО-4» (мост одинарный, четырехзажимная схема измерения), «П» (потенииометр), «ПmV» (поверка милливольтметров), «Л». (поверка логометров), «隹л» (контроль тока линин) и« τ Rл» (измерение сопротивления линии) и этими же кнопками подключается питание. Отключение схемы и питания осуцествляется при нажатии кнопки ОТКЛ.

Включение гальванометра в измерительную часть схемы всех видов работы（«MO－2»，«МО－4»，«П»，«ПmV»，«ARл» и « I Rл» осущест－ вляется кнопкой 《 $£ \geqslant$ ．При нажатии кнопки «1》 или 《д2» галь ванометр последовательно с нормальным элементом подключается к установочному сопротивлению первого или второго контура через кнопку « » или «»»．

Измерение электрических сопротивлений мостовым методом произ－ водится при нажатой кнопке «МО－2» по двухзажимной схеме подклю－ пения и «МО－4» по четырехзажимной схеме подключения．При этом к схеме подключается батарея питания через кнопку « » или « » и гальванометр ИП1．

Измерение ЭДС и напряжений производится при нажатой кнопке «П»．При этом включается питание потенциометра（Б2 ．．．Б4），на за－ жимы «X» подается компенсационное напряжение через гальванометр и кнопку 《 》 или 《 》．

Поверка пирометрических милливольтметров и автоматических по－ тенциометров производится при нажатой кнопке «ПmV»．

При этом включается питание потенциометра，питание ИРН （ $\mathrm{mV} »$ ），с выхода которого через имитатор линии（У1）напряжение по－ ступает на зажимы 《－ X » н «mV»，компенсационное напряжение потен－ циометра подключается через гальванометр и кнопку « » или « » к еыходу ИРН．

Поверка логометров производится при нажатой кнопке «лा»．При эом подается питание на ИРН（«V»），с выхода которого напряжение поступает на зажимы «－X» и «V»．

Подгонка сопротивлений соединительных линий производится при нажатой кнопке＂《Rл»．При этом включается питание ИРН（《V»）， потенциометра，компенсационное напряжение потенциометра подклю－ чается к образцовому резистору R13 через гальванометр и киопку «＊или « 》．Выходное напряжение ИРН（«V»）поступает на зажимы «－X» и «T1» через добавочный резистор R11（У2）и образ－ цовый резистор R13．

При нажатии кнопки « $£$ Rл» компенсационное напряжение по－ тенциометра переключается на зажимы «T1»，«T2»（через гальвано－ метр и кнопку 《 » или « »）для измерения напряжения на сопротивлении подгоняемой линии（или на милливольтметре при изме－ рении его сопротивления）．

5．УКАЗАНИЕ MEP БЕЗОПАСНОСТИ

5．1．К эксплуатации прибора допуска́ются лица，ознакомленные с правилами техники безопасности при работе с устройствами напряже－ нием 220 V и настоящим таспортом．

7．1．7．Подключите объект измерення кажимам «－X»，«mV»， соблюдая полярность．

7．1．8．Произведите измерение，для чего：
нажмите кнопку « \pm ；
установите стрелку гальванометра на нуль врацением ручек декад－ ных переключателей « $\chi 10 \Omega »$ ，« $\chi 1 \Omega »$ ，« $\times 0,1 \Omega »$ ，« $\times 0,01 \Omega$ » вначале при нажатой кнопке « 》，а затем при нажатои кнопке 《 》．

Значение измеренного напряжения в милливольтах будет равно сумме показаний декад．

7．1．9．Отключите прибор нажатием кнопки ОТКЛ．
мендуется производить измерение（ Длияия дрейфа рабочего тока реко－ min）после включения ириерение（пп．7．1．3．－7．1．8）через 5－10
 2．Постоянную по току Ci внепнерерывах в работе（до $30-60 \mathrm{~min}$ ）． необходимую чувствительность потенцнометра，опраделите по формууе

$$
\begin{equation*}
\mathrm{Ci} \leqq \frac{\Delta U}{\mathrm{Rex}+\mathrm{RH}_{H}+\mathrm{Rr}} \tag{5}
\end{equation*}
$$

