ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ УНИТАРНОЕ ПРЕДПРИЯТИЕ УРАЛЬСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ МЕТРОЛОГИИ (ФГУП «УНИИМ»)

УТВЕРЖДАЮ

Директор ФГУП «УНИИМ»

С.В. Медведевских

GENERADO 2015 F

ГОСУДАРСТВЕННАЯ СИСТЕМА ОБЕСПЕЧЕНИЯ ЕДИНСТВА ИЗМЕРЕНИЙ

Macc-спектрометры с индуктивно-связанной плазмой модели PlasmaQuant MS и PlasmaQuant MS Elite

МЕТОДИКА ПОВЕРКИ МП 98-251-2015

1.p.63680-16

Екатеринбург 2015

СОДЕРЖАНИЕ

1	Область применения	4
2	Нормативные ссылки	4
3 (Операции поверки	5
4 (Средства поверки	5
5 7	Гребования безопасности	6
	Условия поверки	
	Подготовка к поверке	
	Гребования к квалификации поверителя	
	Проведение поверки	
	Оформление результатов поверки	
П	РИЛОЖЕНИЕ А (обязательное) Методика приготовления аттестованных растворов ис риллия, кадмия и свинца на основе разбавления стандартных образцов утвержденных типов.)HΩR

Государственная система обеспечения единства измерений	
Масс-спектрометры с индуктивно-связанной плазмой модели PlasmaQuant MS и PlasmaQuant MS Elite Методика поверки	МП 98-251-2015

1 Область применения

Настоящая методика распространяется на масс-спектрометры с индуктивно-связанной плазмой модели PlasmaQuant MS и PlasmaQuant MS Elite (далее по тексту — масс-спектрометры), предназначенные для измерения элементного и изотопного состава проб растворов и твердых веществ методом масс-спектрометрии с индуктивно-связанной плазмой.

Методика поверки масс-спектрометров устанавливает процедуру их первичной и периодических поверок. Поверке подлежат все вновь выпускаемые, выходящие из ремонта, и находящиеся в эксплуатации масс-спектрометры.

Интервал между поверками – один год.

2 Нормативные ссылки

В настоящей методике поверки использованы ссылки на следующие нормативные документы:

ГОСТ 12.1.004-91 Система стандартов безопасности труда. Пожарная безопасность. Общие требования

ГОСТ 12.1.007-76 Система стандартов безопасности труда. Вредные вещества. Классификация и общие требования безопасности

ГОСТ 12.1.005-88 Система стандартов безопасности труда. Общие санитарно-гигиенические требования к воздуху рабочей зоны

ГОСТ 12.3.002-75 Система стандартов безопасности труда. Процессы производственные. Общие требования безопасности

ГОСТ Р 12.1.019-2009 Система стандартов безопасности труда. Электробезопасность. Общие требования и номенклатура видов защиты

ГОСТ OIML R 76-1-2011 Государственная система обеспечения единства измерений (ГСИ). Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания

ГОСТ 1770-74 Посуда мерная лабораторная стеклянная. Цилиндры, мензурки, колбы, пробирки. Общие технические условия

ГОСТ 4461-77 Реактивы. Кислота азотная. Технические условия

ГОСТ 6709-72 Вода дистиллированная. Технические условия

ГОСТ 29169-91 Посуда лабораторная стеклянная. Пипетки с одной отметкой

ГОСТ 29227-91 Посуда лабораторная стеклянная. Пипетки градуированные. Часть 1. Общие требования

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия

ГОСТ Р 52501-2005 Вода для лабораторного анализа. Технические условия

ПОТ Р М-016-2001 РД 153-34.0-03.150-00 Межотраслевые правила по охране труда (правила безопасности) при эксплуатации электроустановок

Приказ Минпромторга России от 02.07.2015 № 1815 «Об утверждении порядка проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельств о поверке».

3 Операции поверки

3.1 При проведении первичной и периодической поверок выполняют операции указанные в таблице 1.

Таблица 1 – Операции поверки

	Номер пункта	Проведение операции при	
Наименование операции	настоящей	первичной	периодической
	методики	поверке	поверке
Внешний осмотр	9.1	Да	Да
Опробование	9.2	Да	Да
Определение разрешающей способности	9.3	Да	Да
Определение чувствительности	9.4	Да	Да
Определение предела обнаружения	9.5	Да	Да
Определение относительного			
среднеквадратического отклонения	9.6	Да	Да
(ОСКО) измерений			<u> </u>
Определение средней величины фонового	0.7	_	_
сигнала	9.7	Да	Да

^{3.2} При получении отрицательных результатов при проведении хотя бы одной операции поверка прекращается.

