

Контроллеры измерительно-вычислительные моделей OMNI - 6000, OMNI-3000

Методика поверки

Санкт-Петербург 2006 r
1 РАЗРАБОТАНА ЗАО «ИМС Инжиниринг»
ИСПОЛНИТЕЛИСафонов А.В.Кривалев В.И., Аблина Л.В., Ремеева А.Ф.
2 РАЗРАБОТАНА
ИСПОЛНИТЕЛИ
3 УТВЕРЖДЕНА ФГУП ВНИИМ им. Д.И. Менделеева17 января 2006г.
4 ЗАРЕГИСТИРРОВАНА ФГУП ВНИИМС
\qquad " \qquad 2007г.
5 BЗAMEH

Настоящая рекомендация распространяется на измерительно-вычислительные контроллеры OMNI - 6000, OMNI-3000 (далее - ИВК), входящие в состав систем измерений количества и показателей качества нефти и нефтепродуктов и устанавливает методику их первичной и периодической поверок.

Межповерочный интервал - один год.

1 ОПЕРАЦИИ ПОВЕРКИ

При проведении поверки выполняют следующие операции:

- внешний осмотр (6.1);
- опробование (п.6.2);
- определение метрологических характеристик (п.6.3)

2 СРЕДСТВА ПОВЕРКИ

При проведении поверки применяют следующие основные и вспомогательные средства поверки:

- устройство для поверки вторичной измерительной аппаратуры узлов учета нефти и нефтепродуктов (УПВА), диапазон установки тока ($0.5-20 \mathrm{~mA}$), предел допускаемой абсолютной погрешности установки тока (± 3.0 мк A), диапазон формирования периода и частоты импульсных последовательностей ($0.1-15000$ Ги) , предел допускаемой относительной погрешности формирования периода импульсных последовательностей ($\pm 5 \times 10^{-4} \%$), диапазон формирования количества импульсов в пачке ($10-5 \times 10^{8}$ uмn);
- образцовая катушка сопротивления Р331, номинал 0.1 кОм, класс точности 0.01 ;
- многозначная мера постоянного тока, номинальные значения сопротивлений ступеней меры 107,108 , класс точности 0.02 ;
- термометр метеорологический стеклянный по ГОСТ 112-78Е, диапазон измерений от 0 до $100{ }^{\circ} \mathrm{C}$, цена деления $0,1^{\circ} \mathrm{C}$;
- психрометр аспирационный по ТУ 52-07-ГРПИ-405-132-001-92.

Допускается применять другие средства поверки с аналогичными или лучшими характеристиками.

3 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

При проведении поверки соблюдают требования безопасности, определяемые:
3.1 Правилами безопасности при эксплуатации используемых эталонных средств измерений, приведенными в эксплуатационной документации.
3.2 Правилами безопасности труда, действующими на объекте, на котором проводят поверку.
3.3 Правилами техники безопасности при эксплуатации электроустановок потребителей (ПТБ)

4 УСЛОВИЯ ПОВЕРКИ

При проведении поверки соблюдают следующие условия: - температура окружающего воздуха, ${ }^{\circ} \mathrm{C}$

- атмосферное давление, кПа
- относительная влажность воздуха, \% $101,3 \pm 4$;
- напряжение питания, B от 30 до 80 ;
- частота питания переменного тока, Гц 220 ± 22;
- отсутствие вибрации, ударов и магнитного поля, кроме земного.

5 ПОДГОТОВКА К ПОВЕРКЕ

Перед проведением поверки выполняют следующие работы:
5.1 Проверяют правильность монтажа ИВК в соответствии с требованиями руководств по монтажу и эксплуатации.
5.2 В зависимости от конфигурации ИВК выбирают одну из нижеперечисленных схем поверки.

Схема поверки 1: определение метрологических характеристик производится при одновременной имитации при помощи УПВА частотных сигналов преобразователей расхода (ПР), частотных сигналов преобразователей плотности (ПП), аналоговых сигналов преобразователей температуры, давления, влагосодержания, дискретных сигналов поверочной установки (ПУ).

Схема поверки 2: определение метрологических характеристик производится последовательно в два этапа:
1)определяются погрешности преобразования входных аналоговых сигналов в значения температуры, давления, влагосодержания, вязкости;
2)определяются метрологические характеристики при имитации при помощи УПВА частотных сигналов ПР, частотных сигналов ПП, дискретных сигналов ПУ и задании значений температуры, давления, влагосодержания при помощи клавиатуры ИВК или от персонального компьютера (PC) через последовательный интерфейс.

Схема поверки 3: определение метрологических характеристик производится последовательно в три этапа:
1)определяются погрешности преобразования входных аналоговых сигналов в значения температуры, давления, влагосодержания, вязкости;
2)определяются погрешности преобразования входных частотных сигналов в значения плотности;
3)определяются метрологические характеристики при имитации при помощи УПВА частотных сигналов ПР, дискретных сигналов ПУ и задании значений плотности, температуры, давления, влагосодержания при помощи клавиатуры ИВК или от персонального компьютера (РС) через последовательный интерфейс.
5.3 Проводят монтаж средств поверки в соответствии с выбранной схемой поверки:

- рисунок 1 (схема поверки 1);
- или рисунки 2,3 (схема поверки 2);
- или рисунки $2,4,5$ (схема поверки 3).

1-УПВА; 2 - цифровой дисплей УПВА; 3-клавиатура УПВА; 4-ИВК; 5 - персональный компьютер (РС)
Рисунок 1. Схема подключения средств поверки при определении погрешности преобразования входных сигналов в значения объема и массы продукта, в значение коэффициента преобразования (метер-фактора) ПР. Схема поверки 1.

1 -УПВА; 2-цифровой дисплей УПВА; 3-клавиатура УПВА; 4-ИВК; 5-персональный компьютер (РС)
Рисунок 2. Схема подключения средств поверки при определении погрешности преобразования входных аналоговых сигналов в значения температуры, давления, объемной доли воды, вязкости.
Схема поверки 2 и схема поверки 3.

1-УПВА; 2-цифровой дисплей УПВА; 3-клавиатура УПВА; 4-ИВК; 5-персональный компьютер (РС)
Рисунок 3. Схема подключения средств поверки при определении погрешности преобразования входных сигналов в значения объема и массы продукта, в значение коэффициента преобразования (метер-фактора) ПР.
Схема поверки 2.

1 - УПВА; 2 - цифровой дисплей УПВА; 3-клавиатура УПВА; 4-ИВК; 5-персональный компьютер (PC)
Рисунок 4. Схема подключения средств поверки при определении погрешности преобразования входных сигналов в значения плотности. Схема поверки 3.

1-УПВА; 2-цифровой дисплей УПВА; 3-клавиатура УПВА; 4-ИВК; 5 - персональный компьютер (РС)
Рисунок 5. Схема подключения средств поверки при определении погрешности преобразования входных сигналов в значения объема и массы продукта, в значение коэффициента преобразования (метер-фактора) ПР.

Схема поверки 3.

5.4 Включают и прогревают ИВК и средства поверки в течение не менее 30 минут.
5.5 При подготовке к поверке ИВК при определении погрешности преобразования входных аналоговых сигналов в значения температуры, давления, объемной доли воды, вязкости (рисунок 2) в его память вводят следующие параметры:

- диапазоны измерений преобразователей температуры $\left({ }^{\circ} \mathrm{C}\right.$), давления (кПа, бар или кгс/см²), объемной доли воды (\%), вязкости (сСт).
5.6 При подготовке к поверке ИВК в режиме измерения плотности продукта (рисунок 4) в его память вводят следующие параметры:
- то же, что по п.5.5;
- значения коэффициентов К0, К1, К2, К18, К19, К20А, К20В, К21А, К21В, взятые из сертификатов преобразователей плотности (далее - ПП) фирмы "Solartron" или значения коэффициентов Do, K, To, tcoef, Pcoef, tcal, Pcal, взятые из сертификатов ПП фирмы "Sarasota";
- диапазоны измерений преобразователей температуры, давления.
5.7 При подготовке к поверке ИВК в режиме измерения объема и массы продукта (рисунки $1,3,5$) в его память вводят следующие параметры:
- то же, что по п.5.6;
- тип продукта;
- используемый алгоритм вычисления;
- типы преобразователей расхода (далее - ПР) (объемные, массовые);
- значения коэффициентов преобразования ПР или, при необходимости, базовые значения коэффициентов преобразования конкретного ПР и значения метер-факторов;
5.8 При подготовке к поверке ИВК в режиме определения коэффициента преобразования (метер-фактора) ПР по ТПУ (рисунки $1,3,5$) в его память вводят следующие параметры:
- то же, что по п.5.7;
- тип ТПУ;
- объем калиброванного участка ТПУ при стандартных значениях температуры и давления
- стандартные значения температуры и давления;
- внутренний диаметр калиброванного участка ТПУ;
- толщина стенок калиброванного участка ТПУ;
- модуль упругости материала калиброванного участка ТПУ;
- коэффициент линейного расширения материала калиброванного участка ТПУ;
- число измерений;
- допустимую продолжительность движения поршня;

Если выбран тип ТПУ - компакт-прувер (КП):

- значения объема "Downstream";
- квадратичный коэффициент объемного расширения материала стенок КП;
- коэффициент линейного расширения инварового стержня;
- число пусков поршня, принимаемое за одно измерение;
5.9 При подготовке к поверке ИВК в режиме определения коэффициента преобразования (метер-фактора) ПР по контрольному ПР (рисунки $1,3,5$) в его память вводят следующие параметры:
- то же, что по п.5.7;
- количество продукта, за время прохождения которого производится определение коэффициента преобразования (метер-фактора);
5.10 Ввод необходимых параметров производят или при помощи клавиатуры ИВК, или при помощи персонального компьютера с установленным ПО ОМNICOM, связанного с ИВК через последовательный порт связи.
5.11 Остальную подготовку проводят в соответствии с требованиям эксплуатационных документов ИВК и руководствами по эксплуатации средств поверки.

6 ПРОВЕДЕНИЕ ПОВЕРКИ

6.1 Внешний осмотр

При внешнем осмотре убеждаются в том, что:

- комплектность поверяемого ИВК соответствует указанной в технической документации;
- на ИВК отсутствуют механические повреждения и дефекты покрытия, ухудшающие внешний вид и мешающие работе;
- надписи и обозначения на ИВК нанесены четко и соответствуют требованиям технической документации.
6.2 Опробование

При опробовании ИВК проверяют правильность прохождения сигналов от имитаторов преобразователей величин.

Сигналы ПР и ПП имитируют генератором импульсов в составе УПВА.
Сигналы преобразователей температуры, давления, объемной доли воды, вязкости имитируют источниками постоянного тока в составе УПВА.

Сигналы детекторов ТПУ (КП) имитируют контактами реле «Старт», «Стоп» в составе УПВА.

Изменяя сигналы имитаторов величин, убеждаются во вводе и обработке их ИВК, контролируя значения величин на его дисплее.

6.3 Определение метрологических характеристик и обработка результатов изме рений.

6.3.1 Определение погрешности преобразования входных аналоговых сигналов в значения температуры, давления, объемной доли воды, вязкости.

Этот пункт выполняют, если поверка ИВК проводится по схеме поверки 2 или по схеме поверки 3. Если поверку ИВК проводят по схеме поверки 1, этот пункт пропускают.
6.3.1.1 Определение погрешности преобразования входных токовых аналоговых сигналов в значения температуры, давления, объемной доли воды, вязкости проводят по всем используемым аналоговым токовым каналам при значениях тока $4,12,20$ мА. Расчетные значения величин, соответствующие вышеуказанным значениям тока, определяют по формуле

$$
\begin{equation*}
X_{p}=X_{\min }+\frac{X_{\max }-X_{\min }}{16} \times(I-4), \tag{1}
\end{equation*}
$$

где $\quad X_{\min }, X_{\max }$ - нижний и верхний пределы измерений преобразователей температуры $\left({ }^{\circ} \mathrm{C}\right)$, давления(кПа, бар или кгс/см²), объемной доли воды (\%), вязкости (сСт), (из технических паспортов).
I - задаваемое значение тока, мА.
Результаты измерений заносят в протокол по форме приложения B.
6.3.1.2 Определение погрешности преобразования входных аналоговых сигналов напряжения в значения температуры, давления, объемной доли воды, вязкости проводят по всем используемым аналоговым каналам напряжения при значениях напряжения $1,3,5$ В.

Расчетные значения величин, соответствующие вышеуказанным значениям напряжения, определяют по формуле

$$
\begin{equation*}
X_{p}=X_{\min }+\frac{X_{\max }-X_{\min }}{4} \times(V-1), \tag{1a}
\end{equation*}
$$

где $X_{\text {min }}, X_{\max }$ - нижний и верхний пределы измерений преобразователей температуры $\left({ }^{\circ} \mathrm{C}\right)$, давления(кПа, бар или кгс/см² ${ }^{2}$), объемной доли воды (\%), вязкости (сСт), (из технических паспортов).
V - задаваемое значение напряжения, В.
Результаты измерений заносят в протокол по форме приложения B.
6.3.1.3 Определение погрешности преобразования входных сигналов сопротивления в значения температуры проводят по всем используемым каналам сопротивлений при значениях сопротивления 100.00 и 108.00 Ом. Расчетные значения температуры соответственно равны 0.00 и $20.54^{\circ} \mathrm{C}$.

Результаты измерений заносят в протокол по форме приложения B.
6.3.1.4 Абсолютную погрешность преобразования входных аналоговых сигналов в значения величины определяют по формуле

$$
\begin{equation*}
\Delta_{X}=X_{B}-X_{P}, \tag{2}
\end{equation*}
$$

где $\quad X_{B}$ - значение величины по показаниям ИВК;
За абсолютную погрешность преобразования аналоговых сигналов ИВК принимают максимальное из всех значений по каждой величине, определенных по формуле (2).
6.3.2 Определение погрешности преобразования входных сигналов в значения плотности продукта.