где $\Delta \mathrm{U}$－погрешность показаннй потенциометра，определенная по
Rcx －вырмулне（1） в омах равно значенин потенциоетра，значение которого вольтах；

влодного напряжения в милыи－
RH －сопротивление подключенного объекта нзнерения；
．

7．2．Поверка пирометрических милиивольтметров и потенциометров

7．2．1．Нажмите кнопку переключателя СОПРОТИВЛЕНИЕ ЛИ－ НИП « $0,6 \Omega », « 1,6 \Omega », « 5 \Omega », 《 15 \Omega », « 16,2 \Omega »$ मли «25Q»（coответетвуто－ метре）．уия уианному на поверяемом милливольт

7．2．2．Нажмите кнопку «ПmV»．
7．2．3．Произведите установку
（ni．7．1． $2-7.1 .6$ ）（контрой）рабочего тока
7．2．4．Нажмите кнопку « $I>$ и $\overline{\mathrm{B}}$ ，
7．2．5．Подсоедините поверяемый
7．2．6．Подведите плавно стрелку прибора зажимам «－X»，«mV»， шкалы врацением ручек реосатов ИРН（пй»）«оверяемой отметке＊

7．2．7．Измерьте 》и《 》． и определите погрешность поверяемого прибора．（«mV»）（п．7．1．8）

7．2．8．Нажмите кнопку отклого прибора．

7．3．Поверка логометров

7．3．1．Соберите схему，приведенную на рис． 6 ． $\star 2,5$ 』» прн сопротивлении поверяемого прнбора．подключите к зажиму при $\mathrm{Rл}=15 \Omega$ ．

Схема поверки логометров

Рис． 6.
МП1－вольтметр постоянного тока；1－калиброваннып ировод（ 0,027 － 0,033 』）
11－поверяемый прибор；IIF－－прибор．
7．3．2．Ha магазине сопротивления установите сопротивление на 1－5 Ω меньше，чем

где Rrp －градуировочное сопротивление на поверяемой отметке，Ω ；
Rt－сопротивление термометра при температуре，соответствую－ щей поверяемой числовой отметке，Ω ；
Rл－coпротивление линии（5 или 15Ω ）；
гпр－сопротивление калиброванного провода，подключенного к
«у 《 Π 》，Ω

$$
\begin{equation*}
\operatorname{Rrp}=R t+0,5 R \pi-n n, \tag{6}
\end{equation*}
$$

чнника питажмите кнопку «БМ» при использовании встроенного к зажимам «ВМ» и отожмитьзовании внешней батареи подключите ее ния от сети включите шнур питания «БМ»．При использовании пита．

7．3．4．Нажмите кнопку «Л»．в сеть и нажмите кнопку СЕТЬ
7．3．5．Выставьте необходим． волтметра при помощи ручек ИР напряжение по шкале поверяемого

7．3．6．Подведите шкалы изменением соплавно стрелку прибора к поверяемой отметке 7．3．7．Снимите показавления магазина．

веряемого прибора．
 логеность по－

7．3．8．Нажмите кнопку ОТКЛ．после окончаныя работы．
7．4．Поверка автоматических мостов
7．4．1．Соберите схему，приведенную на рис． 7 ．
где R_{6}－вачальное сопротивление магазина

Схема поверки автоматических мостов

Pис. 7.
I-поверяемый прибор; ІІ-калиброванный провод ($0,027-0,033$ Q); ПI - прибор.
7. 4. 3. Подведите плавно стрелку прибора к поверяемой отметке шкалы измененнем сопротивления магазина. Снимите показание магазина и определите погрешность поверяемого прибора на данной от-
7. 5. Нодгонка сопротивления соединительных линий приборов, работаюцих с термометрами сопротивления по двухпроводпой схеме включения (мостовой метод)
7. 5. 1. Соберите схему, приведеннуо на рис. 8.