4 Средства поверки

4.1 При проведении первичной и периодической поверок должны применяться средства, указанные в таблице 2.

Таблица 2 – Средства поверки

№ пункта методики поверки	Наименование и тип средства поверки	Основные технические и (или) метрологические характеристики
1	2	3
9.3	Стандартные образцы утвержденных типов состава растворов ионов металлов	Массовая концентрация ионов металла Ве $0,1$ мг/см ³ , массовая концентрация ионов металла Рь $1,0$ г/дм ³ . Границы относительной погрешности при доверительной вероятности Р = $0,95$ составляют ± 1 %.

продолжение таблицы 2

1	2	3
9.4-9.6	Стандартные образцы утвержденных типов состава растворов ионов металлов	Массовая концентрация ионов металла Ве $0,1$ мг/см ³ , массовая концентрация ионов металла Сd $1,0$ г/дм ³ , массовая концентрация ионов металла Рb $1,0$ г/дм ³ . Границы относительной погрешности при доверительной вероятности $P = 0,95$ составляют ± 1 %.
9.3-9.7	Меры вместимости по ГОСТ 29227, ГОСТ 29169, ГОСТ 1770	Класс точности 2
9.7	Вода для лабораторного анализа ГОСТ Р 52501	Степень чистоты 1

- 4.2 Вместо указанных средств поверки разрешается применять другие, обеспечивающие измерения соответствующих параметров с требуемой точностью.
- 4.3 Применяемые средства поверки должны быть исправны, поверены и иметь действующие свидетельства о поверке, стандартные образцы утвержденных типов должны иметь действующие паспорта.

5 Требования безопасности

- 5.1 Требования безопасности при поверке должны соответствовать требованиям, изложенным в настоящей методике поверки, а также РЭ поверочного оборудования и средств измерений.
- 5.2 При работе с масс-спектрометрами необходимо выполнять общие правила работы с электрическими установками до 1000 В и требования безопасности, предусмотренные ГОСТ Р 12.1.019, ГОСТ 12.3.002, ГОСТ 12.1.004, ГОСТ 12.1.007, ГОСТ 22261.
- 5.3 Лица, допускаемые к работе, должны иметь соответствующую техническую квалификацию и подготовку, ежегодно проходить проверку знаний техники безопасности.

6 Условия поверки

6.1 Поверка масс-спектрометров должна проводиться в нормальных условиях применения:

температура окружающей среды от 15 до 25 °C относительная влажность воздуха, при 20 °C от 20 до 80 % от 84 до 106 кПа

7 Подготовка к поверке

Все действия с масс-спектрометром осуществляются в соответствии с его руководством по эксплуатации масс-спектрометров с индуктивно связанной плазмой.

- 7.1 Если это не выполнено ранее, перед поверкой должны быть выполнены следующие операции:
 - включить подачу аргона и циркуляционную систему охлаждения;

- включить питание от сети переменного тока и сетевые тумблеры CB1 и CB2 на масс-спектрометре;
- включить вакуумную систему масс-спектрометра, при достижении разрежения 5×10^{-2} Па прогреть масс-спектрометр при включенной плазме не менее 40 минут;
 - подготовить аттестованные растворы.
- 7.2 Из стандартных образцов утвержденного типа (указаны в таблице 2 пункта 4.1), в соответствии с прилагаемой к ним инструкцией и приложением А к настоящей методике поверки, готовятся аттестованные растворы со следующими массовыми концентрациями веществ:

Аттестованный раствор № 1

Аттестованный раствор № 2

Be $- 1 \text{ мкг/дм}^3$ Cd $- 1 \text{ мкг/дм}^3$

Be $- 5 \text{ мкг/дм}^3$ Cd $- 5 \text{ мкг/лм}^3$

 $Pb - 1 MKГ/дм^3$

 $Pb - 5 \text{ мкг/дм}^3$

Аттестованный раствор № 3

Be -10 мкг/дм^3

Cd - 10 мкг/дм³

 $Pb - 10 \text{ мкг/дм}^3$

8 Требования к квалификации поверителя

- 8.1 К проведению поверки допускают лиц, изучивших настоящую методику поверки и руководство по эксплуатации на масс-спектрометр и средства поверки, имеющих квалификационную группу не ниже ІІІ в соответствии с ПОТ Р М-016-2001, РД 153-34.0-03.150-00.
- 8.2 При проведении испытаний следует соблюдать требования, установленные правилами по охране труда, ПОТ РМ-061-2001, РД 153-34.0-03.150-00 и ГОСТ 12.1.005.

