Сафонов Андрей Васильевич

СОВЕРШЕНСТВОВАНИЕ МЕТРОЛОГИЧЕСКОГО ОБЕСПЕЧЕНИЯ ИЗМЕРЕНИЙ КОЛИЧЕСТВА НЕФТИ И НЕФТЕПРОДУКТОВ НА ОСНОВЕ ПРИМЕНЕНИЯ ВЕСОВЫХ ПОВЕРОЧНЫХ УСТАНОВОК

05.11.15 – Метрология и метрологическое обеспечение

АВТОРЕФЕРАТ

диссертация на соискание ученой степени кандидата технических наук Работа выполнена на предприятиях Группы Компаний ИМС (Общество с ограниченной ответственностью «ИМС Индастриз», Общество с ограниченной ответственностью «Системы Нефть и Газ Балтия», Закрытое акционерное общество «Нефтегазметрология»), Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт метрологии им. Д.И. Менделеева» и Закрытое акционерное общество Весоизмерительная Компания «Тензо М».

Научный руководитель

Конопелько Леонид Алексеевич, доктор технических наук, профессор, руководитель научноисследовательского отдела государственных эталонов в области физико-химических измерений Федерального государственного унитарного предприятия «Всероссийский научно-исследовательский институт метрологии им. Д.И. Менделеева».

Официальные оппоненты

Кондрашкова Галина Анатольевна, доктор технических наук, профессор кафедры Информационноизмерительных технологий и систем управления ФГБОУ ВО Санкт-Петербургского государственного технологического университета промышленных технологий и дизайна Высшей школы технологии и энергетики;

Еремин Евгений Васильевич, кандидат технических наук, заместитель генерального директора – главный метролог Акционерного общества «Транснефть-Метрология» Открытого акционерного общества «Акционерная компания по транспорту нефти «Транснефть».

Ведущая организация

Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт метрологической службы» Федерального агентства по техническому регулированию и метрологии, 119361, г. Москва, ул. Озерная, 46.

Защита состоится «»	2016 г. в 11 часов на заседа	нии диссертационного совета
Д.308.004.01 при Федеральном го	осударственном унитарном предприят	ии «Всероссийский научно-
исследовательский институт им. Д	І.И. Менделеева»: 190005, Россия, г.	Санкт-Петербург, Московский
пр. 19. Тел.: + 7 812 251-7601.		

С диссертацией можно ознакомиться в библиотеке Федерального государственного унитарного предприятия «Всероссийский научно-исследовательский институт им. Д.И. Менделеева» или на сайте http://www.vniim.ru/work-sovet.html.

Автореферат разослан «»201	Γ.
----------------------------	----

Ученый секретарь диссертационного совета кандидат технических наук, доцент

Телитченко Г.П.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

<u>Актуальность работы</u>

Представленная работа посвящена актуальной задаче совершенствования метрологического обеспечения (МО) измерений массы и объема нефти и нефтепродуктов (углеводородные жидкости) при учетных операциях.

Топливно-энергетический комплекс (ТЭК) обеспечивает в настоящее время десятую часть внутреннего валового продукта, а экспорта – более половины¹. Одно из основных направлений деятельности ТЭК – добыча и переработка нефти, транспортировка и хранение нефти и жидких нефтепродуктов. Получение достоверных данных о количестве нефти и нефтепродуктов - приоритетная задача², решение которой требует совершенствования и опережающего развития метрологического обеспечения.

Метрологические исследования, направленные на создание оборудования для поверки средств измерений массы, объёма, расхода, плотности, влагосодержания и вязкости, входящих в автоматизированные системы учёта нефти и нефтепродуктов, ведутся широким фронтом более 40 лет. Наибольший научный вклад в развитие метрологического обеспечения систем учета внесён специалистами ФГУП ВНИИМ, ФГУП ВНИИР, ФГУП ВНИИМС, ООО «ИМС Индастриз», МОАО «Нефтеавтоматика», ОАО «Сибнефтеавтоматика».

Постановка данной работы была обусловлена сформировавшейся в середине прошлого десятилетия потребностью крупных предприятий ТЭК в поверочных комплексах, ориентированных на локально сосредоточенные совокупности средств измерений (в том числе импортных), имеющих высокие метрологические характеристики. Необходимо было достичь высокой точности передачи размера единиц массы и объёма от поверочного комплекса рабочим средствам измерений. При этом должна обеспечиваться прослеживаемость к первичным эталонам единиц основных величин, заданная производительность поверки и возможность её проведения в рабочих условиях эксплуатации поверяемых измерительных преобразователей объемного и массового расхода, счетчиков жидкости, компакт-пруверов, трубопоршневых поверочных установок (ТПУ) 1-го и 2-го разрядов.

<u>Цель работы:</u> совершенствование метрологического обеспечения измерений количества нефти и нефтепродуктов путём реализации новых технических и методических решений измерений массы и объема.

¹ Комитет по природным ресурсам, природопользованию и экологии Государственной Думы Российской Федерации, рекомендации парламентских слушаний на тему: «Законодательное обеспечение организации системы баланса извлечения и потребления углеводородного сырья на территории Российской Федерации и ее континентальном шельфе», 05.03.2014 г.

² Комиссия при президенте по вопросам стратегии развития топливно-энергетического комплекса и экологической безопасности, 4.06.2014 г.