Этот пункт выполняют, если поверка ИВК проводится по схеме поверки 3. Если поверку ИВК проводят по схеме поверки 1 или по схеме поверки 2 , этот пункт пропускают.

Определение погрешности преобразования входных частотных сигналов в значения плотности продукта проводят по всем используемым частотным каналам плотности при значениях периода частотного сигнала, соответствующих минимальному, среднему и максимальному значениям плотности продукта.
6.3.2.1 Относительную погрешность преобразования входных сигналов в значения плотности δ_{ρ} определяют по формуле:

$$
\begin{equation*}
\delta_{\rho}=1.1 * \sqrt{\delta^{\prime}{ }_{\rho}^{2}+\delta_{\rho A}{ }^{2}} \tag{4}
\end{equation*}
$$

Относительную погрешность преобразования входных частотных сигналов в значения плотности δ_{ρ}^{\prime} определяют по формуле:
$\delta^{\prime}{ }_{\rho}=\frac{\rho-\rho_{P}}{\rho_{P}} * 100 \%$
где:
ρ-значение плотности по показаниям ИВК, кг/м ${ }^{3}$:
ρ_{P} - расчетное значение плотности, определенное с использованием коэффициентов и по формулам, приведенным в сертификатах используемых плотномеров.

Относительную погрешность преобразования входных аналоговых сигналов в значения плотности $\delta_{\rho A}$ определяют по формуле:

$$
\begin{equation*}
\delta_{\rho A}=\sqrt{\left(k_{\rho t}\right)^{2} *\left(\Delta t_{\pi n}\right)^{2}+\left(k_{\rho P}\right)^{2} *\left(\Delta P_{\Pi \pi}\right)^{2}} \tag{6}
\end{equation*}
$$

где $\Delta t_{\text {пп }}$ - абсолютная погрешность ИВК по каналу преобразования тока (напряжения) в температуру в $П \Pi,{ }^{\circ} \mathrm{C}$;
$k_{\rho t}$ - коэффициент влияния погрешности измерения температуры на вычисление плотности, $\% /{ }^{\circ} \mathrm{C}$
$\Delta P_{\text {пII }}$ - абсолютная погрешность ИВК по каналу преобразования тока (напряжения) в давление в ПП, бар, (кгс/см ${ }^{2}$, кПа);
$k_{\rho P}$ - коэффициент влияния погрешности измерения давления на вычисление плотности, $\% /$ бар (\%/(кгс/см $\left.{ }^{2}\right), \% /$ кПа);

Для плотномеров "Solartron 7830/7835":
$k_{p t}=0.002 \% /{ }^{\circ} \mathrm{C}$
$k_{\rho P}=0.01 \% /$ бар $\left(0.01 \% /\left(\right.\right.$ кгс/см $\left.{ }^{2}\right), 0.0001 \% /$ кПа);
Для плотномеров "Sarasota FD960":
$k_{\rho t}=0.02 \% /{ }^{0} \mathrm{C}$
$k_{\rho P}=0.038 \% /$ бар $\left(0.038 \% /\left(\right.\right.$ кгс/см $\left.{ }^{2}\right), 0.00038 \% /$ КПа);

6.3.3 Определение погрешности преобразования входных сигналов в значения объема и массы продукта.

При определении вышеуказанных погрешностей на входы каналов измерений расхода, плотности, температуры, давления, влагосодержания с соответствующих выходов УПВА подают значения сигналов или вводят с клавиатуры ИВК значения параметров в соответствии с выбранной схемой поверки. Их значения устанавливаются в соответствии с таблицей 1 .

Таблица 1

Частота ПР, Гц , не более	Плотность продукта в ПП, кг/ $/{ }^{3}$	Массовая доля со-ставляющих балласта, \%	Температура, ${ }^{\circ} \mathrm{C}$		Давление, (бар*)	
			пп	IP	пп	пP
15000	минимальное значение диапазона по Приложению А при первичной поверке; минимальное значение рабочего диапазона при очередной поверке	min	$\mathrm{t}_{\text {min }}$	$\mathrm{t}_{\text {min }} \pm 1$	$P_{\text {min }}$	$\mathrm{P}_{\text {min }} \pm 0,3$
15000	максимальное значение диапазона по	max	$\mathrm{t}_{\text {max }}$	$\mathrm{t}_{\text {max }} \pm 1$	$P_{\text {max }}$	$\mathrm{P}_{\text {max }} \pm 0,3$

	Приложению А при первичной поверке; максимальное зна- чение рабочего диа- пазона при очеред- ной поверке				

Вводят в память ИВК значения коэффициентов преобразования ПР, равные для всех каналов. Допускается проводить измерения при ранее установленных коэффициентах преобразования ПР в соответствии с результатами поверки ПР.

В УПВА задают число импульсов N, подаваемое на входы каналов расхода:

$$
\begin{equation*}
N \geq 10^{(1-m)} * K * n \tag{10}
\end{equation*}
$$

где $\quad l=5$ для объемных ПР;
$l=8$ для массовых ПР;
m - количество знаков после запятой в значениях объема и массы; K - коэффициент преобразования ПР, введенный в память ИВК, имп/м ${ }^{3}$ для объемного ПР, имп/кг для массового ПР;
n - количество каналов расхода.
Если для каждого канала введен свой коэффициент преобразования:

$$
\begin{equation*}
N \geq \frac{10^{(5-m)}}{\sum_{j=1}^{n} \frac{1}{K_{j}}} \quad \text { для объемных ПР } \tag{10a}
\end{equation*}
$$

где $\quad K_{j}$ - коэффициент преобразования ПР j - го канала расхода, введенный в память ИВК, имп/ \mathbf{m}^{3}.

$$
\begin{equation*}
N \geq \frac{10^{(5-m)}}{\sum_{j=1}^{n} \frac{1}{K_{j} * 10^{3}}} \quad \text { для массовых ПР } \tag{10б}
\end{equation*}
$$

где $\quad K_{j}$ - коэффициент преобразования ПР $j-$ го канала расхода, введенный в память ИВК, имп/кг.

Проводят отсчет показаний объема, стандартного объема, массы брутто и нетто нефти с дисплея ИВК. Подают на входы каналов расхода N импульсов, после остановки счета записывают показания, накопленные за время измерений объема, объема при стандартных условиях, объема нетто и массы продукта с дисплея ИВК.

Для каждой серии входных величин проводят не менее трех измерений. Результаты измерений заносят в протокол по форме приложения Г.

Для каждого ИВК может быть свой набор измеряемых величин, соответственно и обработку результатов измерений проводят только для вычисляемых параметров.

Обработку результатов измерений проводят в зависимости от конфигурации ИВК и выбранной схемы поверки, (пункты А-F).

А. Конфигурация OMNI: алгоритм вычисления - API 11.1 (2004г), тип ПР - объ-

емный.

А. 1 Относительную погрешность преобразования входных сигналов ИВК в значение объема продукта δ_{V} определяют по формуле:

$$
\begin{equation*}
\delta_{V}=\frac{V-V_{p}}{V_{p}} * 100 \%, \tag{8}
\end{equation*}
$$

где V - значение объема по показаниям ИВК, м ${ }^{3}$;
V_{P} - расчетное значение объема, m^{3}.
Если установлены одинаковые коэффициенты преобразования для всех ПР, расчетное значение объема вычисляют по формуле

$$
\begin{equation*}
V_{p}=n * \frac{N}{K}, \tag{9}
\end{equation*}
$$

Если в память ИВК введены значения базового коэффициента преобразования конкретного типа ПР Кбаз. и метер-фактора МF, то К $=$ Кбаз $/ \mathrm{MF}$.

Если для каждого ПР установлен свой коэффициент преобразования, расчетное значение объема вычисляют по формуле

$$
\begin{equation*}
V_{p}=N * \sum_{j=1}^{n} \frac{1}{K_{j}}, \tag{10}
\end{equation*}
$$

где $\quad K_{j}$ - коэффициент преобразования j -го ПР, введенный в память ИВК, имп/м ${ }^{3}$, или, при необходимости, $\mathrm{K}_{\mathrm{j}}=$ Кбаз.j $/ \mathrm{MF}_{\mathrm{j}}$.

Значение δ_{V} не должно превышать 0.001%.
А. 2 Относительную погрешность преобразования входных сигналов ИВК в значение объема продукта при стандартных условиях $\delta_{V H,}$ определяют в зависимости от выбранной схемы поверки.

A.2.1 Схема поверки 1.

$$
\begin{equation*}
\delta_{V H Y}=\frac{V_{H Y}-V_{H Y P}}{V_{H Y P}} \cdot 100 \%, \tag{11}
\end{equation*}
$$

где:
$V_{H y P}=V_{P} * V C F_{I P} * C P L_{I I P}$
V_{P} определяется по ф-ле (9) или (10);
$V C F_{\pi P}=\exp \left\langle-\alpha_{t r} *\left(t_{\pi P}-t_{r}\right) *\left\{1+\left[0.8 * \alpha_{t r} *\left(t_{\pi P}-t_{r}\right)\right]\right\}\right\rangle$
$\alpha_{t r}$ - коэффициент объемного расширения при стандартной температуре $t_{r},{ }^{\circ} \mathrm{C}$
$t_{\Pi P}$ - температура в $\Pi Р,{ }^{\circ} \mathrm{C}$;
$C P L_{\pi P}=\frac{1}{1-\left(P_{\Pi P}-P_{e}\right) * F_{\pi P}}$
$P_{\Pi P}$ - давление в ПР, бар (кПа, кгс/см ${ }^{2}$)
P_{e} - давление насыщенных паров продукта, бар (кПа, кгс/см²)
$F_{\Pi \rho}$ - коэффициент сжимаемости продукта при температуре в ПР, 1/бар (1/кПа, 1/(кгс/см $\left.{ }^{2}\right)$)

$$
\alpha_{t r}, F_{\Pi p} \text { - определяются в соответствии с Приложением А. }
$$

Значение $\delta_{V \text { ну }}$ не должно превышать 0.025%.

A.2.2 Схема поверки 2 и схема поверки 3.

$$
\begin{equation*}
\delta_{V H V}=1.1 * \sqrt{\delta^{\prime} V_{H V}^{2}+\delta_{V H Y A}{ }^{2}} \tag{15}
\end{equation*}
$$

где

$$
\begin{align*}
& \delta_{V H y}^{\prime}=\frac{V_{H y}-V_{H y P}}{V_{H y P}} \cdot 100 \%, \tag{16}\\
& \quad V_{H y P} \text { - определяется по ф-ле (12); } \\
& \quad \delta_{V_{H V A}}=\sqrt{\left(k_{t}\right)^{2} *\left[\left(\Delta t_{\Pi п}\right)^{2}+\left(\Delta t_{\Pi P}\right)^{2}\right]+\left(k_{P}\right)^{2} *\left[\left(\Delta P_{\Pi \Pi}\right)^{2}+\left(\Delta P_{\Pi P}\right)^{2}\right]} \tag{17}
\end{align*}
$$

k_{t} - коэффициент влияния на вычисление объема при н.у. погрешности измерений температуры: см. таблицу 1 , например, $k_{t}=0.09 \% /{ }^{\circ} \mathrm{C}$ при $\rho=850$ кг $/ \mathrm{m}^{3}$ и $t=30^{\circ} \mathrm{C}$
k_{P} - коэффициент влияния на вычисление объема при н.у. погрешности измерений давления: см. таблицу 2 , например при $\rho=850 \mathrm{kz} / \mathrm{m}^{3}$ и $t=30^{\circ} \mathrm{C}$

$$
\begin{aligned}
& k_{P}=0.00008 \% / \text { КПа или } \\
& k_{P}=0.008 \% / \text { бар или } \% /\left(\text { Кг }^{2} / \text { см}^{2}\right)
\end{aligned}
$$

$\Delta t_{\text {пп }}$ - абсолютная погрешность ИВК по каналу преобразования тока в температуру в ПП, ${ }^{\circ} \mathrm{C}$;
$\Delta t_{\text {пP }}$ - абсолютная погрешность ИВК по каналу преобразования тока в температуру в ПР, ${ }^{\circ} \mathrm{C}$;
$\Delta P_{\text {пп }}$ - абсолютная погрешность ИВК по каналу преобразования тока в давление в ПП, кПа, бар или кгс/см²;
$\Delta P_{\text {пP }}$ - абсолютная погрешность ИВК по каналу преобразования тока в давление в ПР, кПа, бар или кгс/см ${ }^{2}$;
Значение $\delta_{V \text { ну }}$ не должно превышать 0.025%.
А. 3 Относительную погрешность преобразования входных сигналов ИВК в значение объема нетто продукта $\delta_{V_{H}}$ определяют в зависимости от выбранной схемы поверки.

A.3.1 Схема поверки 1.

$$
\begin{align*}
& \delta_{V H}=\frac{V_{H}-V_{H P}}{V_{H P}} * 100 \% \tag{18}\\
& \quad V_{H P}=V_{H y P} *\left\{1-\frac{\varphi}{100}\right\} \tag{19}\\
& V_{H y P} \text { - определяется по ф-ле (12); } \\
& \varphi \text { - значение объемной доли воды в продукте, } \% .
\end{align*}
$$

Значение $\delta_{V H}$ не должно превышать 0.025%.