9 Проведение поверки

- 9.1 Внешний осмотр
- 9.1.1 При проведении внешнего осмотра проверяют:
- отсутствие механических повреждений и ослабленных элементов конструкции, сохранность пломб, чистоту разъемов, состояние соединительных кабелей;

- целостность корпуса, внешних элементов, отсутствие повреждений органов управления.
- 9.1.2 Масс-спектрометр, имеющий дефекты, бракуется и дальнейшей поверке не подлежит.

9.2 Опробование

9.2.1 Опробование производится автоматически. Предварительно необходимо включить подачу аргона к прибору, водяной циркуляционный охладитель и вытяжную систему. После этого необходимо включить питание прибора и запустить ПО ASpect MS. При запуске ПО ASpect MS появляется окно «USB Communication», далее нажимаем кнопку «USB Communication». После этого на экране монитора появляется рабочее окно ПО. Далее перейти к окну «Состояние прибора» (Instrument Setup).

Результаты опробования положительные, если сообщений об обнаруженных ошибках не возникает. В противном случае масс-спектрометры к дальнейшей поверке не допускается.

- 9.3 Проверка метрологических характеристик
- 9.3.1 Определение разрешающей способности

Определение разрешающей способности масс-спектрометра « $W_{50\%}$ » проводят, определяя ширину пиков на уровне 50 % от интенсивности пиков, соответствующих однозарядным ионам Be-9, Pb-208.

Для этого измеряют в режиме сканирования с 10 точками на пик аттестованный раствор № 1.

Примечание: в программном обеспечении масс-спектрометра удобно использовать окно Mass Calibration.

9.3.1.1 Масс-спектрометры признаются прошедшими поверку в соответствии с подразделом 9.3.1, если определенная величина « $W_{50\%}$ » не превышает 0,9 а.е.м. для каждой из масс 9, 208.

9.3.2 Определение чувствительности

Чувствительность (S) масс-спектрометров определяют в режиме «Normal Sensitivity» по интенсивности сигналов, соответствующих однозарядным ионам изотопов Be-9, Cd-112, Pb-208. Для этого измеряют аттестованный раствор №2. В методе указывают: режим скачков по пикам («peak hopping»), количество сканов на повтор задают 10. Количество повторов на образец -5.

9.3.2.1 Масс-спектрометры признаются прошедшими поверку в соответствии с подразделом 9.3.2, если среднее арифметическое значение для

каждого из сигналов («mean») в пересчете на концентрацию 1 мкг/дм^3 не превышает значений, приведенных в таблице 3.

Таблица 3 – Определение чувствительности

Элемент (по изотопу)	Для масс-спектромет чувствительности (ра предельные значения (S), имп/с на 1 мкг/дм ³
	PlasmaQuant MS PlasmaQuant MS	
Be (Be-9)	20000	50000
Cd (Cd-112)	60000	150000
Pb (Pb-208)	250000	750000

9.3.3 Определение пределов обнаружения

Для того чтобы определить пределы обнаружения первоначально определяют значение среднего арифметического и стандартного отклонения («Standard Deviation» или SD) интенсивности фона на массах 9, 112, 208 а.е.м., при распылении бидистиллированной или деионизованной воды. В методе указывают: режим «скачки по пикам» («peak hopping»), включают режим «Normal Sensitivity», количество сканов на повтор задают 10. Количество повторов на образец – 5.

Примечание: Параметр «стандартное отклонение» (SD) автоматически рассчитывается в программном обеспечении масс-спектрометров. Для этого необходимо включить этот параметр в форму отчета.

Предел обнаружения (ПрО, нг/дм 3) для каждого из элементов Be, Cd, Pb определяют по формуле

$$\Pi pO = 3 \times SD \times 1000/S, \tag{1}$$

где SD —стандартное отклонение фона, имп/с; S — чувствительность, имп/с на 1мкг/дм 3

9.3.3.1 Масс-спектрометры признаются прошедшими поверку в соответствии с подразделом 9.3.3, если рассчитанные величины пределов обнаружения для каждого элемента не превышают значений, приведенных в таблице 4.