Основные задачи исследований:

- анализ и оценка состояния метрологического обеспечения измерений массы и объёма углеводородных жидкостей для определения направлений совершенствования метрологического обеспечения измерений количества углеводородных жидкостей с целью повышения точности измерений при учетных операциях;
- исследования и оценка вкладов неопределённости измерений при измерениях массы и объема, разработка методик измерений массы и объема углеводородных жидкостей на основе применения весов с трехкомпонентными весоизмерительными датчиками,
- разработка локальной поверочной схемы для средств измерений массы и объема углеводородных жидкостей для ЗАО «Нефтегазметрология»;
 - разработка поверочного комплекса ЗАО «Нефтегазметрология».

Научная новизна

- Для оптимизации системы передачи единиц величин, реализованной в локальной поверочной схеме ЗАО «Нефтегазметрология», были сопоставлены вклады различных источников неопределённости измерений массы и объема, которые показали, что наибольший вклад вносят измерения массы. С этой целью предложено передавать единицу массы исходному эталону единицы массы и объема от рабочего эталона единицы массы с прослеживаемостью к ГПЭ единицы массы.
- Показана возможность повышения точности измерений массы при поверке мерников и поверочных установок за счёт применения специальных весов, выполненных на основе трехкомпонентных весоизмерительных датчиков, позволяющих учитывать вертикальную и боковые нагрузки, возникающие при взвешиваниях.
- Разработана и обоснована локальная поверочная схема на основе исходного эталона и стандарт СТО НГМ 1.1-2014 для поверочного комплекса ЗАО «Нефтегазметрология», разработаны методики поверки, основанные на применении специальных весов ВСПМ.
- Разработаны рабочие эталоны единицы объема 1-го разряда, номера реестра 3.6.ABP.0001.2015 и 3.6.ABP.0002.2015, которые позволили в 1,7 раза улучшить метрологические характеристики рабочих эталонов единицы объёма.
- Разработаны мобильные эталонные поверочные установки с высокими метрологическими характеристиками, предназначенные для поверки стационарных поверочных установок (ПУ) на месте эксплуатации
- Поверочный комплекс ЗАО «Нефтегазметрология» позволяет рациональным образом организовать поверку совокупности рабочих средств измерений массы, объема и расхода в рабочих условиях, в которых они применяются при коммерческом учёте углеводородных жидкостей.

Практическая значимость

- Разработан поверочный комплекс ЗАО «Нефтегазметрология» на основе исходного эталона единиц массы и объема жидкости с доверительной относительной погрешностью измерений объема углеводородных жидкостей ± 0,03 %.
- Разработанные методики поверки специальных весов ВСПМ на основе трехкомпонентных датчиков, измеряющих нагрузки по трем координатам, мерников и поверочных установок позволили в 2 раза сократить время на выполнение измерений и уменьшить вероятность брака при поверке СИ.
- Технические и методические решения позволили в 7 раз уменьшить стоимость применяемого эталонного оборудования, необходимого для поверки эталонных мерников 1-го разряда и мерников высокого класса точности.
- Положительные результаты исследований позволили разработать мобильные эталонные поверочные установки с высокими метрологическими характеристиками, предназначенные для поверки стационарных поверочных установок (ПУ) на месте эксплуатации.

Положения, выносимые на защиту

- Для совершенствования метрологического обеспечения измерений количества углеводородных жидкостей проведены экспериментальные исследования, по результатам которых разработаны методики поверки весов, мерников и поверочных установок на основе применения специальных весов ВСПМ с трехкомпонентными весоизмерительными датчиками, которые позволяют в 2 раза уменьшить погрешность измерений массы и объема эталонных мерников и в 1,7 раза поверочных установок.
- Метрологические характеристики поверочного комплекса ЗАО «Нефтегазметрология» с улучшенными метрологическими характеристиками, локальная поверочная схема СТО НГМ 1.1-2014 для средств измерений массы и объёма, возглавляемая исходным эталоном, прослеживаемым к ГПЭ единицы массы.
- Специальные весы с доверительной относительной погрешностью измерений массы \pm 0,005 % и эталонные мерники с доверительной относительной погрешностью измерений объема \pm 0,01 % при доверительной вероятности 0,95; эталонные поверочные установки с доверительной относительной погрешностью измерений объема \pm 0,03 % при доверительной вероятности 0,99.

Внедрение результатов работы

• Разработаны и внедрены в метрологическую практику методики поверки и стандарт СТО НГМ 1.1-2014 Локальная поверочная схема для средств измерений объема и массы нефти и нефтепродуктов поверочного комплекса ЗАО «Нефтегазметрология».

- Калибровочные и измерительные возможности определения объема поверочных установок подтверждены СМС Certificate number 39332546 VSL Dutch Metrology Institute, реестр СИ РФ под номером 44963, получен патент на полезную модель номер 102995.
- По результатам диссертационной работы разработан и введен в эксплуатацию Белгородский поверочный комплекс ЗАО «Нефтегазметрология» на основе исходного эталона с улучшенными метрологическими характеристиками, рабочие эталоны единицы объема 1-го разряда утверждены приказом № 215 Федерального агентства по техническому регулированию и метрологии, внесены в реестр эталонов РФ под номерами 3.6.АВР.0001.2015, 3.6.АВР.0002.2015.