А.3.2 Схема поверки 2 и схема поверки 3.

$$
\begin{equation*}
\delta_{V H}=1.1 * \sqrt{\delta_{V H}^{\prime}+\delta_{V H A}{ }^{2}} \tag{20}
\end{equation*}
$$

где:
$\delta^{\prime}{ }_{V H}=\frac{V_{H}-V_{H P}}{V_{H P}} * 100 \%$
$V_{H P}$ - определяется по ф-ле (19);
$\delta_{V_{H A}}=\sqrt{\delta_{V H V A}^{2}+\delta_{V B A}^{2}}$,
$\delta_{V \text { ну }}$ определяется по ϕ-ле (17);
$\delta_{\mathrm{VBA}}=\frac{\Delta \varphi_{\mathrm{B} \text { max }}}{100-\varphi_{\mathrm{B} \text { max }}} \cdot 100 ;$
$\varphi_{\mathrm{B} \max }$ - максимальное значение объемной доли воды в продукте, $\%$.
$\Delta \varphi_{\text {в max }}$ - максимальное значение абсолютной погрешности преобразования входного аналогового сигнала ИВК в значение объемной доли воды, вычисленное по формуле (2), \%.

При отсутствии поточного влагомера $\delta_{V B A}=0$.
Значение $\delta_{V H}$ не должно превышать 0.025%.
А. 4 Относительную погрешность преобразования входных сигналов ИВК в значение массы продукта δ_{M} определяют в зависимости от выбранной схемы поверки.

A.4.1 Схема поверки 1.

$$
\begin{equation*}
\delta_{M}=\frac{M-M_{p}}{M_{p}} * 100 \% \tag{24}
\end{equation*}
$$

где:
$M_{P}=V_{H y P} * \rho_{H y P} / 1000$
$V_{H y P}$ определяется по ф-ле (12);
$\rho_{H V P}=\frac{\rho_{\text {ПП }}}{V C F_{\Pi \pi} * C P L_{\text {ПП }}}$
$V C F_{\pi n}=\exp \left\langle-\alpha_{t r} *\left(t_{\pi n}-t_{r}\right) *\left\{1+\left[0.8 * \alpha_{t r} *\left(t_{\pi n}-t_{r}\right)\right]\right\}\right.$
$C P L_{\text {пп }}=\frac{1}{1-\left(P_{\text {пп }}-P_{e}\right) * F_{\text {пп }}}$
Значение δ_{M} не должно превышать 0.025%.

A.4.2 Схема поверки 2.

$$
\begin{equation*}
\delta_{M}=1.1 * \sqrt{\delta_{M}^{\prime}+\delta_{M A}{ }^{2}} \tag{29}
\end{equation*}
$$

где

$$
\begin{equation*}
\delta_{M}^{\prime}=\frac{M-M_{p}}{M_{p}} * 100 \% \tag{30}
\end{equation*}
$$

M_{P} определяется по ф-ле (25);
$\delta_{M A}=\sqrt{\delta_{M A}^{\prime}+\delta_{p 4}{ }^{2}}$
$\delta_{M A}^{\prime}=\sqrt{\left(k_{t}\right)^{2} *\left[\left(\Delta t_{\Pi \Pi}\right)^{2}+\left(\Delta t_{\Pi P}\right)^{2}\right]+\left(k_{P}\right)^{2} *\left[\left(\Delta P_{\Pi I}\right)^{2}+\left(\Delta P_{\Pi P}\right)^{2}\right]}$
$\delta_{\rho A}$ определяется по формуле (6) $\left(\delta_{\rho A}=\sqrt{\left(k_{\rho t}\right)^{2} *\left(\Delta t_{\Pi п}\right)^{2}+\left(k_{\rho P}\right)^{2} *\left(\Delta P_{\text {пп }}\right)^{2}}\right)$
Значение δ_{M} не должно превышать 0.025%.

А.4.3 Схема поверки 3.

$$
\begin{equation*}
\delta_{M}=1.1 * \sqrt{\delta_{M}^{\prime \prime}+\delta_{M A}{ }^{2}} \tag{33}
\end{equation*}
$$

где:

$$
\begin{equation*}
\delta^{\prime \prime}{ }_{M}=\delta^{\prime}{ }_{M}+\delta^{\prime}{ }_{p} \tag{34}
\end{equation*}
$$

$\delta^{\prime}{ }_{\text {м }}$ определяется по ϕ-ле (30);
δ^{\prime} о определяется по ф-ле (5) $\quad\left(\delta^{\prime}{ }_{\rho}=\frac{\rho-\rho_{P}}{\rho_{P}} * 100 \%\right)$
$\delta_{M A}$ определяется по ф-ле (31).
Значение δ_{M} не должно превышать 0.025%.

B. Конфигурация OMNI: алгоритм вычисления - API 11.1 (2004), тип ПР - мас-

 совый.В. 1 Относительную погрешность преобразования входных сигналов ИВК в значение массы продукта δ_{M} определяют по формуле:

$$
\begin{equation*}
\delta_{M}=\frac{M-M_{p}}{M_{p}} * 100 \% \text {, } \tag{35}
\end{equation*}
$$

где $\quad M$ - значение массы по показаниям ИВК, т;
M_{P} - расчетное значение массы, т.
Если установлены одинаковые коэффициенты преобразования для всех ПР, расчетное значение массы вычисляют по формуле

$$
\begin{equation*}
M_{p}=n * \frac{N}{K * 1000}, \tag{36}
\end{equation*}
$$

Если в память ИВК введены значения базового коэффициента преобразования конкретного типа ПР Кбаз. и метер-фактора МF, то К $=$ Кбаз МF.

Если для каждого ПР установлен свой коэффициент преобразования, расчетное значение массы вычисляют по формуле

$$
\begin{equation*}
M_{p}=N * \sum_{j=1}^{n} \frac{1}{K_{j} * 1000}, \tag{37}
\end{equation*}
$$

где $\quad K_{j}$ - коэффициент преобразования j -го ПР, введенный в память ИВК, имп/Кг, или, при необходимости, $\mathrm{K}_{\mathrm{j}}=\mathrm{K}_{\text {баз. }} / \mathrm{MF}_{\mathrm{j}}$.
Значение δ_{M} не должно превышать 0.001%.
В. 2 Относительную погрешность преобразования входных сигналов ИВК в значение объема продукта при стандартных условиях $\delta_{V H y}$ определяют в зависимости от выбранной схемы поверки.

B.2.1 Схема поверки 1.

$$
\begin{equation*}
\delta_{V H y}=\frac{V_{H y}-V_{H y P}}{V_{H y P}} * 100 \% \tag{38}
\end{equation*}
$$

где:

$$
\begin{equation*}
V_{H y P}=\frac{M_{P}}{\rho_{H y P}} * 1000 \tag{39}
\end{equation*}
$$

M_{P} определяется по ф-ле (36) или (37);
$\rho_{H У P}$ определяется по формуле (26) $\quad \rho_{H У P}=\frac{\rho_{\text {Пп }}}{V C F_{п п} * C P L_{\text {Пп }}}$.
Значение $\delta_{V \text { ну }}$ не должно превышать 0.025%.

B.2.2 Схема поверки 2.

$\delta_{V H V}=1.1 *{\sqrt{\delta_{V H Y}{ }^{\prime}}{ }^{2}+\delta_{V H Y A}{ }^{2}}$
где:
$\delta_{V H y}^{\prime}=\frac{V_{H y}-V_{H V P}}{V_{H V P}} * 100 \%$
$V_{H y P}$ определяется по ф-ле (39);
$\delta_{V H Y A}=\sqrt{\delta_{V H V A}^{\prime}+\delta_{\rho A}{ }^{2}}$
$\delta_{V H y A}^{\prime}=\sqrt{k_{t}^{2} *\left(\Delta t_{I \Pi}\right)^{2}+k_{P}^{2} *\left(\Delta P_{I \Pi}\right)^{2}}$
$\delta_{\rho A}$ определяется по ф-ле (6) $\left(\delta_{\rho A}=\sqrt{\left(k_{\rho I}\right)^{2} *\left(\Delta t_{\Pi п}\right)^{2}+\left(k_{\rho P}\right)^{2} *\left(\Delta P_{\Pi \Pi}\right)^{2}}\right)$

Значение $\delta_{V \text { ну }}$ не должно превышать 0.025%.

В.2.3 Схема поверки 3.

$\delta_{V H Y}=1.1 * \sqrt{\delta_{V H V^{\prime}}{ }^{2}+\delta_{V H V}{ }^{2}}$
где:
$\delta^{\prime \prime}{ }_{V H y}=\delta_{V H V}^{\prime}+\delta_{\rho}^{\prime}$
$\delta^{\prime}{ }_{V H y}$ определяется по ф-ле (41);
$\delta^{\prime}{ }_{\rho}$ определяется по ф-ле (5) ($\left.\delta^{\prime}{ }_{\rho}=\frac{\rho-\rho_{P}}{\rho_{P}} * 100 \%\right)$;
$\delta_{V \text { Ну }}$ о определяется по ф-ле (42).
Значение $\delta_{V \text { ну }}$ не должно превышать 0.025%.
В. $3 О$ тносительную погрешность преобразования входных сигналов ИВК в значение объема продукта δ_{V} определяют в зависимости от выбранной схемы поверки.

B.3.1 Схема поверки 1.

$$
\begin{equation*}
\delta_{V}=\frac{V-V_{P}}{V_{P}} * 100 \% \tag{46}
\end{equation*}
$$

где:

$$
\begin{equation*}
V_{P}=\frac{V_{H y P}}{V C F_{\Pi P} * C P L_{\Pi P}} \tag{47}
\end{equation*}
$$

$V_{H y P}$ определяется по ф-ле (39);
$V C F_{\text {пр }}, C P L_{\text {II }}$ определяются по формулам (13) и (14) соответственно.
Значение δ_{ν} не должно превышать 0.025%.

B.3.2 Схема поверки 2.

$\delta_{V}=1.1 * \sqrt{\delta^{\prime}{ }^{2}+\delta_{V A}{ }^{2}}$
где
$\delta^{\prime}{ }_{V}=\frac{V-V_{p}}{V_{p}} * 100 \%$,
V_{P} определяется по ф-ле (47);
$\delta_{V A}=\sqrt{\delta_{V A}^{\prime}{ }^{2}+\delta_{\rho A}{ }^{2}}$
$\delta^{\prime}{ }_{V A}=\sqrt{\left(k_{t}\right)^{2} *\left[\left(\Delta t_{\Pi \Pi}\right)^{2}+\left(\Delta t_{\Pi P}\right)^{2}\right]+k_{P}{ }^{2} *\left[\left(\Delta P_{\Pi \Pi}\right)^{2}+\left(\Delta P_{\Pi P}\right)^{2}\right]}$
$\delta_{\rho A}$ определяется по ф-ле (6) $\left(\delta_{\rho A}=\sqrt{\left(k_{\rho t}\right)^{2} *\left(\Delta t_{\text {пп }}\right)^{2}+\left(k_{\rho P}\right)^{2} *\left(\Delta P_{\text {пп }}\right)^{2}}\right)$
Значение δ_{V} не должно превышать 0.025%.

B.3.3 Схема поверки 3.

$\delta_{V}=1.1 * \sqrt{\delta^{\prime \prime}{ }_{V}{ }^{2}+\delta_{V A}{ }^{2}}$
где:
$\delta^{\prime \prime}{ }_{v}=\delta^{\prime}{ }_{v}+\delta^{\prime}{ }_{\rho}$
$\delta^{\prime}{ }_{v}$ определяется по ф-ле (49);
δ^{\prime} о определяется по ф-ле (5) ($\left.\delta^{\prime}{ }_{\rho}=\frac{\rho-\rho_{P}}{\rho_{P}} * 100 \%\right)$;
$\delta_{V A}$ определяется по ф-ле (50).

Значение δ_{V} не должно превышать 0.025%.
В. 4 Относительную погрешность преобразования входных сигналов ИВК в значение объема нетто продукта $\delta_{V H}$ определяют в зависимости от выбранной схемы поверки.

B.4.1 Схема поверки 1.

$$
\begin{equation*}
\delta_{V H}=\frac{V_{H}-V_{H P}}{V_{H P}} * 100 \% \tag{54}
\end{equation*}
$$

где:

$$
\begin{equation*}
V_{H P}=V_{H y P} *\left\{1-\frac{\varphi}{100}\right\} \tag{55}
\end{equation*}
$$

Значение $\delta_{V H}$ не должно превышать 0.025%.

B.4.2 Схема поверки 2.

$$
\begin{equation*}
\delta_{V H}=1.1 * \sqrt{\delta_{V H}^{\prime}+\delta_{V H A}{ }^{2}} \tag{56}
\end{equation*}
$$

где:
$\delta^{\prime}{ }_{V H}=\frac{V_{H}-V_{H P}}{V_{H P}} * 100 \%$
$V_{H P}$ определяется по ϕ-ле (55);
$\delta_{V H A}=\sqrt{\delta_{V H V A}^{2}+\delta_{V B A}^{2}}$,
$\delta_{V \text { HV }_{A}}$ определяется по ϕ-ле (42);

$$
\begin{equation*}
\delta_{\mathrm{VBA}}=\frac{\Delta \varphi_{\mathrm{B} \max }}{100-\varphi_{\mathrm{B} \max }} \cdot 100 ; \tag{59}
\end{equation*}
$$

$\varphi_{\text {в max }}$ - максимальное значение объемной доли воды в продукте, $\%$.
$\Delta \varphi_{\text {в max }}$ - максимальное значение абсолютной погрешности преобразования входного аналогового сигнала ИВК в значение объемной доли воды, вычисленное по формуле (2), \%.

При отсутствии поточного влагомера $\delta_{V B A}=0$.
Значение $\delta_{V H}$ не должно превышать 0.025%.