Схема подкжючения двухпроводньх линий для подгонки нх сопротивлений

Рис. 8.
ЛІ - соединительная линия (подгоночжая); Ryp - уравнительная катуика; 1-прибор
7. 5. 2. Нажмите кнопки «Г», «БМ» при использовании встроенного гальванометра и батареи. При использовании наружного гальванометра батареи моста подключите их к зажимам «Г», «БМ» и отожмите кнопки «Г», «ВМ» соответственно
7. 5. 3. Нажмите кнопки 《 $\boldsymbol{\Sigma}$ »и《МО-2».
7. 5. 4. Установите на переключателе плеч отношения множитель $\mathrm{N}=1$.
7. 5. 5. Установите на переключателях плеча сравнения знаяение сопротивления (RM), равное требуемому суммарному значению сопротивления подгоняемой линии
7. 5. 6. Установите стрелку гальванометра на муль, изменяя сопротивление уравнительной катушки сначала при нажатой кнопке \& », а затем при нажатой кнопке « ».
7. 5. 7. Нажмите кнопку ОТКЛ. после окончания работы.
7. 6. Подгонка сопротивления соединительных линий приборов, работающих с термометрами сопротивления трехпроводной схемы (потенциометрическим методом)
7. 6. 1. Соберите схему, приведенную на рис. 9 .

Схема подгонки сопротивления соединительных линий

Рис. 9.

> Л1, л2, Л3- соединительные линии; Л2 - подгононая линия;
> Rур - уравннтельная катушка; I - прибор.
7.6.2. Нажмите кнопки «Г», «БП», «БМ», «НЭ» при использо вании ветроенного гальванометра, батареи потенциометра, батареи моста, нормального элемента. При использовании внешнего гальванометра, батареи потенциометра, батареи мосга, нормального элемента, подключите их к зажимам «Г», «БП1», «БП2», «БМ», «НЭ» и отожмите кнопкия «Г», «БП1», «БП2», «БМ», «НЭ» соответственно.
7. 6. 3. Установите декадные переключатели в положение, соответствующее напряжению 100 mV . Нажмите кнопку «Rл».
7. 6. 4. Произведите установку (контроль) рабочего тока (m. 7. 1. 3-7.1.6).
7. 6. 5. Нажмите кнопку I ».

7．6．6．Установите стрелку гальваномета на нуль вращением ру． чек ИРН（«V»）《 » «＂в вначале при нажатой кнопке ＜»，а затем при нажатой кнопке «あ»．

7．6．7．Установите декадные переключатели в положение，соот－ ветствующее значению напряження в милливольтах，которое равно зна－ घению требуемого сопротивления уравнительной катушки Ryp в омах．

7．6．8．Нажмите кнопку « I Rл»．
7．6．9．Установите стрелку гальванометра на нуль，изменяя со－ противление уравнительной катушки，сначала при нажатой кнопке －»，а затем при нажатой кнопке 《 》．

7．6．10．Нажмите кнопку ОТКЛ．после окончания работы．
7．7．Измерение сопротивления милливольтметров
7．7．1．Соберите схему，приведенную на рис． 10.
Схема подключения милливольтметра для измерения его внутреннего сопротивления

рис． 10 ：
ИП－поверяемый милливольтметр；1－прибор．
7．7．2．Включите питание，гальванометр и нормальный элемент （n．7．6．2）．

7．7．3．Нажмите кнопку 《狽》．
7．7．4．Установите рабочий ток（пп．7．1．3．－7．1．6）．
7．7．5．Нажмите кнопку « $I »$ ．
7．7．6．Установите стрелку милливольтметра на последнюю от－ метку шкалы，поворачивая ручки ИРН（«V»）《 » ॥ « »．

7．7．7．Установите стрелку гальванометра на нуль вращением ру－ чек декадных переключателей «Х 10Ω »，« $\times 1 \Omega$ »，« $\times 0,1 \Omega », « \times 0,01 \Omega$ » вначате при－нажатой кнопке « »，а затем при нажатои кнопке －W．Запишите значение напряжения，соответстующее положению декадных переключателей（ U_{1} ）．