Апробация работы

Основные результаты диссертационной работы были представлены на конференции «Метрология нефтегазовой отрасли» (г. Санкт-Петербург, 2009 г.), Метрологической конференции «Актуальные вопросы метрологического обеспечения измерений расхода и количества жидкостей и газов» (г. Казань, 2010 г.), конференции «Нефтегаз 2011» (г. Москва, 2011 г.), конференции «Актуальные вопросы метрологического обеспечения учета жидкостей и газов» (г. Казань, 2011 г.), 3-ей Всероссийской конференции «Метрология и стандартизация нефтегазовой отрасли - 2013» (г. Санкт-Петербург, 2013г.), 2-й Международной метрологической конференции «Актуальные вопросы метрологического обеспечения измерений расхода и количества жидкостей и газов» (г. Казань, 2014 г.).

Апробация разработанных методик поверки, изложенных в диссертационной работе была выполнена в марте 2014 года на заводе ООО «СНГБ» в г. Калининград при определении объема эталонных мерников с номинальной вместимостью 1000 дм с применением весов ВСПМ и поверочных установок с максимальными расходами 800 и 2200 м³/час из состава Белгородского поверочного комплекса ЗАО «Нефтегазметрология».

Публикации

По теме диссертационной работы опубликовано 28 работ, в том числе: 3 статьи в ведущих рецензируемых научных журналах, 1 в периодических журналах, 1 ГОСТ, 1 стандарт организации, 1 патент на полезную модель, 1 сертификат НМИ VSL, 7 тезисов докладов на российских и международных метрологических конференциях, 14 нормативных документов.

Личный вклад автора

Личный вклад автора заключается в проведении анализа и метрологических характеристик средств измерений массы и объема углеводородных жидкостей при учетных операциях. Для целей совершенствования метрологического обеспечения измерений количества углеводородных жидкостей разработаны метрологические и технические 3AO требования изготовление поверочного комплекса на специальных весов И

«Нефтегазметрология». Проведены экспериментальные исследования по установлению фактических метрологических характеристик весов, мерников и поверочных установок поверочного комплекса, оптимизированы режимы измерений и выполнена оценка неопределенности измерений массы и объема. Разработана локальная поверочная схема и обоснована передача единицы величин от рабочих эталонов единицы массы по ГОСТ 8.021 к исходному эталону из состава поверочного комплекса ЗАО «Нефтегазметрология». Подтверждены калибровочные и измерительные возможности определения объема поверочных установок (СМС Certificate number 39332546). Разработаны и внесены в реестр рабочие эталоны объема 1-го разряда 3.6.АВР.0001.2015, 3.6.АВР.0002.2015. Автор участвовал в разработке ГОСТ Р 54071-2010/Рекомендация ОІLM R 76 - 2:2007(E) «Весы неавтоматического действия. Часть 2. Формы протоколов испытаний» и 14 нормативных документов.

Объем и структура диссертации

Диссертационная работа состоит из введения, пяти глав, приложений, заключения, списка литературы из 89 библиографических ссылок. Работа изложена на 120 страницах текста, содержит 27 таблиц, 16 рисунков.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

<u>Во введении</u> обоснована актуальность темы диссертационной работы, сформулированы цели и задачи исследований, показана научная новизна и практическая значимость, представлены результаты внедрения и апробации.

В настоящее время в РФ не существует эталона в области измерений объема, работающего на углеводородных жидкостях при объемном расходе до 2200 м³/час, а существующая УВТ по ГОСТ 8.510, работающая на воде в качестве рабочей жидкости, не может воспроизводить рабочие условия измерительных преобразователей массы и объема на углеводородных жидкостях в широких диапазонах вязкости и плотности.

<u>В первой главе</u> представлен аналитический обзор существующих нормативных документов и выполнена оценка состояния метрологического обеспечения измерений и поверочных установок в области измерений количества и показателей качества нефти.

Анализ существующих методик поверки весов, эталонных мерников первого разряда и поверочных установок показал, что существующие методы и средства поверки, применяемые при поверке эталонных мерников 1-го разряда, требуют совершенствования и модернизации в соответствии с задачей обеспечения достоверных измерений массы и объема углеводородных жидкостей при учетных операциях. Установлена необходимость применения новых методик и специальных весов с погрешностью измерений не более \pm 0,005 %, измерения температуры с абсолютной погрешностью не более \pm 0,1 °C. Для определения объема ТПУ можно применить запатентованную методику на базе эталонного мерника 1-го разряда и объемного счетчика,

имеющую патент (<u>G01F</u> №:102995) и сертификат, подтверждающий калибровочные и измерительные возможности (СМС Certificate number 39332546) национального метрологического института (НМИ) VSL (Нидерланды) с расчетом неопределенности.

<u>Во второй главе</u> показаны этапы разработки и результаты исследований методик поверки весов, эталонных мерников, поверочных установок.