B.4.3 Схема поверки 3.

$$
\begin{equation*}
\delta_{V H}=1.1 *{\sqrt{\delta_{V H}{ }^{\prime \prime}+\delta_{V H A}{ }^{2}}, ~}_{2} \tag{60}
\end{equation*}
$$

где:
$\delta^{\prime \prime}{ }_{V H}=\delta^{\prime}{ }_{V H}+\delta^{\prime}{ }_{\rho}$
$\delta^{\prime}{ }_{V H}$ определяется по ф-ле (57);
$\delta^{\prime}{ }_{\rho}$ определяется по ф-ле (5) $\left(\delta_{\rho}^{\prime}=\frac{\rho-\rho_{P}}{\rho_{P}} * 100 \%\right)$;
$\delta_{\text {Vн }}$ определяется по ϕ-ле (58).
Значение $\delta_{V H}$ не должно превышать 0.025%.

С. Конфигурация OMNI: алгоритм вычисления - API 11.1 (1980г), тип ПР - объ-

емный.

C. 1 Относительную погрешность преобразования входных сигналов ИВК в значение объема продукта определяют по формуле:

$$
\begin{equation*}
\delta_{V}=\frac{V-V_{p}}{V_{p}} * 100 \%, \tag{62}
\end{equation*}
$$

где $\quad V$ - значение объема по показаниям ИВК, м ${ }^{3}$;
V_{P} - расчетное значение объема, м ${ }^{3}$.
Если установлены одинаковые коэффициенты преобразования для всех ПР, расчетное значение объема вычисляют по формуле

$$
\begin{equation*}
V_{p}=n * \frac{N}{K}, \tag{63}
\end{equation*}
$$

Если в память ИВК введены значения базового коэффициента преобразования конкретного типа ПР Кбаз. и метер-фактора MF , то $\mathrm{K}=\mathrm{K}_{\text {баз }} / \mathrm{MF}$.

Если для каждого ПР установлен свой коэффициент преобразования, расчетное значение объема вычисляют по формуле

$$
\begin{equation*}
V_{p}=N * \sum_{j=1}^{n} \frac{1}{K_{j}} \tag{64}
\end{equation*}
$$

где $\quad K_{j}$ - коэффициент преобразования ј-го ПР, введенный в память ИВК, имп/м ${ }^{3}$, или, при необходимости, $\mathrm{K}_{\mathrm{j}}=\mathrm{K}_{\text {баз. }} / \mathrm{MF}_{\mathrm{j}}$.

Значение δ_{V} не должно превышать 0.001 \%.
C. 2 Относительную погрешность преобразования входных сигналов ИВК в значение объема продукта при стандартных условиях $\delta_{V H V}$ определяют в зависимости от выбранной схемы поверки.

C.2.1 Схема поверки 1.

$\delta_{V H y}=\frac{V_{H y}-V_{H V P}}{V_{H V P}} * 100 \%$
где:
$V_{H V P}=V_{P} * V C F_{\Pi P} * C P L_{\Pi P}$
V_{P} определяется по ф-ле (63) или (64);
$V C F_{\Pi P}=\exp \left\langle-\alpha_{t r} *\left(t_{\Pi P}-t_{r}\right) *\left\{1+\left[0.8 * \alpha_{t r} *\left(t_{\Pi P}-t_{r}\right)\right]\right\}\right\rangle$
$\alpha_{t r}$ - коэффициент объемного расширения при стандартной температуре $t_{r},{ }^{\circ} \mathrm{C}$
$t_{\Pi P}$ - температура в $\Pi \mathrm{P},{ }^{\circ} \mathrm{C}$

$$
\begin{equation*}
C P L_{\Pi P}=\frac{1}{1-\left(P_{\Pi P}-P_{e}\right) * F_{\Pi P}} \tag{68}
\end{equation*}
$$

P - давление в ПР, бар (кПа, кгс/см ${ }^{2}$)
P - давление насыщенных паров продукта, бар (кПа, кгс/см²)
$F_{\Pi P}$ - коэффициент сжимаемости продукта при температуре в ПР, 1/бар (1/кПа, $\left.1 /\left(\mathrm{\kappa гс} / \mathrm{cm}^{2}\right)\right)$
$\alpha_{t r}, F_{\Pi P}$ - определяются в соответствии с Приложением А с использованием значения плотности продукта при н.у., заданного в свойствах Продукта.
(Если в свойствах Продукта задана $\rho_{20}=850$, в расчетах $\alpha_{t r}, F_{\Pi P}$ используется (для нефти) $\rho_{15}=853.601$, в ф-ле (67) $t_{r}=20$, в ф-ле (68) $-F_{\text {пр }}$, рассчитанный при температуре в ПР).

Значение $\delta_{V H у}$ не должно превышать 0.025%.

C.2.2 Схема поверки 2 и схема поверки 3.

$$
\begin{equation*}
\delta_{V H V}=1.1 * \sqrt{\delta_{V H y}{ }^{2}+\delta_{V H y A}{ }^{2}} \tag{69}
\end{equation*}
$$

где
$\delta^{\prime}{ }_{V H y}=\frac{V_{H V}-V_{H y P}}{V_{H V P}} \cdot 100 \%$,
$V_{H y P}$ определяется по ф-ле (66);
$\delta_{V H y A}=\sqrt{k_{t}{ }^{2} *\left(\Delta t_{\pi P}\right)^{2}+k_{P}^{2} *\left(\Delta P_{\Pi P}\right)^{2}}$
k_{t} - коэффициент влияния на вычисление объема при н.у. погрешности измерений температуры, определяется по таблице 1 ;
k_{P} - коэффициент влияния на вычисление объема при н.у. погрешности измерений давления, определяется по таблице 2.

Значение $\delta_{V \text { ну }}$ не должно превышать 0.025%.
С. 3 Относительную погрешность преобразования входных сигналов ИВК в значение объема нетто продукта $\delta_{V H}$ определяют в зависимости от выбранной схемы поверки.

С.3.1 Схема поверки 1.

$$
\begin{gather*}
\delta_{V H}=\frac{V_{H}-V_{H P}}{V_{H P}} * 100 \% \tag{72}\\
V_{H P}=V_{H y P} *\left\{1-\frac{\varphi}{100}\right\} \tag{73}
\end{gather*}
$$

$V_{H y P}$ - определяется по ф-ле (66);
φ - значение объемной доли воды в продукте, $\%$.
Значение $\delta_{V H}$ не должно превышать 0.025%.

С.3.2 Схема поверки 2 и схема поверки 3.

$$
\begin{equation*}
\delta_{V H}=1.1 * \sqrt{\delta_{V H}^{\prime}+\delta_{V H A}{ }^{2}} \tag{74}
\end{equation*}
$$

где:
$\delta^{\prime}{ }_{V H}=\frac{V_{H}-V_{H P}}{V_{H P}} * 100 \%$
$V_{H P}$ - определяется по ф-ле (73);

$$
\begin{equation*}
\delta_{V H A}=\sqrt{\delta_{V H V A}^{2}+\delta_{V B A}^{2}}, \tag{76}
\end{equation*}
$$

$\delta_{V \text { HV }}$ определяется по ф-ле (71);

$$
\begin{equation*}
\delta_{\mathrm{VBA}}=\frac{\Delta \varphi_{\mathrm{B} \max }}{100-\varphi_{\mathrm{B} \max }} \cdot 100 \tag{77}
\end{equation*}
$$

$\varphi_{\text {вmax }}$ - максимальное значение объемной доли воды в продукте, $\%$.
$\Delta \varphi_{\text {в max }}$ - максимальное значение абсолютной погрешности преобразования входного аналогового сигнала ИВК в значение объемной доли воды, вычисленное по формуле (2), \%.

При отсутствии поточного влагомера $\delta_{V B A}=0$.
Значение $\delta_{V_{H}}$ не должно превышать 0.025%.
С. 4 Относительную погрешность преобразования входных сигналов ИВК в значение массы продукта δ_{M} определяют в зависимости от выбранной схемы поверки.

С.4.1 Схема поверки 1.

$$
\begin{gather*}
\delta_{M}=\frac{M-M_{p}}{M_{p}} * 100 \%, \tag{78}\\
M_{P}=V_{H y P} * \rho_{H y} / 1000 \tag{79}
\end{gather*}
$$

$V_{H y P}$ определяется по ф-ле (66);
$\rho_{H y}$ - значение плотности при н.у., задаваемое в свойствах Продукта.
Значение $\delta_{\text {м }}$ не должно превышать 0.025%.

С.4.2 Схема поверки 2 и схема поверки 3.

$$
\begin{equation*}
\delta_{M}=1.1 * \sqrt{\delta_{M}^{\prime}{ }^{2}+\delta_{M A}{ }^{2}} \tag{80}
\end{equation*}
$$

где

$$
\begin{equation*}
\delta^{\prime}{ }_{M}=\frac{M-M_{p}}{M_{p}} * 100 \% \tag{81}
\end{equation*}
$$

M_{P} - определяется по ф-ле (79)

$$
\begin{equation*}
\delta_{M A}=\sqrt{k_{t}^{2} *\left(\Delta t_{\Pi P}\right)^{2}+k_{P}^{2} *\left(\Delta P_{\Pi P}\right)^{2}} \tag{82}
\end{equation*}
$$

Значение δ_{M} не должно превышать 0.025%.
D. Конфигурация OMNI: алгоритм вычисления - API 11.1 (1980 г), тип ПР - массовый.
D. 1 Относительную погрешность преобразования входных сигналов ИВК в значение массы продукта δ_{M} определяют по формуле:
$\delta_{M}=\frac{M-M_{p}}{M_{p}} * 100 \%$,

где $\quad M$ - значение массы по показаниям ИВК, т;
M_{P} - расчетное значение массы, т.
Если установлены одинаковые коэффициенты преобразования для всех ПР, расчетное значение массы вычисляют по формуле

$$
\begin{equation*}
M_{p}=n * \frac{N}{K * 1000}, \tag{84}
\end{equation*}
$$

Если в память ИВК введены значения базового коэффициента преобразования конкретного типа ПР Кбаз и метер-фактора МF, то $К=К_{\text {баз }} / \mathrm{MF}$.

Если для каждого ПР установлен свой коэффициент преобразования, расчетное значение массы вычисляют по формуле

$$
\begin{equation*}
M_{p}=N * \sum_{j=1}^{n} \frac{1}{K_{j} * 1000}, \tag{85}
\end{equation*}
$$

где $\quad K_{j}$ - коэффициент преобразования j -го ПР, введенный в память ИВК, имп/Кг, или, при необходимости, $\mathrm{K}_{\mathrm{j}}=\mathrm{K}_{\text {баз }} / \mathrm{MF}_{\mathrm{j}}$.

Значение δ_{M} не должно превышать 0.001%.
D. 2 Относительную погрешность преобразования входных сигналов ИВК в значение объема продукта при стандартных условиях $\delta_{V \text { ну }}$ определяют по формуле:

$$
\begin{equation*}
\delta_{V H y}=\frac{V_{H V}-V_{H V P}}{V_{H y P}} * 100 \% \tag{86}
\end{equation*}
$$

где:
$V_{H y P}=\frac{M_{P}}{\rho_{H y}} * 1000$
M_{P} - определяется по ф-ле (84) или (85);
$\rho_{H y}$ - значение плотности при н.у., задаваемое в свойствах Продукта.
Значение $\delta_{V_{\text {ну }}}$ не должно превышать 0.025%.
D. 3 Относительная погрешность преобразования входных сигналов ИВК в значение объема продукта δ_{V} определяется в зависимости от выбранной схемы поверки.

D.3.1 Схема поверки 1.

$$
\begin{equation*}
\delta_{V}=\frac{V-V_{p}}{V_{p}} * 100 \%, \tag{88}
\end{equation*}
$$

где:

$$
\begin{equation*}
V_{P}=\frac{V_{H y P}}{V C F_{\Pi P} * C P L_{\pi P}} \tag{89}
\end{equation*}
$$

$V C F_{\text {IP }}, C P L_{\text {пр }}$ определяются соответственно по формулам (67) и (68).
Значение δ_{V} не должно превышать 0.025%.

D.3.2 Схема поверки 2 и схема поверки 3.

$\delta_{V}=1.1 * \sqrt{\delta^{\prime} V^{2}+\delta_{V A}{ }^{2}}$
где

$$
\begin{equation*}
\delta^{\prime}{ }_{V}=\frac{V-V_{p}}{V_{p}} * 100 \%, \tag{91}
\end{equation*}
$$

V_{P} - определяется по ф-ле (89);

$$
\begin{equation*}
\delta_{V A}=\sqrt{k_{t}^{2} *\left(\Delta t_{\Pi P}\right)^{2}+k_{P}^{2} *\left(\Delta P_{\Pi P}\right)^{2}} \tag{92}
\end{equation*}
$$

Значение δ_{v} не должно превышать 0.025%.
D. 4 Относительную погрешность преобразования входных сигналов ИВК в значение объема нетто продукта $\delta_{V H}$ определяют в зависимости от выбранной схемы поверки.

D.4.1 Схема поверки 1.

$$
\begin{gather*}
\delta_{V H}=\frac{V_{H}-V_{H P}}{V_{H P}} * 100 \% \tag{93}\\
V_{H P}=V_{H y P} *\left\{1-\frac{\varphi}{100}\right\} \tag{94}
\end{gather*}
$$

$V_{H y P}$ - определяется по ф-ле (87);
φ - значение объемной доли воды в продукте, \%.
Значение $\delta_{V_{H}}$ не должно превышать 0.025%.

D.4.2 Схема поверки 2 и схема поверки 3.

$$
\begin{equation*}
\delta_{V H}=1.1 * \sqrt{\delta_{V H}^{\prime}{ }^{2}+\delta_{V B A}^{2}} \tag{95}
\end{equation*}
$$

где:
$\delta^{\prime}{ }_{V H}=\frac{V_{H}-V_{H P}}{V_{H P}} * 100 \%$
$V_{H P}$ - определяется по ф-ле (94);

$$
\begin{equation*}
\delta_{\mathrm{VBA}}=\frac{\Delta \varphi_{\mathrm{B} \max }}{100-\varphi_{\mathrm{B} \max }} \cdot 100 \tag{98}
\end{equation*}
$$

$\varphi_{\text {В } \max }$ - максимальное значение объемной доли воды в продукте, $\%$.
$\Delta \varphi_{\mathrm{B} \max }$ - максимальное значение абсолютной погрешности преобразования входного аналогового сигнала ИВК в значение объемной доли воды, вычисленное по формуле (2), \%. При отсутствии поточного влагомера $\delta_{V B A}=0$ и $\delta_{V H}=\delta_{V H}^{\prime}$.