7．7．8．Нажмите кнопку I Rл»．
7．7．9．Установите стрелку гальванометра на нуль вращением ру－ чек декадных переключателей，вначале при нажатой кнопке « 》， затем при нажатой кнопке 《 »．Запишите значение напряжения，
соответствуюниее положению декадных переключателей（ U_{2} ）．
7．7．10．Вычислите значение сопротивления милливольтметра （ RmV ）по результатам измерений в омах：

$$
\begin{equation*}
\mathrm{RmV}=\frac{\mathrm{U}_{2}}{\mathrm{U}_{1}} \cdot \mathrm{RI} \tag{8}
\end{equation*}
$$

где $\mathrm{Rl}-$ сорротивление встроенного резистора сравнения，
равное
7．7．11．Нажмите кнопку ОТКЛ．после окончания работы．
7．8．Измерение сопротивлений ог 10^{2} до $10^{6} \Omega$
7．8．Нажмите кнопи
ного гальванометра и батарей мо «БМ» при использовании встроен－ тальваномета и батареи моста моста．При использовании внешнего घ отожмите кнопки «Г»，«БМ»．При использованажимам «Г»，«БМ， включите ннур питания
$7 \cdot 8.2$ Наж
7．8．3．Установите выбранный множбтель плеф отношения « $\chi \mathrm{N}$ »． 7．8．4．Подключнте измеряемое сопротивление к зажимам «П1»，
7．8．5．Установите стрелку гальванометра на нуль вращением ру－ чек декадных переключателей вначале при нажатой кнопке＜» a затем при нажатой кнопке « »

7．8．6．Определите результат измерения по формуле：

$$
\begin{equation*}
\mathrm{Rx}_{\mathrm{x}}=\mathrm{N} \cdot \mathrm{R}_{\mathrm{M}}, \tag{9}
\end{equation*}
$$

где Rx －величина измеряемого сопротивления，Ω ；
N －отношение сопротивлений плеч отношения；
Rм－величина сопротивления плеча сравнения，Ω ；
$R_{m}=\left(R c p+R_{0}\right) \quad \Omega$.
7．8．7．Нажмите кнопку 曰ТКЛ．после окончания работы．
7．9．Измерение сопротивлений от 10^{-4} до $10^{2} \Omega$
7．9．1．Выполните операции по п．7．8．1．
7．9．2．Нажмите кнопки «МО－4» и« $工 »$
7．9．3．Подключите измеряемое сопротивление к зажимам «ТІ»， «П1»，«П2»，«Т2»（рис．11）；при измерении сопротивлений образцовой

8. 2. Условия поверки

Поверку производите при следуюоиих условиях: температура okpywaюmero sosдyхa $(20 \pm 2)^{\circ} \mathrm{C}$, относительная влажность окружаюцего воздуха не более 80%.

8. 3. Проведение поверки

8. 3. 1. Bнешний ocmotp

При внепнем осмотре проверьте комплектность, маркировку, обозначения на ручках декадных переключателей и органах управления.

8. 3. 2. Определение метрологических параметров

8. 3. 2. 3. Допускаемое отклонение деиствительного значения сопротивления от номинального при использовании прибора в качестве магазина сопроэивления определите поэлементнй поверкой действительных значенй сопротивлений резисторов плеча сравнения путем измерения их двойным мостом класса 0,05 методом заменения соолветствуя юыими образцовыми катушками класса 0,01 с учетом поправок, длля чero:

спимите руяку и щетку с подлежащей поверке декадвл
установите на основании с контактами иоверяемой декады повероч нуо щетку и закрепите ее;

измерьте сопроливление каждого резистора Rx всех декад ло схеме (рис. 12) и табл. 3.