При специальные исследованиях использовались весы независимыми трехкомпонентными датчиками, снабженными тензорезисторными мостами, чувствительными к действию измеряемой нагрузки вдоль вертикальной оси Z и к боковым горизонтальным составляющим нагрузки, вдоль осей Х и У. Информация всех составляющих нагрузки выводится на дисплей с каждого датчика, что дает возможность учесть и минимизировать боковые составляющие с фиксацией их значений в соответствующем протоколе измерений. Трехкомпонентные датчики можно демонтировать с весов и отвезти в поверку в соответствующий государственный или аккредитованный центр испытаний средств измерений, где с помощью эталонных силовоспроизводящих машин 1-го разряда или эталонных гирь с пределом допускаемой относительной погрешности не более ± 0,002 % и производится их поверка. После этого поверенные датчики возвращаются на место эксплуатации и устанавливаются в соответствии с руководством по эксплуатации весов и юстируются с учетом полученных при первой установке значений боковых составляющих при нагружении весов выбранной массой. Юстировку весов проводят на месте эксплуатации с учетом значений ускорения свободного падения. Эталонную массу m_r , с которой сравнивают показания весов, рассчитывают по формуле:

$$m_r = \frac{F_r}{g_V} \,, \tag{1}$$

где F_r - значение силы в H, воспроизводимое рабочим эталоном единицы силы; g_V - ускорение свободного падения на месте поверки датчика.

Значение эталонной массы на месте эксплуатации m_{er} рассчитывают по формуле:

$$m_{er} = m_r \cdot \frac{g_r}{g_e} , \qquad (2)$$

где g_r - ускорение свободного падения на месте поверки датчика; g_e - ускорение свободного падения на месте эксплуатации датчика.

В идеальном случае боковые составляющие вектора силы должны быть близки к нулю. Тогда вектор силы от измеряемой нагрузке совпадает с компонентой вдоль оси Z:

$$F_1 = F_2 \tag{3}$$

Сигналы по компонентам вектора силы вдоль осей X, Y служат для контроля правильности юстировки датчиков. При этом фиксируют сигналы по каналам X и Y. Уравнения измерений для таких весов можно записать в матричной форме:

$$m = A \cdot k, \tag{4}$$

где m - вектор масс измеряемых нагрузок; A - матрица выходных сигналов весоизмерительных датчиков весов; k - вектор коэффициентов преобразования весоизмерительных датчиков.

При нагружении весов известной эталонной массой *т* определяют коэффициенты преобразования датчиков k1, k2 и k3, изменяя положение этой массы или какой-то ее части относительно датчиков, каждый фиксируя И раз значения выходных сигналов весоизмерительных датчиков весов. Показания удобно записывать в виде матрицы, состоящей из трех столбцов, по количеству датчиков, числа строк, равных числу измерений. При этом число измерений n должно превышать количество весоизмерительных Коэффициенты преобразования находят, решая систему уравнений (5) методом наименьших квадратов по формулам:

$$k = L \cdot m$$

$$L = (A^T \cdot A)^{-1} \cdot A^T$$
, (5)
(6)

 $L = (A \cdot A) \cdot A \quad ,$

где ${m k}=(k2)$ — искомый вектор коэффициентов преобразования датчиков; ${m A}^T$ — k3

транспонированная матрица A; m — вектор масс измеряемых нагрузок.

Весы ВСПМ-1500 исследовались при нагрузках 320 и 1320 кг, 500 и 1000 кг, соответствующих массе пустого и заполненного мерника.

В результате проведенных исследований специальных весов ВСПМ-1500, расширенная неопределенность составила 0.003...0.005% при доверительной вероятности P = 0.95, что в два раза лучше по сравнению с метрологическими характеристиками весов, применяемых в настоящее время для поверки эталонных мерников 1-го разряда.

Весы ВСПМ-1500 были разработаны для поверки эталонных мерников вместимостью 1000 дм³. Вместимость эталонных мерников точности - 1-го разряда по ГОСТ 8.400, определяется весовым методом в соответствии с уравнением измерений:

$$V_{20} = m_W (\rho W - \rho_a^t) \frac{I_m [1 - (t - 20)\beta]}{I_W \rho W (\rho_w^t - \rho_a^t)}, \tag{7}$$

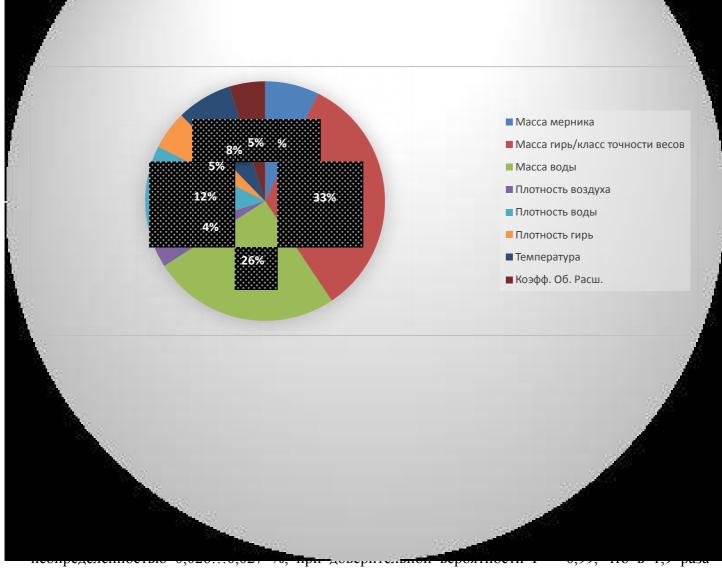
где V_{20} — действительное значение вместимости мерника при 20°C; m_W — масса эталонных гирь, замещающих массу воды в мернике; ρW — плотность материала эталонных гирь, кг/м 3 ; ρ_a^t — плотность окружающего воздуха при взвешивании воды в мернике; I_m — показание весов, соответствующее массе воды в мернике; t — среднее значение температуры воды в мернике; β — объемный коэффициент температурного расширения мерника; I_W — Показания весов с эталонными гирями, замещающими массу воды в мернике; ρ_w^t — плотность воды в мернике при температуре t.