Таблица 4 – Пределы обнаружения

Элемент (по изотопу)	Значения пределов обнаружения (ПрО), нг/дм ³
Be (Be-9)	0,10
Cd (Cd-112)	0,20
Pb (Pb-208)	0,04

Примечание: Если один или несколько элементов для проверки пределов обнаружения является матричным при постоянных измерениях на конкретном тестируемом масс-спектрометре, то для достижения указанных пределов обнаружения может потребоваться длительная отмывка или даже замена системы ввода образцов и интерфейса (самплер и скиммер конуса). Поэтому допустимо проверять пределы обнаружения по любым 2 из 3 указанных элементов.

- 9.3.4 Определение относительного среднеквадратического отклонения (ОСКО) измерений
- 9.3.4.1 Для определения предела относительного среднеквадратического (ОСКО) измерений отклонения концентрации последовательно проводят измерения аттестованных растворов №1, №2, №3. Определяют интенсивность сигналов, соответствующих однозарядным ионам изотопов Be-9, Cd-112, Pb-208. Методом наименьших квадратов строят градуировочную прямую. Используя полученную градуировочную прямую, измеряют по ней 10 раз аттестованный раствор №2 с концентрацией 5 мкг/дм³ следующих элементов: Ве, Сd, Рb. В методе указывают: режим «скачки по пикам» («peak hopping»), включают режим «Normal Sensitivity», количество сканов на повтор задают 10, количество повторов на образец – 5. Измерения проводят на изотопах: Be-9,Cd-112,Pb-208.
- 9.3.4.2 ОСКО для однозарядных ионов изотопов Be-9, Cd-112, Pb-208 определяют по формуле

$$OCKO = \frac{1}{\varpi} \times \sqrt{\frac{\sum_{i=1}^{n} (\omega_i - \varpi)^2}{n-1}} \times 100\%, \qquad (2)$$

где ω_i - массовая концентрация однозарядных ионов изотопов Be-9, Cd-112, Pb-208 в мкг/дм³; ϖ - среднее значение массовой концентрации однозарядных ионов изотопов Be-9, Cd-112, Pb-208 в мкг/дм³; n - число измерений массовой концентрации однозарядных ионов изотопов Be-9, Cd-112, Pb-208 в мкг/дм³.

9.3.4.3 Масс-спектрометры признаются прошедшими поверку в соответствии с подразделом 9.3.4, если полученные значения ОСКО не превышают 3 %.

9.3.5 Определение средней величины фонового сигнала

Определение средней величины фонового сигнала проводят на массе 5 а.е.м. так, как описано в п. 9.3.3 для масс 9, 112, 208 а.е.м.

9.3.5.1 Масс-спектрометры признаются прошедшими поверку в соответствии с подразделом 9.3.5, если полученные значения среднего уровня фонового сигнала не превышают 1,0 имп/с для масс-спектрометра PlasmaQuant MS и 2,0 имп/с для PlasmaQuant MS Elite.

10 Оформление результатов поверки

- 10.1 При положительных результатах поверки оформляется свидетельство о поверке установленного образца в соответствии с Приказом Минпромторга № 1815 от 02.07.2015. При этом знак поверки в виде наклейки наносится на свидетельство о поверке.
- 10.2 При отрицательных результатах поверки выдается извещение о непригодности с указанием причины непригодности в соответствии с Приказом Минпромторга № 1815 от 02.07.2015.

Разработчик:

Зав. лаб. 251 ФГУП «УНИИМ», к.х.н.

ПРИЛОЖЕНИЕ А

(обязательное)

Методика приготовления аттестованных растворов ионов бериллия, кадмия и свинца на основе разбавления стандартных образцов утвержденных типов

Настоящая методика регламентирует процедуру приготовления аттестованных растворов ионов бериллия, кадмия, свинца на основе разбавления ГСО 7759-2000, ГСО 7874-2000, ГСО 7778-2000. Аттестованные растворы ионов бериллия, кадмия и свинца предназначены для поверки массспектрометров с индуктивно связанной плазмой моделей PlasmaQuant MS и PlasmaQuant MS Elite. Аттестованные значение концентрации ионов бериллия, кадмия и свинца в растворах находятся в диапазоне от 1 мкг/дм³ до 10 мкг/дм³.