Значение $\delta_{V H}$ не должно превышать 0.025%.

емный.

E. 1 Относительную погрешность преобразования входных сигналов ИВК в значение объема продукта δ_{V} определяют по формуле:

$$
\begin{equation*}
\delta_{V}=\frac{V-V_{p}}{V_{p}} * 100 \%, \tag{99}
\end{equation*}
$$

где $\quad V$ - значение объема по показаниям ИВК, м ${ }^{3}$;
V_{P} - расчетное значение объема, м 3.
Если установлены одинаковые коэффициенты преобразования для всех ПР, расчетное значение объема вычисляют по формуле

$$
\begin{equation*}
V_{p}=n * \frac{N}{K}, \tag{100}
\end{equation*}
$$

Если в память ИВК введены значения базового коэффициента преобразования конкретного типа ПР Кбаз, и метер-фактора МF, то $К=К_{\text {баз }} / \mathrm{MF}$.

Если для каждого ПР установлен свой коэффициент преобразования, расчетное значение объема вычисляют по формуле

$$
\begin{equation*}
V_{p}=N * \sum_{j=1}^{n} \frac{1}{K_{j}}, \tag{101}
\end{equation*}
$$

где K_{j} - коэффициент преобразования j -го ПР, введенный в память ИВК, имп $/ \mathrm{m}^{3}$, или, при необходимости, $\mathrm{K}_{\mathrm{j}}=\mathrm{K}_{\text {баз.j }} / \mathrm{MF}_{\mathrm{j}}$.

Значение δ_{V} не должно превышать 0.001%.
E. 2 Относительная погрешность преобразования входных сигналов ИВК в значение объема продукта при стандартных условиях $\delta_{V H V}$ определяют в зависимости от выбранной схемы поверки.

Е.2.1 Схема поверки 1.

$$
\begin{equation*}
\delta_{V H y}=\frac{V_{H V}-V_{H y P}}{V_{H y P}} \cdot 100 \% \text {, } \tag{102}
\end{equation*}
$$

где:

$$
\begin{equation*}
V_{H V P}=V_{P} * V C F_{\Pi P} * C P L_{\Pi I} \tag{103}
\end{equation*}
$$

V_{P} - определяется по ф-ле (100) или (101);

$$
\begin{equation*}
V C F_{\pi P}=\frac{\rho_{\pi n}}{\rho_{H V}} \tag{104}
\end{equation*}
$$

Частотный сигнал имитации $\rho_{\text {пп }}$ задается от УПВА, значение $\rho_{H y}$ - в свойствах продукта, с клавиатуры.

$$
\begin{equation*}
C P L_{I I P}=1 \tag{105}
\end{equation*}
$$

Значение $\delta_{V \text { ну }}$ не должно превышать 0.025%.

Е.2.2 Схема поверки 2.

$$
\begin{equation*}
\delta_{V H Y}=1.1 *{\sqrt{\delta_{V H Y}^{\prime}}{ }^{2}+\delta_{V H V A}{ }^{2}}^{2} \tag{106}
\end{equation*}
$$

где
$\delta^{\prime}{ }_{V H Y}=\frac{V_{H Y}-V_{H y P}}{V_{H y P}} \cdot 100 \%$,
$V_{H y P}$ определяется по ф-ле (103);
$\delta_{V H V A}=\sqrt{k_{\rho t}{ }^{2} *\left(\Delta t_{\Pi \Pi}\right)^{2}+k_{\rho P}{ }^{2} *\left(\Delta P_{\Pi \Pi}\right)^{2}}$
Значение $\delta_{V \text { ну }}$ не должно превышать 0.025%.

Е.2.3 Схема поверки 3.

$$
\begin{equation*}
\delta_{V H Y}=1.1 *{\sqrt{\delta_{V H Y}^{\prime \prime}}{ }^{2}+\delta_{V H Y A}}^{2} \tag{110}
\end{equation*}
$$

где:
$\delta^{\prime \prime}{ }_{V H V}=\delta^{\prime}{ }_{V H V}+\delta^{\prime}{ }_{\rho}$
$\delta^{\prime}{ }_{\text {н }}$ о определяется по ф-ле (107);
$\delta^{\prime}{ }_{\rho}$ определяется по ф-ле (5); $\left(\delta^{\prime}{ }_{\rho}=\frac{\rho-\rho_{P}}{\rho_{P}} * 100 \%\right)$
$\delta_{V H V A}$ определяется по ф-ле (109).
Значение $\delta_{V \text { ну }}$ не должно превышать 0.025%.
E. 3 Относительную погрешность преобразования входных сигналов ИВК в значение массы продукта δ_{M} определяют в зависимости от выбранной схемы поверки.

E.3.1 Схема поверки 1.

$\delta_{M}=\frac{M-M_{p}}{M_{p}} * 100 \%$
где:

$$
\begin{equation*}
M_{P}=V_{H V P} * \rho_{H V} / 1000 \tag{113}
\end{equation*}
$$

$V_{H y P}$ определяется по ф-ле (103);
$\rho_{H y}$ - в свойствах продукта, с клавиатуры.
или $\quad M_{P}=V_{P} * \rho_{\text {пп }} / 1000$
V_{P} - определяется по ф-ле (100) или (101);
Частотный сигнал имитации $\rho_{\text {пп }}$ задается от УПВА.
Значение δ_{M} не должно превышать 0.025%.

Е.3.2 Схема поверки 2.

$$
\begin{equation*}
\delta_{M}=1.1 * \sqrt{\delta_{M}^{\prime}}{ }^{2}+\delta_{M A}^{2} \tag{115}
\end{equation*}
$$

где

$$
\begin{equation*}
\delta^{\prime}{ }_{M}=\frac{M-M_{p}}{M_{p}} * 100 \% \tag{116}
\end{equation*}
$$

M_{P} определяется по ф-ле (113) или (114);

$$
\begin{equation*}
\delta_{M A}=\sqrt{\left(k_{\rho t}\right)^{2} *\left(\Delta t_{\Pi \Pi}\right)^{2}+\left(k_{\rho P}\right)^{2} *\left(\Delta P_{\Pi \Pi}\right)^{2}} \tag{117}
\end{equation*}
$$

Значение δ_{M} не должно превышать 0.025%.

Е.3.3 Схема поверки 3.

$$
\begin{equation*}
\delta_{M}=1.1 * \sqrt{\delta^{\prime \prime} M^{2}+\delta_{M A}{ }^{2}} \tag{118}
\end{equation*}
$$

где:

$$
\begin{equation*}
\delta_{M}^{\prime \prime}=\delta_{M}^{\prime}+\delta_{\rho}^{\prime} \tag{119}
\end{equation*}
$$

$\delta^{\prime}{ }_{\text {м }}$ определяется по ф-ле (116);
δ^{\prime} р определяется по ф-ле (5);
$\delta_{\text {мA }}$ определяется по ф-ле (117).
Значение δ_{M} не должно превышать 0.025%.
E. 4 Относительную погрешность преобразования входных сигналов ИВК в значение объема нетто продукта $\delta_{V H}$ определяют в зависимости от выбранной схемы поверки.

Е.4.1 Схема поверки 1.

$$
\begin{equation*}
\delta_{V H}=\frac{V_{H}-V_{H P}}{V_{H P}} \cdot 100 \% \text {, } \tag{120}
\end{equation*}
$$

где:
$V_{H P}=V_{H V P} *\left\{1-\frac{\varphi}{100}\right\}$
$V_{H y P}$ определяется по ф-ле (103);
φ - значение объемной доли воды в продукте, $\%$.
Значение $\delta_{V H}$ не должно превышать 0.025%.

E.4.2 Схема поверки 2.

$$
\begin{equation*}
\delta_{V H}=1.1 *{\sqrt{\delta_{V H}^{\prime}}{ }^{2}+\delta_{V H A}^{2}}^{2} \tag{122}
\end{equation*}
$$

где

$$
\begin{equation*}
\delta_{V H}^{\prime}=\frac{V_{H}-V_{H P}}{V_{H P}} \cdot 100 \%, \tag{123}
\end{equation*}
$$

$V_{H P}$ - определяется по ф-ле (121);
$\delta_{V H A}=\sqrt{\delta_{V H V_{A}}^{2}+\delta_{V B A}^{2}}$,
$\delta_{V H \text { V }_{A}}$ определяется по ф-ле (109);

$$
\begin{equation*}
\delta_{\mathrm{VBA}}=\frac{\Delta \varphi_{\mathrm{B} \max }}{100-\varphi_{\mathrm{B} \max }} \cdot 100 ; \tag{125}
\end{equation*}
$$

$\varphi_{\text {вmax }}$ - максимальное значение объемной доли воды в продукте, $\%$.
$\Delta \varphi_{\text {в max }}$ - максимальное значение абсолютной погрешности преобразования входного аналогового сигнала ИВК в значение объемной доли воды, вычисленное по формуле (2), \%.

При отсутствии поточного влагомера $\delta_{V B A}=0$.
Значение $\delta_{V H}$ не должно превышать 0.025%.

Е.4.3 Схема поверки 3.

$\delta_{V H}=1.1 * \sqrt{\delta^{\prime \prime}{ }_{V H}{ }^{2}+\delta_{V H A}{ }^{2}}$
где:
$\delta^{\prime \prime}{ }_{V H}=\delta^{\prime}{ }_{V H}+\delta^{\prime}{ }_{\rho}$
$\delta^{\prime}{ }_{V H}$ определяется по ф-ле (123);
$\delta^{\prime}{ }_{\rho}$ определяется по ф-ле (5); ($\left.\delta^{\prime}{ }_{\rho}=\frac{\rho-\rho_{P}}{\rho_{P}} * 100 \%\right)$
$\delta_{V_{H A}}$ определяется по ϕ-ле (124).
Значение $\delta_{V H}$ не должно превышать 0.025%.

F. Конфигурация OMNI: алгоритм вычисления - Mass Calculation, тип ПР - мас-

 совый.F. 10 тносительную погрешность преобразования входных сигналов ИВК в значение массы продукта определяют по формуле:

$$
\begin{equation*}
\delta_{M}=\frac{M-M_{p}}{M_{p}} * 100 \%, \tag{128}
\end{equation*}
$$

где $\quad M$-значение массы по показаниям ИВК, т;
M_{P} - расчетное значение массы, т.
Если установлены одинаковые коэффициенты преобразования для всех ПР, расчетное значение массы вычисляют по формуле

$$
\begin{equation*}
M_{p}=n * \frac{N}{K * 1000}, \tag{129}
\end{equation*}
$$

Если в память ИВК введены значения базового коэффициента преобразования конкретного типа ПР Кбаз. и метер-фактора МF, то $К=$ Кбаз $^{\text {б }}$ МF.

Если для каждого ПР установлен свой коэффициент преобразования, расчетное значение массы вычисляют по формуле:

$$
\begin{equation*}
M_{p}=N * \sum_{j=1}^{n} \frac{1}{K_{j} * 1000}, \tag{130}
\end{equation*}
$$

где $\quad K_{j}$ - коэффициент преобразования j -го ПР, введенный в память ИВК, имп/Кг, или, при необходимости, $\mathrm{K}_{\mathrm{j}}=\mathrm{K}_{\text {баз. }} / \mathrm{MF}_{\mathrm{j}}$.

Значение δ_{M} не должно превышать 0.001%.
F. 2 ттносительную погрешность преобразования входных сигналов ИВК в значение объема продукта при стандартных условиях $\delta_{V н у}$ определяют по формуле:

$$
\begin{equation*}
\delta_{V H y}=\frac{V_{H y}-V_{H V P}}{V_{H y P}} * 100 \% \tag{131}
\end{equation*}
$$

где:
$V_{H y P}=\frac{M_{P}}{\rho_{H y}} * 1000$
M_{P} определяется по ϕ-ле (129) или (130);
$\rho_{H y}$ задается с клавиатуры.
Значение $\delta_{V H У}$ не должно превышать 0.025%.
F.3Относительную погрешность преобразования входных сигналов ИВК в значение объема продукта δ_{V} определяют в зависимости от выбранной схемы поверки.

F.3.1Схема поверки 1.

$\delta_{V}=\frac{V-V_{p}}{V_{p}} * 100 \%$,
где:

$$
\begin{equation*}
V_{P}=\frac{V_{H y P}}{V C F_{\Pi P} * C P L_{\Pi P}} \tag{134}
\end{equation*}
$$

$V_{H y P}$ определяется по ϕ-ле (132);

$$
\begin{equation*}
V C F_{\Pi P}=\frac{\rho_{\Pi n}}{\rho_{H V}} \tag{135}
\end{equation*}
$$

Частотный сигнал $\rho_{\text {пп }}$ подается от УПВА;
$\rho_{H у}$ задается с клавиатуры.
$C P L_{\pi P}=1$
или $V_{P}=\frac{M_{P}}{\rho_{\text {Пп }}}$
Значение δ_{V} не должно превышать 0.025%.

F.3.2 Схема поверки 2.

$$
\begin{equation*}
\delta_{V}=1.1 * \sqrt{\delta_{V}^{\prime}{ }^{2}+\delta_{V A}{ }^{2}} \tag{138}
\end{equation*}
$$

где

$$
\begin{equation*}
\delta^{\prime}{ }_{v}=\frac{V-V_{p}}{V_{p}} * 100 \%, \tag{139}
\end{equation*}
$$

V_{P} определяется по ф-ле (134);
$\delta_{V A}=\sqrt{\left(k_{\rho t}\right)^{2} *\left(\Delta t_{\Pi \Pi}\right)^{2}+\left(k_{\rho P}\right)^{2} *\left(\Delta P_{\Pi \Pi}\right)^{2}}$
Значение δ_{V} не должно превышать 0.025%.