ТАВЛИЦА З

Схема измерения сопротивлений резисторов декад

Pис. 12.
МД - двойной мост класса 0,$05 ;$ ИП1- гальвавометр ($\mathrm{Rr} \leq 20 \Omega$, $\mathrm{Cl} \leqq 1,3 \cdot 10^{-8} \mathrm{~A} /$ дел $)$; ИП12 - миллиаппрметр; $\mathrm{Rx}-$ иамеряемое сопротивление; R_{N} - образцовая катушка сопротивления; $\mathrm{R}^{\prime}{ }^{\prime}$ катушка сопротивлення рабочая; Rp - регулировочное сопротивлевие; B 1 - источник питания; Bl - выключатель; $\mathrm{KI} \ldots \mathrm{K}_{4}$ - контакты поверочной щетки; I, II, III - соединительные провода; IVповеряемая декада прибора.

Если отдельные поверяемье резисторы декад плеча сравнения имеют погрешности, превышаюцие указанные в табл. 4, дия определения соответствия декады допустимой погрешности подсчитайте олностельмуко погрешность суммы декады от нуля до резистора, имеющего погрешность, превышаюцую указанную в табл. 4, по формуле:

$$
\begin{equation*}
\delta \Sigma R=\frac{\Sigma \delta n i}{i} \tag{10}
\end{equation*}
$$

где $\Sigma \delta$ п - алгебраическая сумма относительных погрешностей сопротивлений резисторов декады от нуля до данного резистора вклочительно;
i. - количество резисторов от нуля до данного резистора включительно.

Результат подсчета не должен иревышать значений, указанных в табл. 4.

Относительные погрешности сопротиедення декад должны находиться в пределах, указанных в табл. 4.

TABJHLA 4

Обозначение декады	Допускаемая основная погреднность, \%
* $\times 10008$	$\pm 0,02$
* $\times 100 \%$	$\pm 0,02$
«X18\%	$\pm 0,035$
* $\times 0,18$ \%	- $\pm 0,1$
«×0,018》	$\pm 1,0$

8. 3. 2. 2. Среднее значение начального сопротивления плеча сравғения моста проверьте методом непосредственного измерения сопротивления на зажимах «П1» и «R» одинарным мостом по четырехзажимной схеме или двойным мостом класса 0,05 .

Перед каждым измерением проверните ручки всех декадных переключателей по три-пять раз и затем установите в положение нуль. Среднее значение начального сопротивления ппределяется как среднее арифметическое четырех результатов измерения. Определите вариацию начального сопротивления как разницу наибольшего и наименьшего из четырех измеренных значений начального сопротивления.

Среднее значение начального сопротивления и вариация не превишают значений, указанных в п. 2. 12, 2. 13 соответственно.
8. 3. 2. 3. Проверка допускаемой основной погрешности прибора при использовании в качестве моста обеспечивается поэлементной поверкой резисторов магазина сопротивления по пп. 8.3.2.1, 8.3.2.2 и плеч отношения моста или комплектной поверкой.

Погрешность плеч отношения определите путем последовательного измерения мостом или потенциометром действительных значений сопротивлений резисторов, входящих в плечи отношения, методом замещения образцовой катушкой сопротивления или, если номинальное значение поверяемого сопротивления не совпадает с номинальным значеннем сопротивления образцовой катушки, образцовой схемой сопротивления.

Зажимы, между когорыми поверяется сопротивление и данные, необходимые для поверки, указаны в табл. 5.
8. 3. 2. 4. Погрешность резисторов магазина «2,5 $\Omega_{\text {» }}$ н $« 7,5 \Omega$ » определите путем непосредственного измерения сопротивлений двойным мостом класса 0,05 с учетом поправок.

Предельные значения поверяемых сопрптивлений и зажимы, между которыми эти сопротивления измеряются, указаны в табл. 6.