Суммарная стандартная неопределенность измерений вместимости мерника по номинальной отметке шкалы (таблица 1) рассчитывалась по формуле:

$$u_{c}(V_{20}) = \sqrt{\left(\frac{\partial V_{20}}{\partial m_{W}} u_{mw}\right)^{2} + \left(\frac{\partial V_{20}}{\partial \rho_{W}} u_{\rho w}\right)^{2} + \left(\frac{\partial V_{20}}{\partial \rho_{a}} u_{\rho a}\right)^{2} + \left(\frac{\partial V_{20}}{\partial \rho_{a}} u_{\rho a}\right)^{2} + \left(\frac{\partial V_{20}}{\partial I_{m}} u_{\Im}\right)^{2} + \left(\frac{\partial V_{20}}{\partial t} u_{t}\right)^{2} + \left(\frac{\partial V_{20}}{\partial \beta} u_{\beta}\right)^{2} + \left(\frac{\partial V_{20}}{\partial I_{W}} u_{IW}\right)^{2} + \left(\frac{\partial V_{20}}{\partial \rho_{t}} u_{\rho t}\right)^{2}}$$

$$(8)$$

где u_{mw} - стандартная неопределенность массы гирь; $u_{\rho w}$ - стандартная неопределенность плотности гирь; $u_{\rho a}$ - стандартная неопределенность плотности окружающего воздуха; $u_{\rho t}$ стандартная неопределенность плотности воды; u_{lm} - стандартная неопределенность взвешивания воды в мернике; u_{IW} - стандартная неопределенность взвешивания гирь; u_t стандартная неопределенность измерений температуры; u_{β} - стандартная неопределенность температурного коэффициента объемного расширения мерника.


Расширенную неопределенность вместимости мерника на номинальной отметке для уровня доверия 0,95 для нормального закона распределения (коэффициент охвата равен 2) вычислялась по формуле: $U_{0.95}(V_{20}) = 2u_c$. (9)

Пара- метр	Оценка	Стандартная неопределенность	Распределение вероятностей	Коэффициент чувствительности	Вклад, дм ³
m_W	1000,0037 кг	0,003 кг	Равномерное	0,001 м ³ кг ⁻¹	3,0.10-3
I_m	997.18 кг	0,029 кг	То же	0,001 м ³ кг ⁻¹	2,9·10 ⁻²
I_W	1000,36 кг	0,021 кг	То же	0,001 м ³ кг ⁻¹	2,1·10 ⁻²
$ ho_a^t$	1.165152 кг м ⁻³	6·10 ⁻⁵ кг м ⁻³	То же	8,8·10 ⁻⁴ м ³ / кг м ⁻³	5,3·10 ⁻⁵
$ ho_w^t$	996,8640 кг м ⁻³	0,008 кг м ⁻³	То же	0,001 м ³ / кг м ⁻³	8,0.10-3
ρ_W	8000 кг м ⁻³	50 кг м ⁻³	То же	1,8·10 ⁻⁸ м ³ / кг м ⁻³	9,1·10 ⁻⁴
t	25,68 °C	0,06 °C	То же	5,4·10 ⁻⁵ м ^{3 o} C ⁻¹	3,2·10 ⁻³
β	0.0000537 °C ⁻¹	1·10 ⁻⁷ °C ⁻¹	То же	5,69 м ^{3 о} С	5,7·10 ⁻⁴
V ₂₀	1,00068 м ³			$u_c(V_{20}) =$	3,7·10 ⁻²

Таблица 1 Бюджет неопределенности измерений вместимости мерника 1000 дм³

Полученное значение расширенной неопределенности вместимости горловины мерника в дальнейших расчетах не учитывалась из-за малой величины, которая не влияет на полученный результат.

На рис. 1 представлен бюджет неопределенности, показывающий, что наибольшая составляющая 66 % суммарной неопределенности определения вместимости мерника связана с погрешностью измерений массы, 12 % - плотности воды и температуры 8 %.

лучше по сравнению с МХ применяемых в настоящее время эталонных ТПУ и КП 1-го разряда.

В третьей главе представлены новые методики поверки весов и мерников, поверочных установок, основным средством измерений для которых являются специальные весы ВСПМ высокого класса точности на основе трехкомпонентных датчиков. Поверку специальных весов ВСПМ можно выполнить тремя методами: методом прямого нагружения с применением гирь класса точности F_2 ; методом нагружения весов балластными гирями класса M_1 с применением компаратора и гири F_2 ; методом нагружения с помощью силозадающей машины эталонной установки силы. Метрологические характеристики весов ВСПМ-1500: наибольший предел взвешивания (НПВ) 1500 кг, доверительной суммарной погрешностью измерений массы не более \pm 0,005 %, при доверительной вероятности P = 0.95, дискретность 10 г.