F.3.3 Схема поверки 3.

$$
\begin{equation*}
\delta_{V}=1.1 * \sqrt{\delta_{V}^{\prime \prime}{ }^{2}+\delta_{V A}{ }^{2}} \tag{141}
\end{equation*}
$$

где:

$$
\begin{equation*}
\delta^{\prime \prime}{ }_{v}=\delta^{\prime}{ }_{v}+\delta_{p}^{\prime} \tag{142}
\end{equation*}
$$

$\delta^{\prime}{ }_{v}$ определяется по ф-ле (139);
δ_{ρ}^{\prime} определяется по ф-ле (5);
$\delta_{V A}$ определяется по ф-ле (140).
Значение δ_{V} не должно превышать 0.025%.
F. 4 Относительную погрешность преобразования входных сигналов ИВК в значение объема нетто продукта $\delta_{V H}$ определяют в зависимости от выбранной схемы поверки.

F.4.1 Схема поверки 1.

$$
\begin{equation*}
\delta_{V H}=\frac{V_{H}-V_{H P}}{V_{H P}} \cdot 100 \%, \tag{143}
\end{equation*}
$$

где:
$V_{H P}=V_{H y P} *\left\{1-\frac{\varphi}{100}\right\}$
$V_{H y P}$ определяется по ф-ле (132);
φ - значение объемной доли воды в продукте, $\%$.
Значение $\delta_{V H}$ не должно превышать 0.025%.

F.4.2 Схема поверки 2.

$$
\begin{equation*}
\delta_{V H}=1.1 *{\sqrt{\delta_{V H}^{\prime}}{ }^{2}+\delta_{V H A}^{2}}^{2} \tag{145}
\end{equation*}
$$

где

$$
\begin{equation*}
\delta^{\prime}{ }_{V H}=\frac{V_{H}-V_{H P}}{V_{H P}} \cdot 100 \%, \tag{146}
\end{equation*}
$$

$V_{H P}$ - определяется по ф-ле (144);

$$
\begin{align*}
& \delta_{V H A}=\delta_{V B A}, \tag{147}\\
& \delta_{V B A}=\frac{\Delta \varphi_{B \max }}{100-\varphi_{B \max }} \cdot 100 ; \tag{148}
\end{align*}
$$

$\varphi_{\text {вmax }}$ - максимальное значение объемной доли воды в продукте, $\%$.
$\Delta \varphi_{\text {в } \max }$ - максимальное значение абсолютной погрешности преобразования входного аналогового сигнала ИВК в значение объемной доли воды, вычисленное по формуле (2), \%.

При отсутствии поточного влагомера $\delta_{V B A}=0$ и $\delta_{V H}=\delta^{\prime}{ }_{V H}$.
Значение $\delta_{V H}$ не должно превышать 0.025%.

F.4.3 Схема поверки 3.

$$
\begin{equation*}
\delta_{V H}=1.1 * \sqrt{\delta_{V H}{ }^{\prime \prime}+\delta_{V H A}{ }^{2}} \tag{149}
\end{equation*}
$$

где:

$$
\begin{equation*}
\delta^{\prime \prime}{ }_{V H}=\delta^{\prime}{ }_{V H}+\delta_{\rho}^{\prime} \tag{150}
\end{equation*}
$$

$\delta^{\prime}{ }_{{ }^{\prime} \text { н }}$ определяется по ф-ле (146);
$\delta^{\prime}{ }_{\rho}$ определяется по ф-ле (5); ($\left.\delta^{\prime}{ }_{\rho}=\frac{\rho-\rho_{P}}{\rho_{P}} * 100 \%\right)$
$\delta_{\text {VHA }}$ определяется по ф-ле (147).
Значение $\delta_{V H}$ не должно превышать 0.025%.
6.3.4 Определение погрешности преобразования входных сигналов ИВК в значения коэффициента преобразования (метер-фактора) δ_{K} при поверке ПР при помощи поверочной установки (ПУ).

Определение δ_{κ} проводят при значениях нижнего и верхнего пределов диапазонов измерений параметров продукта.

Вводят с клавиатуры ИВК минимальные (максимальные) значения температуры и давления в ПР и ПУ. При помощи клавиатуры УПВА устанавливают частоту выходного сигнала $f \leq 15000$ Гц.

Для объемных ПР частоту f вычисляют по формуле:

$$
f=\frac{Q \times K}{3600},
$$

где Q - любое значение расхода из рабочего диапазона расхода ПУ, м ${ }^{3} / \mathrm{ч}$;
K - значение коэффициента преобразования $\Pi \mathrm{P}$, имп/ $/ \mathrm{m}^{3}$, вычисляемое по формуле:

$$
K=\frac{N}{V_{\pi y 0}} \text {; }
$$

$N \geq 10000$ - число импульсов, подаваемое с УПВА, за одно измерение.
$V_{\pi у 0}$ - значение вместимости калиброванного участка ПУ при стандартных условиях, введенное в память ИВК, м ${ }^{3}$.

Для массовых ПР частоту f вычисляют по формуле:

$$
f=\frac{Q \times K \times \rho}{3600},
$$

где Q - любое значение расхода из рабочего диапазона расхода ПУ, м ${ }^{3} / ч$;
ρ - плотность продукта, кг/м ${ }^{3}$;
K - значение коэффициента преобразования ПР, имп/кг, вычисляемое по формуле:

$$
K=\frac{N}{V_{\pi y 0} \times \rho} ;
$$

$N \geq 10000$ - число импульсов, подаваемое с УПВА, за одно измерение.
$V_{\text {пуо }}$ - значение вместимости калиброванного участка ПУ при стандартных условиях, введенное в память ИВК, м ${ }^{3}$.

Для каждой серии входных параметров проводят не менее трех измерений. Результаты измерений заносят в протокол по форме приложения Д.
6.3.4.1 Обработку результатов измерений проводят в зависимости от конфигурации ИВК и выбранной схемы поверки, (пункты G-L).
G. Конфигурация OMNI: алгоритм вычисления - API 11.1 (2004), тип ПУ -ТПУ (компакт-прувер) одно- и двунаправленная, тип ПР - объемный.
G. 1 MF не используется.
G.1.1 Относительную погрешность преобразования входных сигналов ИВК в значение коэффициента преобразования δ_{K} определяют в зависимости от выбранной схемы поверки.
G.1.1.1 Схема поверки 1.
$\delta_{K}=\frac{K-K_{P}}{K_{P}} * 100 \%$
где:
$K_{P}=\frac{N * C_{T L M} * C_{P L M}}{V_{0} * C_{T S P} * C_{P S P} * C_{T L P} * C_{P L P}}$
N - количество импульсов от УПВА, имп;
$C_{T L M}=\exp \left\langle-\alpha_{t r} *\left(t_{\Pi P}-t_{r}\right) *\left\{1+\left[0.8 * \alpha_{t r} *\left(t_{\pi P}-t_{r}\right)\right]\right\}\right\rangle$
$\alpha_{t r}$ - коэффициент объемного расширения при стандартной температуре $t_{r},{ }^{\circ} \mathrm{C}$
$t_{\text {пр }}$ - температура в $П \mathrm{P},{ }^{\circ} \mathrm{C}$
$C_{P L M}=\frac{1}{1-\left(P_{\Pi P}-P_{e}\right) * F_{\Pi P}}$
$P_{\text {п }}$ - давление в ПР, бар (кПа, кгс/см²);
P_{e} - давление насыщенных паров продукта, бар (кПа, кгс/см²);
$F_{\Pi P}$ - коэффициент сжимаемости продукта при температуре в ПР, 1/бар (1/кПа, 1/(кгс/см $\left.{ }^{2}\right)$);
$\alpha_{t r}, F_{\pi p}$ - определяются в соответствии с Приложением А;
V_{0} - объем калиброванного участка ТПУ (компакт-прувера), м ${ }^{3}$;
$C_{T S P}=1+\left(t_{\text {IIV }}-t_{0}\right) * \gamma$
$t_{\text {пу }}$ - температура в ПУ, С;
t_{0} - стандартная температура, С;
γ - кубический коэффициент расширения материала стенок ТПУ, 1/С;
Для компакт-прувера:
$C_{\text {TSP }}=\left[1+\left(t_{\pi y}-t_{0}\right) * \gamma\right] *\left[1+\left(t_{\text {urıap }}-t_{0}\right) * \gamma_{\text {uruap }}\right]$
$t_{\text {uняар }}$ - температура инварового стержня, C ;
$\gamma_{\text {ıнsap }}$ - линейный коэффициент расширения инварового стержня, 1/С.
$C_{P S P}=1+\frac{\left(P_{\Pi y}-P_{0}\right) * D}{E * S}$
$P_{\Pi y}$ - давление в ПУ, бар (кПа, кгс/см ${ }^{2}$);
P_{0} - стандартное давление, бар (кПа, кгс/см²);
D - внутренний диаметр калиброванного участка ТПУ, мм;
E - модуль упругости материала калиброванного участка ТПУ, бар (кПа, кгс/см²);
S - толщина стенок калиброванного участка ТПУ, мм;
$C_{T L P}=\exp \left\langle-\alpha_{t r} *\left(t_{\pi y}-t_{r}\right) *\left\{1+\left[0.8 * \alpha_{t r} *\left(t_{\pi y}-t_{r}\right)\right]\right\}\right\rangle$
$C_{P L P}=\frac{1}{1-\left(P_{\Pi y}-P_{e}\right) * F_{\Pi y}}$
$F_{\pi y}$ - коэффициент сжимаемости продукта при температуре в ПУ, 1/бар (1/кПа, $\left.1 /\left(\mathrm{Krc} / \mathrm{cm}^{2}\right)\right)$.

Значение δ_{κ} не должно превышать 0.025%.

G.1.1.2 Схема поверки 2 и схема поверки 3.

$$
\begin{equation*}
\delta_{K}=1.1 * \sqrt{\delta_{K}^{\prime}{ }^{2}+\delta_{K A}{ }^{2}} \tag{160}
\end{equation*}
$$

где:
$\delta^{\prime}{ }_{K}=\frac{K-K_{P}}{K_{P}} * 100 \%$
K_{P} - определяется по ϕ-ле (152);

$k_{\text {CTSP }}=0.003 \% /{ }^{\circ} C$ - коэффициент влияния $\Delta t_{\eta y}$ на $C_{T S P}$;
$k_{\text {CPSP }}=0.004 \% /$ бар - коэффициент влияния $\Delta P_{I I V}$ на $C_{P S P}$; (для прувера Ду -900 мм)
$k_{\text {CPSP }}=0.003 \% /$ бар \quad (для прувера Ду -600 мм)
$k_{\text {CPSP }}=0.002 \% /$ бар \quad (для прувера Ду -400 мм)
$k_{\text {CPSP }}=0.001 \% /$ бар \quad (для прувера Ду - 200 мм)

Для пруверов Ду меньше 200 мм влиянием $\Delta P_{\pi y}$ на $C_{P S P}$ можно пренебречь, т.е. в формуле (162) $k_{\text {CPSP }}=0$.

Для компакт-прувера:

$$
\begin{equation*}
\delta_{K 1}=\sqrt{k_{t}^{2} *\left[\left(\Delta_{T P}\right)^{2}+\left(\Delta \Delta_{T H}\right)^{2}\right]+\left(k_{t}+k_{C I P P}\right)^{2} *\left(\Delta_{T H}\right)^{2}+(0.00014)^{2} *\left(\Delta_{t H B}\right)^{2}+k_{P}^{2} *\left[\left(\Delta P_{I P}\right)^{2}+\left(\Delta P_{T H}\right)^{2}\right]+\left(k_{P}+k_{C X P}\right)^{2} *\left(\Delta_{T V}\right)^{2}} \tag{163}
\end{equation*}
$$

$0.00014 \% / \mathrm{C}$ - коэффициент влияния $\Delta t_{\text {ИHнB }}$ на $C_{T S P}$; (можно пренебречь)
$k_{C T S P}=0.003 \% /{ }^{\circ} C$ - коэффициент влияния $\Delta t_{\text {IIV }}$ на $C_{\text {TSP }}$; (можно пренебречь)
$k_{\text {CPSP }}=0.001 \% /$ бар - коэффициент влияния $\Delta P_{I J Y}$ на $C_{P S P}$; (можно пренебречь)
Значение $k_{\text {CPSP }}$ - усредненное для всех типоразмеров компакт-пруверов.

Значение δ_{κ} не должно превышать 0.025%.

G. 2 MF используется.

G.2. 1 Относительную погрешность преобразования входных сигналов ИВК в значение метер-фактора $\delta_{M F}$ определяют в зависимости от выбранной схемы поверки.

G.2.1.1 Схема поверки 1.

$$
\begin{equation*}
\delta_{M F}=\frac{M F-M F_{P}}{M F_{P}} * 100 \% \tag{164}
\end{equation*}
$$

где:

$$
\begin{equation*}
M F_{P}=\frac{V_{0} * C_{T S P} * C_{P S P} * C_{T L P} * C_{P L P} * K_{0}}{N * C_{T L M} * C_{P L M}} \tag{165}
\end{equation*}
$$

K_{0}-установленное значение коэффициента преобразования поверяемого ПР, имп/м ${ }^{3}$
Значение $\delta_{\text {MF }}$ не должно превышать 0.025%.