Homnhanbime знayewne noвepsemor pesuctopas?		Зажими, между которыми				тивленяя образиовой меры, Ω		
		$\underset{\substack{\text { токовй } \\ \text { (T11 }}}{ }$	потениаль-	$\begin{gathered} \text { токовый } \\ (\mathrm{T} 2) \end{gathered}$				
							OK1	ок2
0,09864	$\pm 0,00025$	2	1	*П2*	«П2\%			
0,99765	$\pm 0,00025$	3	2	*112*				
${ }^{9.8996}$	$\pm 0,024$	4		* $\Pi 12$	*12*	0,998		500 **
90,908	$\pm 0,0227$	5		<n2*	¢П2*	9,901	10	1000
500,000	-0,025	5	4	¢ ${ }^{412 \%}$	c72\%	90,909	100	1000
	$\pm 0,125$	6	5	*72\%	[12\%	500,000	1000	1000
500,000	± 0.125	4	\square^{5}	*R*	*R\%	500,00	1000	1000
90,909	$\pm 0,0227$	5	6	*R	*R*	90,909	100	1000
9,901	$\pm 0,024$	6	7	*R	*R*	9,901	10	1000
0,999	± 0.00025		8	RR.		0,999	1	1000

8. 3.-2. 5. Погрешность показаний потенциометра проверяйте по схеме (рис. 13) путем сравнения показаний поверяемого прибора с по казаниями образцового потенциометра, для чего:

Схема поверки потенциометра

Pис. 13.
ИПI- гальванометр; 61 - нормальнып элемент; Б2-батарея питания:
1-образцовый потенциометр: II - прибор.
нажмите кнопки «П», «ЕП», «НЭ»;
подключите наружный гальванометр с постоянной по току $\mathrm{Ci} \leqq 1,5 \cdot 10^{-7}$ А/дел и сопротивлением гальванометра $\mathrm{Rr} \leqq 20 \Omega$, а при использовании встроенного гальванометра отожмите кнопку 《Г» и закройте зажим «Г« медной нелуженой проволокой;

установите рабочий ток образцового потенцнометра;
установите рабочий ток первого и второго контуров поверяемого потенциометра (m. 7, 1. 3-7. 1. 6);

измерьте выходное напряжение всех ступеней каждой декады и на. пряжение при начальном положении всех декад при помощи образиового потенциометра.

Погрешность показаний потенииометра для дюбого значения измеряемого напряжения должна быть не более значения, определенного по
формуле (1).
8. 3. 2. 6. Погрешпоть регулируемой части установонного сопротивления определите следуюиим образом:

подключите к зажимам «I» прибора образцовый потенциометр (кнопка «Г» должна бьть отжата);

нажмите кнопки «П», «ВП», «НЭ»;
установите рабоиий ток первого контура (пп. 7.1.3, 7.1.4) при установке : переключателя нормального эленента Енэ в положение $1,0184 \mathrm{~V}$, используя гальванометр образцового потенциометра (декадыт образцового потенциометра должны при этом находиться в нулевон положении) Если при помоци ручек. РАВОЧИМ ТОК «1~» » «1 » не удается установить в нулевое положение указатель гальванометра, то иеобходимо за пуль принять действительное его положение;

нажмите кнопку 《 » и изменьте напряжение при помоии образцового потенциометра. Затем пронзведите измерение при всех последуоиих положениях переключателя нормального элемента. При перемещении переключателя нормального элемента на одну ступень напряжение должно изменяться на (100 20) $\mu \mathrm{V}$.
8. 3. 2. 7. Основную погрешность резистора сравнения, используемого при подгонке сопротивления соединительных линий, определите потениометрически методом путем сравнения падений напряжения на поверяемом резисторе и образцовой катуике с номинальным сопро. тивлением 100Ω класса 0,01 с учетом поправок.

Соберите схему (рис. 14).
Схема определения основной погрешности резистора, используемого при подгонке сопротивления соединительных линий

Рис. 14.

$$
\begin{aligned}
& \text { - медная перемьчка (сопротивлением не более } 0.002 \mathrm{\Omega} \text {) } \\
& \mathrm{R}_{N} \text { - образиовая катушка; } 1 \text { - пиноор. }
\end{aligned}
$$

Нажмите кнопки « I Rл»，«БП»，«НЭ»，«БМ»．
Подклюните наружный гальванометр（ $\mathrm{Rr} \leqq 20 \quad \Omega ; \mathrm{Ci} \leqq 1,5 \cdot 10^{-8}$ А／дел）к зажимам «Г»（кнопка «Г» должна быть отжата）．