1 Нормы и погрешности

- 1.1 Характеристики погрешности аттестованных растворов ионов бериллия, кадмия и свинца оценивают по процедуре приготовления с учетом всех составляющих погрешностей, вносимых на каждой стадии приготовления растворов бериллия, кадмия и свинца.
- 1.2 Настоящая методика обеспечивает получение растворов ионов бериллия, кадмия, свинца с погрешностью аттестованных значений ионов бериллия, кадмия и свинца не превышающих при доверительной вероятности P=0.95 доверительных интервалов абсолютной погрешности (\pm ΔA) при соблюдении всех регламентированных условий.

2 Средства измерений, приборы и реактивы

- 2.1 При приготовлении аттестованных растворов ионов бериллия, кадмия и свинца на основе разбавления ГСО 7759-2000, ГСО 7874-2000, ГСО 7778-2000 рекомендуется применять следующие средства измерений, приборы и реактивы:
- весы лабораторные, класс точности специальный (1) по ГОСТ OIML R 76-1;
- колбы мерные 2-го класса точности с притертой пробкой по ГОСТ 1770;

- 1-канальный механический дозатор «ЭКОХИМ-ОП-1-1000-10000» с переменным объемом дозирования (1000-10000) мм³, пределы допускаемой систематической составляющей основной относительной погрешности $\pm [0,6+0,00002(1000-V_T)]$ %, предел допускаемого СКО случайной составляющей основной относительной погрешности $[0,5+0,00002(1000-V_T)]$ %, где V_T объем дозы, установленной на дозаторе переменного объема, мм³;
- 1-канальный механический дозатор «ЭКОХИМ-ОП-1-100-1000» с переменным объемом дозирования (100-1000) мм³, пределы допускаемой систематической составляющей основной относительной погрешности $\pm [1,0+0,00004(100-V_T)]$ %. предел допускаемого СКО случайной составляющей основной относительной погрешности $[0.8 + 0.00003(100-V_T)]$ %, где V_T – объем дозы, установленной на дозаторе переменного объема, мм³;
- 1-канальный механический дозатор «ЭКОХИМ-ОП-1-10-100» с переменным объемом дозирования (10-100) мм³, пределы допускаемой систематической составляющей основной относительной погрешности $\pm[3+0,017(10-V_T)]$ %, предел допускаемого СКО случайной составляющей основной относительной погрешности [2,5+0,017(10-V_T)] %, где V_T объем дозы, установленной на дозаторе переменного объема, мм³, или пипетки 2-го класса точности по ГОСТ 29169, ГОСТ 29228;
 - ΓCO 7759-2000, ΓCO 7874-2000, ΓCO 7778-2000;
 - дистиллированная вода по ГОСТ 6709;
 - кислота азотная квалификация Ч.Д.А по ГОСТ 4461.
- 2.2 Вместо указанных средств измерений, стандартных образцов и реактивов разрешается применять другие, обеспечивающие необходимую точность соответствующих параметров с соответствующей погрешностью.

3 Требования безопасности

- 3.1 Применение ГСО 7759-2000, ГСО 7874-2000, ГСО 7778-2000 не требует соблюдения каких-либо специальных мер безопасности. Необходимо соблюдать только требования инструкций безопасности при работе в химической лаборатории.
- 3.2 Азотная кислота при непосредственном контакте с кожей вызывает ожоги. Дым, содержащий азотную кислоту, раздражает дыхательные пути, вызывает разрушение зубов, конъюнктивиты. При работе с препаратом необходимо пользоваться индивидуальными средствами защиты (респираторы, резиновые перчатки, защитные очки, спецодежда), а так же

соблюдать правила личной гигиены. Все рабочие помещения должны быть оборудованы общей приточно-вытяжной вентиляцией. Работы с азотной кислотой следует проводить в вытяжном шкафу лаборатории.

4 Требования к квалификации оператора

4.1 К приготовлению аттестованных растворов ионов бериллия, кадмия, свинца и вычислениям допускают лиц, имеющих квалификацию инженера-химика или техника-химика и опыт работы в химической лаборатории.

Условия приготовления аттестованных растворов ионов бериллия, кадмия и свинца.

Приготовление аттестованных растворов ионов бериллия, кадмия и свинца проводят при соблюдении в лаборатории следующих условий:

- температура окружающего воздуха (20 \pm 5) $^{\circ}$ C
- атмосферное давление (96 104) кПа
- относительная влажность воздуха (50 ± 20) %.

Приготовленные растворы ионов бериллия, кадмия, свинца следует хранить в колбах с притертыми пробками при температуре (20 \pm 5) °C, избегая воздействия солнечных лучей.