G.2.1.2 Схема поверки 2 и схема поверки 3.

$$
\begin{align*}
& \delta_{M F}=1.1 * \sqrt{\delta^{\prime}{ }_{M F}{ }^{2}+\delta_{K A}{ }^{2}} \tag{166}\\
& \delta_{M F}^{\prime}=\frac{M F-M F_{P}}{M F_{P}} * 100 \% \tag{167}
\end{align*}
$$

где:
$M F_{P}$ - определяется по ф-ле (165);
$\delta_{\text {KA }}$ - определяется по ф-ле (162) или (163).
Значение $\delta_{M F}$ не должно превышать 0.025%.

Н. Конфигурация OMNI: алгоритм вычисления - API 11.1 (1980), тип ПУ -ТПУ

 (компакт-прувер) одно- и двунаправленная, тип ПР - объемный.Отличие от п.G: при расчете коэффициентов берется плотность и температура при н.у., установленные в свойствах Продукта.

Вформулах (162), (163) $\Delta t_{I I I}, \Delta P_{I m}$ равны нулю.

I. Конфигурация OMNI: алгоритм вычисления - Mass Calculation, тип ПУ -ТПУ

 (компакт-прувер) одно- и двунаправленная, тип ПР - объемный.
I. 1 MF не используется.

I.1.1Относительную погрешность преобразования входных сигналов ИВК в значение коэффициента преобразования δ_{K} определяют в зависимости от выбранной схемы поверки.

I.1.1.1 Схема поверки 1.

$$
\begin{equation*}
\delta_{K}=\frac{K-K_{P}}{K_{P}} * 100 \% \tag{168}
\end{equation*}
$$

где:

$$
\begin{align*}
& K_{P}=\frac{N * C_{T L M} * C_{P L M}}{V_{0} * C_{T S P} * C_{P S P} * C_{T L P} * C_{P L P}} \tag{169}\\
& C_{T S P}=1+\left(t_{\text {Iy }}-t_{0}\right) * \gamma \tag{170}
\end{align*}
$$

или
$C_{\text {TSP }}=\left[1+\left(t_{\pi y}-t_{0}\right) * \gamma\right] *\left[1+\left(t_{\text {umgap }}-t_{0}\right) * \gamma_{\text {umsap }}\right]$
$C_{P S P}=1+\frac{\left(P_{\Pi y}-P_{0}\right) * D}{E * S}$
$C_{T L P}=\frac{\rho_{\pi V}}{\rho_{H V}}$
$C_{T L M}=\frac{\rho_{\pi P}}{\rho_{H y}}$
$C_{P L P}=1$
$C_{P L M}=1$
Тогда:

$$
\begin{equation*}
K_{P}=\frac{N * \rho_{\Pi P}}{V_{0} * C_{T S P} * C_{P S P} * \rho_{\Pi y}} \tag{177}
\end{equation*}
$$

Если плотномера ПУ нет, то $\rho_{\pi y}=\rho_{\pi P}$ и

$$
\begin{equation*}
K_{P}=\frac{N}{V_{0} * C_{T S P} * C_{P S P}} \tag{177*}
\end{equation*}
$$

Значение δ_{K} не должно превышать 0.025%.

I.1.1.2 Схема поверки 2.

$\delta_{K}=1.1 * \sqrt{\delta_{K}{ }_{K}{ }^{2}+\delta_{K}{ }^{2}}$
где:
$\delta^{\prime}{ }_{K}=\frac{K-K_{P}}{K_{P}} * 100 \%$
K_{P} - определяется по ф-ле (177)

$$
\delta_{K A}=\sqrt{\begin{array}{l}
k_{\rho t}{ }^{2} *\left(\Delta t_{\Pi \Pi(\Pi P)}\right)^{2}+k_{\rho t}{ }^{2} *\left(\Delta t_{\Pi \Pi(\Pi V)}\right)^{2}+k_{\rho P}{ }^{2} *\left(\Delta P_{\Pi \Pi(\Pi P)}\right)^{2}+k_{\rho P}{ }^{2} *\left(\Delta P_{\Pi \Pi(\Pi y)}\right)^{2}+ \tag{180}\\
+\left(k_{C T S P}\right)^{2} *\left[\left(\Delta t_{\Pi y B x}\right)^{2}+\left(\Delta t_{\Pi y \text { Bbx }}\right)^{2}\right]+\left(k_{C P S P}\right)^{2} *\left[\left(\Delta P_{\Pi y B x}\right)^{2}+\left(\Delta P_{\Pi y B b x}\right)^{2}\right]
\end{array}}
$$

Если плотномера ПУ нет, то:

$$
\begin{equation*}
\delta_{K A}=\sqrt{\left(k_{C T S P}\right)^{2} *\left[\left(\Delta t_{I I V B x}\right)^{2}+\left(\Delta t_{I I y_{B b X}}\right)^{2}\right]+\left(k_{C P S P}\right)^{2} *\left[\left(\Delta P_{\Pi y_{B x}}\right)^{2}+\left(\Delta P_{\Pi y B b x}\right)^{2}\right]} \tag{*}
\end{equation*}
$$

Значение δ_{κ} не должно превышать 0.025%.

I.1.1.3 Схема поверки 3.

$\delta_{K}=1.1 * \sqrt{\delta_{K}^{\prime \prime}{ }^{2}+\delta_{K A}{ }^{2}}$
где:
$\delta_{K}^{\prime \prime}=\delta_{K}^{\prime}+\delta_{\rho \Pi P}^{\prime}+\delta_{\rho \Pi У}^{\prime}$
$\delta^{\prime}{ }_{K}$ - определяется по ф-ле (179);
$\delta_{\rho \text { ппр }}^{\prime} \quad u \quad \delta^{\prime}{ }_{\text {рпу }}$ определяются по ϕ-ле (5);
Если плотномера ПУ нет, то в ϕ-ле (182) $\delta_{\rho п ., ~}^{\prime}=0$
$\delta_{K A}$ - определяется по ϕ-ле (180);
Значение $\delta_{К}$ не должно превышать 0.025%.

I. 2 MF используется.

I.2.1Относительную погрешность преобразования входных сигналов ИВК в значение метер-фактора $\delta_{M F}$ определяют в зависимости от выбранной схемы поверки.

I.2.1.1 Схема поверки 1.

$$
\begin{equation*}
\delta_{M F}=\frac{M F-M F_{P}}{M F_{P}} * 100 \% \tag{183}
\end{equation*}
$$

где:

$$
\begin{equation*}
M F_{P}=\frac{V_{0} * C_{T S P} * C_{P S P} * C_{T L P} * C_{P L P}}{N * C_{T L M} * C_{P L M}} \tag{184}
\end{equation*}
$$

или:

$$
\begin{equation*}
M F_{P}=\frac{V_{0} * C_{T S P} * C_{P S P} * \rho_{\pi y}}{N * \rho_{\pi P}} * K_{0} \tag{185}
\end{equation*}
$$

Если плотномера ПУ нет:

$$
\begin{equation*}
M F_{P}=\frac{V_{0} * C_{T S P} * C_{P S P}}{N} * K_{0} \tag{186}
\end{equation*}
$$

Значение $\delta_{\text {MF }}$ не должно превышать 0.025%.

I.2.1.2 Схема поверки 2.

$$
\begin{equation*}
\delta_{M F}=1.1 * \sqrt{\delta^{\prime}{ }_{M F}{ }^{2}+\delta_{K A}{ }^{2}} \tag{187}
\end{equation*}
$$

где:

$$
\begin{equation*}
\delta_{M F}^{\prime}=\frac{M F-M F_{P}}{M F_{P}} * 100 \% \tag{188}
\end{equation*}
$$

$M F_{P}$ - определяется по ф-ле (185);
$\delta_{K A}$ - определяется по ф-ле (180) или (180*).
Значение $\delta_{M F}$ не должно превышать 0.025%.

I.2.1.3 Схема поверки 3.

$\delta_{M F}=1.1 * \sqrt{\delta^{/ /}{ }_{M F}{ }^{2}+\delta_{K A}{ }^{2}}$
где:
$\delta_{M F}^{\prime \prime}=\delta_{M F}^{\prime}+\delta_{\rho \Pi P}^{\prime}+\delta_{\rho \Pi V}^{\prime}$
$\delta_{M F}$ - определяется по ф-ле (188);
$\delta_{\rho П р}^{\prime} \quad u \quad \delta^{\prime}{ }_{\rho п у}$ определяются по ф-ле (5);
Если плотномера ПУ нет, то в ф-ле (190) $\delta_{\rho п у}^{\prime}=0$
$\delta_{K A}$ - определяется по ф-ле (180) или (180*).
Значение $\delta_{M F}$ не должно превышать 0.025%.

Ј. Конфигурация OMNI: алгоритм вычисления - API 11.1 (2004), тип ПУ -ТПУ (компакт-прувер) одно- и двунаправленная, тип ПР - массовый.

Ј. 1 МF не используется.

J.1.1Относительную погрешность преобразования входных сигналов ИВК в значение коэффициента преобразования δ_{K} определяют в зависимости от выбранной схемы поверки.

J.1.1.1 Схема поверки 1.

$\delta_{K}=\frac{K-K_{P}}{K_{P}} * 100 \%$
где:
$K_{P}=\frac{N}{V_{0} * C_{T S P} * C_{P S P} * \rho_{\Pi y}}$
$C_{T S P}=1+\left(t_{\Pi Y}-t_{0}\right) * \gamma$
$t_{\pi у}$ - температура в ПУ, С;
t_{0} - стандартная температура, C;
γ - кубический коэффициент расширения материала стенок ТПУ, 1/С;
Для компакт-прувера:
$C_{T S P}=\left[1+\left(t_{\pi y}-t_{0}\right) * \gamma\right] *\left[1+\left(t_{\text {umвар }}-t_{0}\right) * \gamma_{\text {uивар }}\right]$
$t_{\text {инвар }}$ - температура инварового стержня, С;

где:

$$
\begin{equation*}
\delta_{M F}^{\prime}=\frac{M F-M F_{P}}{M F_{P}} * 100 \% \tag{188}
\end{equation*}
$$

$M F_{P}$ - определяется по ф-ле (185);
$\delta_{K A}$ - определяется по ф-ле (180) или (180*).
Значение $\delta_{M F}$ не должно превышать 0.025%.

I.2.1.3 Схема поверки 3.

$$
\begin{equation*}
\delta_{M F}=1.1 * \sqrt{\delta_{M F}{ }^{\prime \prime}+\delta_{K A}{ }^{2}} \tag{189}
\end{equation*}
$$

где:
$\delta_{M F}^{\prime \prime}=\delta_{M F}^{\prime}+\delta_{\rho \Pi P}^{\prime}+\delta_{\rho \Pi V}^{\prime}$
$\delta_{M F}{ }_{M F}$ - определяется по ф-ле (188);
$\delta_{\rho п Р}^{\prime} \quad u \quad \delta_{\rho п у}^{\prime}$ определяются по ф-ле (5);
Если плотномера ПУ нет, то в ф-ле (190) $\delta_{\rho \pi у}^{\prime}=0$
$\delta_{K A}$ - определяется по ф-ле (180) или (180*).
Значение $\delta_{M F}$ не должно превышать 0.025%.

Ј. Конфигурация OMNI: алгоритм вычисления - API 11.1 (2004), тип ПУ -ТПУ (компакт-прувер) одно- и двунаправленная, тип ПР - массовый.

Ј. 1 МF не используется.
J.1.1Относительную погрешность преобразования входных сигналов ИВК в значение коэффициента преобразования δ_{K} определяют в зависимости от выбранной схемы поверки.

J.1.1.1 Схема поверки 1.

$\delta_{K}=\frac{K-K_{P}}{K_{P}} * 100 \%$
где:
$K_{P}=\frac{N}{V_{0} * C_{T S P} * C_{P S P} * \rho_{\Pi y}}$
$C_{T S P}=1+\left(t_{\text {Пу }}-t_{0}\right) * \gamma$
$t_{\text {Пу }}$ - температура в ПУ, С;
t_{0} - стандартная температура, C;
γ - кубический коэффициент расширения материала стенок ТПУ, 1/С;
Для компакт-прувера:
$C_{\text {TSP }}=\left[1+\left(t_{\text {пу }}-t_{0}\right) * \gamma\right] *\left[1+\left(t_{\text {ıивар }}-t_{0}\right) * \gamma_{\text {ımвар }}\right]$
$t_{\text {uняар }}$ - температура инварового стержня, С;

J.1.1.3 Схема поверки 3.

$$
\begin{equation*}
\delta_{K}=1.1 *{\sqrt{\delta_{K}^{\prime}}{ }_{K}^{2}+\delta_{K A}{ }^{2}}_{\text {and }} \tag{204}
\end{equation*}
$$

где:

$$
\begin{equation*}
\delta_{K}^{\prime \prime}=\delta_{K}^{\prime}+\delta_{\rho}^{\prime} \tag{205}
\end{equation*}
$$

$\delta^{\prime}{ }_{\kappa}$ - определяется по ф-ле (200);
δ_{ρ}^{\prime} - определяется по ф-ле (5) для ПП ПУ, если он есть; если ПП ПУ нет - для ПП ПР.
$\delta_{\text {K4 }}$ - определяется по ф-ле (202) или (203).
Значение δ_{K} не должно превышать 0.025%.

J. 2 MF используется.

J.2.1Относительную погрешность преобразования входных сигналов ИВК в значение метер-фактора $\delta_{M F}$ определяют в зависимости от выбранной схемы поверки.
J.2.1.1 Схема поверки 1.

$$
\begin{equation*}
\delta_{M F}=\frac{M F-M F_{P}}{M F_{P}} * 100 \% \tag{206}
\end{equation*}
$$

где:

$$
\begin{equation*}
M F_{P}=\frac{V_{0} * C_{T S P} * C_{P S P} * \rho_{\pi V} * K_{0}}{N} \tag{207}
\end{equation*}
$$

$C_{T S P}, C_{P S P}$ - определяются по ф-лам (193 или 194), (195);
$\rho_{\text {пу }}$ - плотность по периоду частотного сигнала (задается от УПВА) и температуре и давлении в плотномере ПУ;

Если нет плотномера ТПУ, $\rho_{\pi у}$ определяется по ф-ле (198).
Значение $\delta_{\text {MF }}$ не должно превышать 0.025%.