Установите рабочий оок потенциометра（пп．7．1．3－7．1．6）．
Нажмите кнопку＊Σ ．
Установите ручки декад потенциометра в положение，соответству． ющее натряженио 100 mV ．Последовательно нажимая кнопии « 》
и 》．установите указатель внешнего тальванометра в нулевое положение при помощи ручек ИРН（ V »）《 » и 《 »．В слу＊ чぇе невозможности установки указателя гальванометра на нуль при помощи ручек ИРН（«V»）«» и « 》 установите его руч－ кой «1 »（РАБОЧИП ТОК），При неточной установке на нуль ука－ зателя гальванометра за нуль примите действительное его．положение．

Определите цену деления гальванометра．Для этого сместите ручку декады «× $0,01 \Omega$ » на два положения и отсчитайте число делений по от－ клонению указателя гальванометра от нулевого положения．Затем уста－ новите ручку декады « $\times 0,01 \Omega$ » в первоначальное подожение．

Нажмите кнопку «\＆л»，при этом указатель гальванометра дол－ жен отклониться не более，чем на величину $\pm 20 \mu \mathrm{~V}$ ．

8．3．2．8．Погрешности сопротивлений для имитации соединитель－ ных линий определите путем измерения сопротивлений мостом или по－ тенциометром класса 0,05 по четырехзажимной схеме измерения．

Подключите провода Пl к зажиму «П1»，Т1－к зажиму «－Х»， провода П2，Т2－к зажиму $\langle\mathrm{mV}$ »．

Произведите измерение при нажатой кнопке «ПmV» и отжатой кнопке «БМ»．При нажатой кнопке $« 0,6 \Omega »$, « $1,6 \Omega »$ ，« 5Ω »，« 15Ω »， «16，2 »» или «25 » измеряемое сопротивление должно быть $(0,6 \pm 0,1) \Omega ; \quad(1,6 \pm 0,1) \Omega ; \quad(5 \pm 0,1) \Omega ; \quad(15 \pm 0,1) \Omega ;(16,2 \pm 0,1) \Omega ;$ $(25 \pm 0,1) \Omega$ соответственно．

Примечание．1．При поверке прибора веобходимо руководствоваться ГОСТ 8．449－71，ГОСТ 13564．68，ГОСТ 15143－69．

2．С разғешения Госегандарта допускаюгся другне методы определения метро－ логических пераметров прибора，обеспечнваюших требуемую точность измерений．

8．3．3．Определение сопротивления изоляции
8．3．3．1．Соедините неизолированным проводом между собой все зажимы．Измерьте сопротивление изоляции между корпусом и соеди－ ненными зажимами．Сопротивление изоляции должно быть не менее $5 \cdot 10^{11} \Omega$

9．ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

9．1．Необходимо периодически осматривать контакты декадных переключателей магазина сопротивления и плеч отнощения，при необ ходимости очишать их от грязи н слегка смазывать химически нейт－ ральной смазкой．Контакты скрыты под ручками декадных переклю－ чателей，которые фиксируются на своих осях пружинным замком．Для

снятия илн установки ручек приложите необходимое усилие по направлению оси переключателя. ВНИМАНИЕ! На декадных переключателях установлены металлическе шайбы $\varnothing 7 \times 0,5$, служацие длй обесечения фиксаии и регулировки начального сопротивления плеча сравнения прибора.

При установке щеток декадных переключателей шайбы необходиМо устанавливать на прежнее место.
9. 2. Прн замене источников питания и нормального элемента соблюдайте полярность.
9.3. Конструкция прнбора рассчитана на длительную работу без ремонта, но в случае каких-либо ненормальностеи в механическо или электрическй части, требующнх разборки, прибор необходимо напра вить в специализированнуо ремонтную мастерскую:
9. 4. Периодичность поверки прибора - по ГОСТ 8.002-72.