Метрологические характеристики основных эталонных средств измерений, применяемых для поверки ТПУ: мерник эталонный номинальной вместимостью $1000\,$ дм с доверительной суммарной погрешностью измерений $\pm\,0,01\,$ %, при доверительной вероятности P=0,95; счетчик жидкости камерный положительного вытеснения (СЖ) со значением среднего квадратического отклонения (СКО) случайной составляющей погрешности не более $\pm\,0,01\,$ %; пределы допускаемой относительной погрешности ИВК при измерении количества импульсов, не более $\pm\,0,005\,$ %. Определение объема ТПУ производится по патентованной методике (ССО) гольной погрешности и потрешности и потрешной по

№:102995) по схеме: определение МХ СЖ по эталонному мернику, измерения вместимости калиброванного объема ТПУ, определение МХ СЖ по эталонному мернику, и далее по среднему значению коэффициента СЖ вычисляют вместимость калиброванного объема ТПУ.

Метрологические характеристики основных эталонных средств измерений, применяемых для поверки компакт-прувера: мерник эталонный с доверительной границей суммарной погрешности \pm 0,01 %, при доверительной вероятности P = 0,95, номинальной вместимостью 20 дм³; пределы допускаемой относительной погрешности ИВК при измерении количества импульсов, не более \pm 0,005 %.

<u>В четвертой главе</u> представлена локальная поверочная схема СТО НГМ 1.1-2014, устанавливающая порядок передачи размера единиц объема и массы поверочного комплекса 3AO «Нефтегазметрология».

Принципы передачи размеров единиц величин в локальной поверочной схеме обеспечивают прослеживаемость рабочих средств измерений объёма и расхода углеводородных жидкостей до 2200 м³/час к Государственным эталонам единиц массы, силы и плотности эталонным и рабочим средствам измерений массы и объема, что соответствуют Государственным поверочным схемам: ГОСТ 8.021- 2005 «ГСИ. Государственная поверочная схема для средств измерений массы»; ГОСТ Р 8.663-2009 «ГСИ. Государственная поверочная схема для средств измерений силы»; ГОСТ 8.024-2002 «ГСИ. Государственная поверочная схема для средств измерений плотности»; ГОСТ 8.510-2002 «ГСИ. Государственная поверочная схема для средств измерений объема и массы жидкости»; ГОСТ 8.142-2013 «ГСИ. Государственный первичный эталон и государственная поверочная схема для средств измерений массового и объемного расхода (массы и объема) жидкости».

Применение на практике принципов, заложенных в локальной поверочной схеме поверочного комплекса, позволяет обеспечить достоверные измерения количества жидких углеводородов на СИКН и СИКНП, позволит уменьшить вероятность брака при поверке средств измерений (номера государственного реестров СИ 44252-10, 44963-10, 49450-12, 57471-14, 56812-14 и т.д.).

<u>В пятой главе</u> представлены результаты внедрения. Положительные результаты исследований позволили разработать высокоточные эталонные средства измерений отечественного производства (ЗАО ВИК «Тензо-М» и ООО «СНГБ»), локальную поверочную схему для средств измерений массы и объема и внедрить в поверочном комплексе ЗАО «Нефтегазметрология».

Поверочный комплекс ЗАО «Нефтегазметрология», построенный на применении средств измерений (таблица 2), предназначен для хранения и передачи единиц объема и массы жидкости при градуировке и поверке средств измерений по ГОСТ 8.510-2002 и ГОСТ 8.142-

2013 преобразователей объемного и массового расхода, счетчиков жидкости, компактпруверов, трубопоршневых поверочных установок (ТПУ) 1-го и 2-го разрядов при выпуске из производства, при первичных и периодических поверках [http://www.imsholding.ru/kalibrovochnyjj centr neftegazmetrologija/].

Таблица 2 Метрологические характеристики эталонов в составе ПК

Наименование эталона	Показатели точности	по	Показатели точности, % / уровень
	проекту		вероятности, полученные при
			экспериментальных исследованиях /
			коэффициент охвата
Весы ВСПМ	± 0,005 %		± 0,0030,004 / 0,95 / 2
Мерник эталонный 1 м ³	± 0,01 %		± 0,0074 / 0,95 / 2
Мерник эталонный 0,02 м ³	± 0,01 %		± 0,0005 / 0,95 / 2
КП	± 0,03 %		± 0,017 / 0,95 / 2; ± 0,025 / 0,99 / 3
ТПУ	± 0,03 %		± 0,018 / 0,95 / 2 ; ± 0,027 / 0,99 / 3

Таблица 3 Калибровочные и измерительные возможности (СМС) поверочных комплексов, работающих на углеводородных жидкостях

Страна, метрологическая	Диапазон объемного	Неопределенность измерений
служба предприятия	расхода, м ³ /час	калиброванного объема поверочной
		установки, % (тип ПУ) / доверительная
		вероятность / коэффициент охвата
США, фирма Сатегоп, г.	403600	0,03 (КП) / 0,95 / 2
Питтсбург		0,04 (ТПУ) / 0,95 / 2
		0,07 (ТПУ) / 0,95 / 2
Великобритания, NEL, г. Глазго	0,1720	0,030,08 (весы, ПУ, мастер-
		счетчик) / 0,95 / 2
Франция, Trapil, г. Париж	102500	0,04 (ТПУ) / 0,95 / 2
РΦ, 3ΑΟ		0,03 (КП, ТПУ) / 0,99 / 3
«Нефтегазметрология» г.	0,52200	0,02 (КП, ТПУ) / 0,95 / 2
Белгород		

Подтверждение калибровочных и измерительных возможностей поверочного комплекса ЗАО «Нефтегазметрология» и межлабораторные сличения проводятся в 2015 г.