Растворы ионов бериллия, кадмия, свинца устойчивы в течение двух недель.

5 Приготовление аттестованных растворов ионов бериллия, кадмия и свинца

- 5.1 Исходный раствор готовят из стандартных образцов ионов бериллия (ГСО 7759-2000), кадмия (ГСО 7874-2000), свинца (ГСО 7778-2000) посредством отбора аликвот $10~\text{мm}^3$ раствора ионов кадмия с массовой концентрацией $1~\text{г/дm}^3$, отбора аликвот в $100~\text{мm}^3$ раствора ионов бериллия с концентрацией $0,1~\text{г/дm}^3$ и отбора аликвот $10~\text{мm}^3$ раствора ионов свинца с концентрацией $1,0~\text{г/дm}^3$ перенос их в колбу на $100~\text{cm}^3$. Колбу доводят 1~% азотной кислотой до метки $100~\text{cm}^3$ и перемешивают содержимое колбы, переворачивая ее 10~раз. Полученный раствор имеет концентрацию ионов бериллия, кадмия и свинца $100~\text{мкг/дm}^3$.
- 5.2 Из исходного раствора с концентрацией ионов бериллия, кадмия и свинца 100 мкг/дм³ готовят аттестованные растворы № 1, № 2, № 3 с концентрациями ионов бериллия, кадмия и свинца 1 мкг/дм³; 5 мкг/дм³;

 $10~\rm mkr/дm^3$ посредством отбора аликвот $500~\rm mm^3$, $5~\rm cm^3~u~10~cm^3$, соответственно, и переноса их в колбы на $50~\rm cm^3$, $100~\rm cm^3$, $100~\rm cm^3$, соответственно. Колбы доводят 1~% азотной кислотой до метки и перемешивают содержимое колб, переворачивая их $10~\rm pas$.

6 Оценка метрологических характеристик аттестованных растворов ионов бериллия, кадмия, свинца

6.1 Значения пределов абсолютной погрешности аттестованного значения массовой концентрации ионов бериллия, кадмия, свинца (ΔA) в растворах рассчитывают по формуле

$$\Delta A = (\delta \cdot X)/100 \tag{1}$$

где δ — относительная погрешность приготовления растворов, %, рассчитываемая по формуле (2); X — концентрация приготовленных растворов, мкг/дм³.

$$\delta = 1, 1\sqrt{\delta_1^2 + \delta_2^2 + \delta_3^2}$$
 (2)

$$\delta_1 = (\Delta V_K / V_K) \cdot 100, \% \tag{3}$$

$$\delta_2 = (\Delta V_{\mathcal{A}}/V_{\mathcal{A}}) \cdot 100, \% \tag{4}$$

где δ_I — относительная погрешность мерной посуды, %; δ_2 — относительная погрешность дозирующего оборудования, %; Δ V_K — погрешность измерений объема мерной колбы (берется в соответствии с ГОСТ 1770), см³; V_K — объем мерной колбы, см³; Δ $V_{\mathcal{I}}$ — погрешность измерений объема 1-канального механического дозатора, мм³; $V_{\mathcal{I}}$ — объем дозирования 1-канального механического дозатора, мм³;

 δ_3 — относительная погрешность аттестованного значения исходного стандартного образца утвержденного типа при доверительной вероятности P=0,95, %;

7 Оформление результатов

7.1 Рассчитанные значения метрологических характеристик приготовленных растворов ионов бериллия, кадмия и свинца приведены в таблицах 1, 2 и 3.

Таблица 1 – Метрологические характеристики растворов ионов кадмия

№ аттестованного раствора	Концентрация раствора, мкг/дм ³	Относительная погрешность аттестованного значения растворов ионов кадмия, δA , %
1	1	± 5
2	5	± 5

1 2	1.0	
)	10	+ 5

Таблица 2 – Метрологические характеристики растворов ионов бериллия

№ аттестованного раствора	Концентрация раствора, мкг/дм ³	Относительная погрешность аттестованного значения растворов ионов бериллия, δA, %
1	1	± 5
2	5	± 5
3	10	± 5

Таблица 3 – Метрологические характеристики растворов ионов свинца

№ аттестованного раствора	Концентрация раствора, мкг/дм ³	Относительная погрешность аттестованного значения растворов ионов свинца, δA , %
1	1	± 5
2	5	± 5
3	10	± 5