10. СВИДЕТЕПIDСТВО О ПРИEMKE

10. 11. Прибор универсальный измерительный P 4833 заводской № 21934 с начальным сопротивлением $\mathrm{R}_{0}=0,0144 \Omega$ соответствует техническим уеповиям ТУ25-04.3916-80 и признан годным для эксплуатации.

Дата выуска 28 थREBCICU $1984<$.

Представитель ОТК
Государственный поверитель

11. СВЕДЕНМЯ ОБ УПАКОВКЕ

11 Iो 100 , запасные части и эксплуатационная документация уложены в коробку.
11.2. Яшик внутри выстлан битумной бумагой и коробка с изде. лием уложена в яиик на слой древеснои стружки. Пространство между стенками яцика и коробкой заполнено древесной стружкой.
11. 3. Товаросопроводительная документация уложена в менок из полиэтиленовой пленки.

12. TPAHCHOPTHPOBAHDE И XPAHEHUE

12. 13. Прибор можно транспортировать крытым транспортом лобого вида. При транспортировании самолетом прибор следует разме нкть в герметизированных отапливаемых отсеках.

Железнодорожные вагоны, контеинеры, кузова автомобилеи, используемые для перевозки приборов, не должны иметь следов пере возки цемента, угля, химикатов и т. п.
12. 2. Значения климатнческих и механических воздействий при транспортировании прибора:

температура окружающего воздуха от минус 30 до плюос $50^{\circ} \mathrm{C}$;
относительная влажность воздуха 95% при температуре $25^{\circ} \mathrm{C}$;

максимальное ускореняе $30 \mathrm{~m} / \mathrm{s}^{2}$ при частоте от 80 до 120 ударов в минуту.
12. 3. Прибор должен храниться в упаковке предприятия-изготови. теля при температуре окружающего воздуха от 1 до $40^{\circ} \mathrm{C}$ и относи. тельной влажности 80%.
12. 4. Прибор без упаковки следует хранить при температуре окру. жаноцего воздуха от 10 до $35^{\circ} \mathrm{C}$ и относительной влажности 80% при температуре $25^{\circ} \mathrm{C}$
12. 5. В воздухе помецения для хранения не должны содержаться щыль, пары кнслог и щелочеи, агрессивные газы и другие вредные примеси, вызываюцие коррозию.

13. ГАРАНT HHHE ОБяЗАТЕЛЬСТВА

13.1. Изготовитель гарантирует соответствне прибора требованиям его тежнических условий при соблюденин потребителем услсвий эксплуатации, хранения, транспортирования и монтажа.
13. 2. Гарантийный срок эксплуатации - 18 месядев со дня ввода арибора в эксплуатацию.
13. 3. Гарантийныи срок хранения - 6 месяцев с момента изготов ления трибора.
13. 4. Гарантийный срок эксплуатаии и хранения на гальванические элементы не расаространяется.

Продолжение		
Позициопное обозस मеине	Наименование	Кодя wecrio
	Плata Гifl	1
Ri	Резистор Млт-0,5-30 $\mathrm{k} \Omega \pm 5 \%$	
R2	Резистор Млт $0,5-12 \Omega \pm 5 \%$	1
R3	Резистор МлTT-0,5-2,7 k 2 土 5%	1
Bi	Влок переклочателей 172 K :	1
	Плата Пл2	1
R1	Резистор МлТ-0,5-120 $\Omega \pm 5 \%$	1
Bi	Блок вереключателей 112 K	1
	- Плата Пл3	1
R1	Peancrop MJT-2-360 $8 \pm 5 \%$,	1
R2	Peskicrop MJT-0.5-750 $0 \pm 5 \%$	1
R3	Резистор СПЗ-16-0,25-1 $\mathrm{M} \Omega \pm 30 \%-1$	1
R4	Резистор С2-29B-0,125+1 $\Omega \pm 0,5 \%-1,0-5$ Резистор ИЛT-0,5-750 $\mathrm{k} \Omega \pm 5 \mathrm{l}$	1
Д1, Д2	Днод k 102 A ,	1
B1, B2	Блок переклочателей П2К	2

Приложфние 3