Заключение

1. Проведенные теоретические и экспериментальные исследования показали, что технические и методические решения позволили улучшить в 2 раза метрологические характеристики эталонных мерников и в 1,7 раза улучшить метрологические характеристики поверочных установок, в 4 раза снизить временные затраты на их поверку. В 7 раз снизить затраты на закупку эталонного оборудования, в 2 раза уменьшить затраты на техническое обслуживание и эксплуатацию.

- 2. Результаты исследований и расчеты, разработанные методики поверки на основе специальных трехкомпонентных весов ВСПМ позволили внедрить в метрологическую практику:
- эталонные мерники 1-го разряда доверительной суммарной относительной погрешностью ± 0.01 %;
- мобильные эталонные поверочные установки 1-го разряда с доверительной суммарной относительной погрешностью измерений объема \pm 0,03 %, предназначенные для поверки на месте эксплуатации стационарных поверочных установок с доверительной суммарной погрешностью \pm 0,05 %;
- стационарные эталонные поверочные установки 1-го разряда с доверительной суммарной погрешностью измерений объема \pm 0,03 %, предназначенные для поверки на месте эксплуатации преобразователей расхода с доверительной суммарной погрешностью \pm 0,07 %, \pm 0,10 %, \pm 0,15 %.
- 3. Разработан поверочный комплекс на основе исходного эталона и стандарт СТО НГМ 1.1-2014 ЗАО «Нефтегазметрология» с доверительной суммарной погрешностью измерений объема ± 0,03 % при доверительной вероятности 0,99 в диапазоне расхода углеводородных жидкостей от 0,5 до 2200 м³/час. Рабочие эталоны единицы объема 1-го разряда поверочного комплекса внесены приказом ФАТРМ в реестр эталонов 3.6.АВР.0001.2015, 3.6.АВР.0002.2015.
- 4.Исходный эталон поверочного комплекса ЗАО «Нефтегазметрология» предназначен для хранения и передачи единиц массы и объема жидкости измерительным преобразователям объемного и массового расхода, счетчикам жидкости, компакт-пруверам, трубопоршневым поверочным установкам (ТПУ) 1-го и 2-го разрядов по ГОСТ 8.510-2002 «ГСИ. Государственная поверочная схема для средств измерений объема и массы жидкости» и ГОСТ 8.142-2013 «ГСИ. Государственный первичный эталон и государственная поверочная схема для средств измерений массового и объемного расхода (массы и объема) жидкости» [http://www.imsholding.ru/kalibrovochnyjjcentrneftegazmetrologija/].
- 5. Методики поверки на базе весов ВСПМ рекомендуется применять для метрологического обеспечения измерений расхода жидкостей с переключателями потока на базе весов с НПВ до 25 тонн по ГОСТ 8.142-2013, для поверки эталонных мерников 1-го и 2-го разрядов в соответствии с требованиями ГОСТ Р 8.682-2009 «ГСИ. Мерники металлические эталонные. Методика поверки».
- 6. Результаты исследований и разработанные методики измерений на базе специальных весов ВСПМ позволили развить и усовершенствовать метрологическое обеспечение учета нефти и нефтепродуктов при коммерческих операциях в соответствии РМГ 100-2010 «ГСИ. Рекомендации по определению массы нефти при учетных операциях с применением систем

измерений количества и показателей качества нефти» и РМГ 106-2010 «ГСИ. Рекомендации по определению массы нефти при учетных операциях с применением систем измерений количества и показателей качества нефти», кроме этого позволяют решить задачу импортозамещения средств измерений в сфере ТЭК.

Список публикаций по теме диссертации

Публикации в научных изданиях, входящих в список ВАК РФ:

- 1. **Сафонов, А. В.** Работы ТК310 по стандартизации в области измерений массы / В. С. Снегов, А. В. Сафонов // Приборы. 2009. №3. С. 27-28.
- 2. **Сафонов, А. В.** Опыт применения ультразвуковых преобразователей расхода в составе систем измерений количества и показателей качества нефти / Сафонов А. В. // Измерительная техника. 2014. №4. С. 59-61.
- 3. **Сафонов, А. В.** Пути повышения точности измерений массы и объема нефти и нефтепродуктов / Сафонов А. В., Снегов В. С., Остривной А. Ф., Каменских Ю. И.// Автоматизация, телемеханизация и связь в нефтяной промышленности. 2014. №11. С. 3-9. Другие публикации:
- 1. **Сафонов, А. В.** Сжиженный природный газ, метрологическое обеспечение измерений / Н. В. Даниленко, Г. Э. Ратвелл, А. В. Сафонов, М. А. Сафонова // Сфера Нефть и газ. 2013. №3. С. 38-41.
- 2. МИ 2002 Государственная система обеспечения единства измерений Мерники металлические эталонные наливные 1-го разряда. Санкт-Петербург, ФГУП «ВНИИМ», 2002. с. 5.
- 3. МИ 2002 Государственная система обеспечения единства измерений Весы платформенные. Изготовленные фирмой Mettler Toledo, Швейцария. Санкт-Петербург, ФГУП «ВНИИР», 2002. с. 10
- 4. МИ 3058-2007 Государственная система обеспечения единства измерений Мерники металлические эталонные 1-го разряда. Методика поверки. Санкт-Петербург, Φ ГУП «ВНИИР», 2007. с. 7.
- 5. МИ 3059-2007 Государственная система обеспечения единства измерений Весы платформенные высокого класса точности KES 1500 фирмы Меттлер Толедо. Санкт-Петербург: ФГУП «ВНИИМ», 2007. с. 11.
- 6. МИ 3155-2008 Государственная система обеспечения единства измерений Установки поверочные трубопоршневые. Методика поверки поверочными установками на базе мерника и объемного счетчика. Казань, ФГУП «ВНИИР», 2008. с. 19.
- 7. МИ 3209-2009 Государственная система обеспечения единства измерений Установки поверочные трубопоршневые. Методика поверки с помощью поверочной установки на базе эталонных мерников. Санкт-Петербург: ФГУП «ВНИИМ», 2009. с. 23.
- 8. МИ 3268-2010 Государственная система обеспечения единства измерений Установки поверочные трубопоршневые 2-го разряда. Методика поверки установками поверочными на базе компакт-прувера и компаратора. Казань: ФГУП «ВНИИР», 2010. с. 21.
- 9. МИ 3264-2010 Государственная система обеспечения единства измерений Установки трубопоршневые Syncrotrak фирмы Calibron Systems Inc., США. Методика поверки с помощью эталонных мерников. Санкт-Петербург: ФГУП «ВНИИМ», 2010. с. 15.
- 10. МИ 2550-0163-2011 Государственная система обеспечения единства измерений Установки поверочные FMD. Методика поверки. Санкт-Петербург: ФГУП «ВНИИМ», 2011. с. 21.
- 11. МП 2301-4-0149-2015 Весы специальные для взвешивания жидкостей ВСПМ. Методика поверки. Санкт-Петербург: ФГУП «ВНИИМ», 2015. с. 16.
- 12. МП 2301-0150-2015 Эталонные мерники 1-го разряда. Методика поверки. Санкт-Петербург: Φ ГУП «ВНИИМ», 2015. с. 18.
- 13. МП 2302-083-2015 Преобразователи плотности жидкости поточные. Методика поверки. Санкт-Петербург: ФГУП «ВНИИМ», 2015. c. 21.

- 14. МП 2550-0261-2015 Установки поверочные трубопоршневые. Методика поверки. Санкт-Петербург: ФГУП «ВНИИМ», 2015.-c.24.
- 15. МП 2550-0262-2015 Установка поверочная «ВСР-М». Методика поверки. Санкт-Петербург: Φ ГУП «ВНИИМ», 2015. с. 21.
- 16. <u>G01F</u> Патент на полезную модель №:102995. Установка для поверки трубопоршневых установок / **А.В. Сафонов** (RU), Бобрик Н. В. (BY) // 2009.
- 17. CMC Certificate number 39332546 A test installation for the calibration of Pipe Provers // VSL Dutch Metrology Institute // 2014.
- 18. Новые средства измерений в нефтегазовой промышленности / **А.В.** Сафонов // Конференция «Метрология нефтегазовой отрасли»: Санкт-Петербург, 2009.
- 19. Опыт применения новых преобразователей расхода / **А.В.** Сафонов, С.Ю. Денисенко // Метрологическая конференция: Казань, 2010.
- 20. От единицы массы к единице плотности, прослеживаемость результатов измерений / **А.В. Сафонов**, Д. Фитцджеральд // Конференция «Нефтегаз 2011»: Москва, 2011.
- 21. Новые средства измерений количества и качества нефти, нефтепродуктов, опыт применения / А.В. Сафонов, С.Ю. Денисенко // Конференция «Актуальные вопросы метрологического обеспечения учета жидкостей и газов»: Казань, 2011.
- 22. Опыт применения ультразвуковых преобразователей расхода в составе измерений количества и показателей качества нефти / **А.В. Сафонов**, С.Ю. Денисенко, И.Р. Каррамов // Третья Всероссийская конференция «Метрология и стандартизация нефтегазовой отрасли 2013»: Санкт-Петербург, 2013.
- 23. Калибровочная станция ООО «Нефтегазметрология» / **А.В. Сафонов** // 2-я Международная метрологическая конференция «Актуальные вопросы метрологического обеспечения измерений расхода и количества жидкостей и газов»: Казань, 2014.
- 24. ГОСТ Р 54071-2010 Государственная система обеспечения единства измерений. Весы неавтоматического действия. Часть 2. Формы протоколов испытаний. М.: Стандартинформ, 2011г., стр. 1-71.
- 25. СТО НГМ 1.1-2014 Стандарт организации. Локальная поверочная схема для средств измерений объема и массы нефти и нефтепродуктов, мерников эталонных металлических с применением эталона единиц объема и массы нефти и нефтепродуктов Поверочного комплекса 3AO «Нефтегазметрология». Белгород.: 3AO «Нефтегазметрология», 2014 г., стр. 1-24.

Тиражирование и брошюровка выполнены в ИП Кузнецова А.И. ИНН 300102869430 198255, Россия, Санкт-Петербург, проспект Ветеранов, 45, кв. 66 Отпечатано в КЦ «Сенная», Россия, г. Санкт-Петербург, Садовая 40, тел: 702-70-70 Формат 60×90/16, Усл. печ. л. 1 Цифровая печать. Тираж 100 экз. Подписано в печать _____ Заказ № ______