J.2.1.2 Схема поверки 2.

$$
\begin{equation*}
\delta_{M F}=1.1 * \sqrt{\delta_{M F}^{\prime}{ }^{2}+\delta_{K A}{ }^{2}} \tag{208}
\end{equation*}
$$

где:
$\delta^{\prime}{ }_{M F}=\frac{M F-M F_{P}}{M F_{P}} * 100 \%$
$M F_{P}$ - определяется по ϕ-ле (207);
$\delta_{K A}$ - определяется по ф-ле (202) или (203).
Значение $\delta_{\text {MF }}$ не должно превышать 0.025%.

J.2.1.3 Схема поверки 3.

$$
\begin{equation*}
\delta_{M F}=1.1 * \sqrt{\delta^{\prime \prime}{ }_{M F}{ }^{2}+\delta_{K A}{ }^{2}} \tag{210}
\end{equation*}
$$

где:
$\delta_{M F}^{\prime \prime}=\delta_{M F}^{\prime}+\delta_{\rho}^{\prime}$
$\delta_{\text {MF }}^{\prime}$ определяется по ф-ле (209);
δ_{ρ}^{\prime} - определяется по ф-ле (5) для ПП ПУ, если он есть; если ПП ПУ нет - для ПП ПР.
$\delta_{\text {KA }}$ - определяется по ф-ле (202) или (203).
Значение $\delta_{M F}$ не должно превышать 0.025%.

K. Конфигурация OMNI: алгоритм вычисления - API 11.1 (1980), тип ПУ -ТПУ (компакт-прувер) одно- и двунаправленная, тип ПР - массовый.
 K. 1 MF не используется.

K.1.1Относительную погрешность преобразования входных сигналов ИВК в значение коэффициента преобразования δ_{K} определяют в зависимости от выбранной схемы поверки.
K.1.1.1 Схема поверки 1.
$\delta_{K}=\frac{K-K_{P}}{K_{P}} * 100 \%$
где:
$K_{P}=\frac{N}{V_{0} * C_{T S P} * C_{P S P} * \rho_{\text {III(TV) }}}$
$C_{T S P}, C_{P S P}$ - определяются по ф-лам (193 или 194), (195);
$\rho_{\text {пп(пу) }}$ - плотность, рассчитанная по периоду частотного сигнала при температуре и давлении в плотномере ПУ.

Если нет плотномера ПУ, то:
$\rho_{\pi I I(\pi V)}=\rho_{\text {חIn(IT) })} * \frac{C_{T L P} * C_{P L P}}{C_{T L M} * C_{P L M}}$
В ф-ле (216) коэффициенты $C_{T L P}, C_{P L P}, C_{T L M}, C_{P L M}$ рассчитываются при значении плотности при н.у., указанном в свойствах Продукта.

Значение $\delta_{К}$ не должно превышать 0.025%.

K.1.1.2 Схема поверки 2.

$\delta_{K}=1.1 * \sqrt{\delta^{\prime}{ }_{K}{ }^{2}+\delta_{K A}{ }^{2}}$
где:
$\delta^{\prime}{ }_{K}=\frac{K-K_{P}}{K_{P}} * 100 \%$
K_{P} - определяется по ф-ле (213);
$\delta_{K A}=\sqrt{k_{\rho A}{ }^{2} *\left(\Delta_{\pi ा \pi(\pi y)}\right)^{2}+k_{\rho P}{ }^{2} *\left(\Delta P_{T I T(\pi y)}\right)^{2}}$
Если нет плотномера ПУ:
 (220)

Значение $\delta_{\text {K }}$ не должно превышать 0.025%.

K.1.1.3 Схема поверки 3.

$$
\begin{equation*}
\delta_{K}=1.1 * \sqrt{\delta^{\prime \prime}{ }_{K}{ }^{2}+\delta_{K A}{ }^{2}} \tag{221}
\end{equation*}
$$

$$
\begin{equation*}
\delta^{\prime \prime}{ }_{K}=\delta_{K}^{\prime}+\delta^{\prime}{ }_{P} \tag{222}
\end{equation*}
$$

$\delta^{\prime}{ }_{K}$ определяется по ф-ле (218);
δ_{ρ}^{\prime} - определяется по ф-ле (5) для ПП ПУ, если он есть; если ПП ПУ нет - для ПП ПР.
$\delta_{K A}$ - определяется по ф-ле (219) или (220).
Значение $\delta_{\text {K }}$ не должно превышать 0.025%.

K. 2 MF используется.

K.2.1Относительную погрешность преобразования входных сигналов ИВК в значение метер-фактора $\delta_{\text {MF }}$ определяют в зависимости от выбранной схемы поверки.

К.2.1.1 Схема поверки 1.

$$
\begin{equation*}
\delta_{M F}=\frac{M F-M F_{P}}{M F_{P}} * 100 \% \tag{223}
\end{equation*}
$$

где:
$M F_{P}=\frac{V_{0} * C_{T S P} * C_{P S P} * \rho_{\text {TV }}}{N} * K_{0}$
$C_{T S P}, C_{P S P}$ - определяются по ф-лам (193 или 194), (195);
$\rho_{n y}$ - плотность по периоду частотного сигнала (задается от УПВА) и температуре и давлении в плотномере ПУ;

Если нет плотномера ТПУ, $\rho_{\text {Пу }}$ определяется по ф-ле (216).
Значение $\delta_{\text {MF }}$ не должно превышать 0.025%.

К.2.1.2 Схема поверки 2.

$$
\begin{equation*}
\delta_{M F}=1.1 * \sqrt{\delta_{M F}^{\prime}{ }^{2}+\delta_{K A}{ }^{2}} \tag{225}
\end{equation*}
$$

где:

$$
\begin{equation*}
\delta_{M F}^{\prime}=\frac{M F-M F_{P}}{M F_{P}} * 100 \% \tag{226}
\end{equation*}
$$

$M F_{P}$ - определяется по ф-ле (224);
$\delta_{K A}$ - определяется по ф-ле (219) или (220).
Значение $\delta_{\text {MF }}$ не должно превышать 0.025%.

К.2.1.3 Схема поверки 3.

$$
\begin{equation*}
\delta_{M F}=1.1 * \sqrt{\delta_{M F}{ }^{2}+\delta_{K A}{ }^{2}} \tag{227}
\end{equation*}
$$

где:
$\delta_{M F}^{\prime}=\delta_{M F}^{\prime}+\delta_{\rho}^{\prime}$
$\delta^{\prime}{ }_{M F}$ определяется по ф-ле (226);
$\delta^{\prime}{ }_{\rho}$ - определяется по ф-ле (5) для ПП ПУ, если он есть; если ПП ПУ нет - для ПП
ПР.
$\delta_{K A}$ - определяется по $ф$-ле (219) или (220).
Значение $\delta_{M F}$ не должно превышать 0.025%.
L. Конфигурация OMNI: алгоритм вычисления - Mass Calculation, тип ПУ -ТПУ (компакт-прувер) одно- и двунаправленная, тип ПР - массовый.

L. 1 MF не используется.

L.1.1Относительную погрешность преобразования входных сигналов ИВК в значение коэффициента преобразования δ_{K} определяют в зависимости от выбранной схемы поверки.

L.1.1.1 Схема поверки 1.

$\delta_{K}=\frac{K-K_{P}}{K_{P}} * 100 \%$
где:
$K_{P}=\frac{N}{V_{0} * C_{T S P} * C_{P S P} * \rho_{\Pi \Pi \pi(\Pi y)}}$
$C_{T S P}, C_{P S P}$ - определяются по ф-лам (193 или 194), (195);
$\rho_{\text {пп(пу) }}$ - плотность, рассчитанная по периоду частотного сигнала при температуре и давлении в плотномере ПУ.

Если нет плотномера ПУ, то:
$\rho_{\text {IIII(IIY) }}=\rho_{\text {IIII(IIP) }}$
Значение δ_{K} не должно превышать 0.025%.

L.1.1.2 Схема поверки 2.

$\delta_{K}=1.1 * \sqrt{\delta^{\prime}{ }_{K}{ }^{2}+\delta_{K A}{ }^{2}}$
где:
$\delta^{\prime}{ }_{K}=\frac{K-K_{P}}{K_{P}} * 100 \%$
K_{P} - определяется по ф-ле (230);
$\delta_{K A}=\sqrt{k_{\rho t}{ }^{2} *\left(\Delta t_{\Pi I I(\Pi y)}\right)^{2}+k_{\rho P}{ }^{2} *\left(\Delta P_{\Pi I I(\Pi y)}\right)^{2}}$
Если нет плотномера ПУ:

$$
\begin{equation*}
\delta_{K A}=\sqrt{{k_{\rho t}}^{2} *\left(\Delta t_{\Pi \Pi(\Pi I P)}\right)^{2}+{k_{\rho P}}^{2} *\left(\Delta P_{\Pi \Pi \Lambda(\Pi P)}\right)^{2}} \tag{234}
\end{equation*}
$$

Значение δ_{K} не должно превышать 0.025%.

L.1.1.3 Схема поверки 3.

$$
\begin{equation*}
\delta_{K}=1.1 * \sqrt{\delta_{K}^{\prime \prime}{ }^{2}+\delta_{K A}{ }^{2}} \tag{235}
\end{equation*}
$$

где:
$\delta^{\prime \prime}{ }_{K}=\delta^{\prime}{ }_{K}+\delta_{\rho}^{\prime}$
$\delta^{\prime}{ }_{K}$ определяется по ф-ле (232);
δ_{ρ}^{\prime} - определяется по ф-ле (5) для ПП ПУ, если он есть; если ПП ПУ нет - для ПП ПР.
$\delta_{K A}$ - определяется по ф-ле (233) или (234).
Значение δ_{K} не должно превышать 0.025%.

L. 2 MF используется.

L.2.1Относительную погрешность преобразования входных сигналов ИВК в значение метер-фактора $\delta_{M F}$ определяют в зависимости от выбранной схемы поверки.

L.2.1.1 Схема поверки 1.

$$
\begin{equation*}
\delta_{M F}=\frac{M F-M F_{P}}{M F_{P}} * 100 \% \tag{237}
\end{equation*}
$$

где:
$M F_{P}=\frac{V_{0} * C_{T S P} * C_{P S P} * \rho_{\Pi \Pi(\Pi y)}}{N} * K_{0}$
$C_{T S P}, C_{P S P}$ - определяются по ф-лам (193 или 194), (195);
$\rho_{\text {пп(пу) }}$ - плотность, рассчитанная по периоду частотного сигнала при температуре и давлении в плотномере ПУ.

Если нет плотномера ТПУ, $\rho_{\text {Пп(пу) }}=\rho_{\Pi п(п Р)}$.
Значение $\delta_{M F}$ не должно превышать 0.025%.

L.2.1.2 Схема поверки 2.

$$
\begin{equation*}
\delta_{M F}=1.1 * \sqrt{\delta_{M F}^{\prime}+\delta_{K A}^{2}} \tag{239}
\end{equation*}
$$

где:
$\delta^{\prime}{ }_{M F}=\frac{M F-M F_{P}}{M F_{P}} * 100 \%$
$M F_{P}$ - определяется по ф-ле (238);
$\delta_{K A}$ - определяется по ф-ле (233) или (234).
Значение $\delta_{M F}$ не должно превышать 0.025%.

L.2.1.3 Схема поверки 3.

$$
\begin{equation*}
\delta_{M F}=1.1 * \sqrt{\delta^{\prime \prime}{ }_{M F}{ }^{2}+\delta_{K A}{ }^{2}} \tag{241}
\end{equation*}
$$

где:
$\delta^{\prime \prime}{ }_{M F}=\delta^{\prime}{ }_{M F}+\delta^{\prime}{ }_{\rho}$
$\delta^{\prime}{ }_{M F}$ определяется по ф-ле (240);
δ_{ρ}^{\prime} - определяется по ф-ле (5) для ПП ПУ, если он есть; если ПП ПУ нет - для ПП ПР.
$\delta_{K 4}$ - определяется по ф-ле (233) или (234).
Значение $\delta_{\text {MF }}$ не должно превышать 0.025%.
6.3.5 Определение погрешности преобразования входных сигналов ИВК в значения метер-фактора $\delta_{M F}$ при поверке (сличении) рабочего ПР при помощи образцового (контрольного) ПР.

Определение $\delta_{M F}$ проводят при значениях нижнего и верхнего пределов диапазонов измерений параметров продукта.

Вводят с клавиатуры ИВК значения коэффициентов преобразования и метер-факторов рабочего ПР и образцового (контрольного) ПР, значения коэффициента преобразования и метер-фактора образцового (контрольного) ПР должны быть фиксированными. Вводят с клавиатуры ИВК минимальные (максимальные) значения температуры и давления в рабочем ПР и образцовом (контрольном) ПР. При помощи клавиатуры УПВА устанавливают частоту сигнала рабочего ПР $f_{\pi P} \leq 15000$ Гц и образцового (контрольного) $f_{0} \leq 15000$ Гц.

Для объемных ПР частоту $f_{\text {ПР(0) }}$ вычисляют по формуле:

$$
f_{\Pi P(0)}=\frac{Q_{V} \times K_{\Pi P(0)}}{3600},
$$

где Q_{V} - значение объемного расхода из рабочего диапазона расхода $\Pi \mathrm{P}, \mathrm{m}^{3} /$ ч;
$K_{\Pi P(0)}$ - значение коэффициента преобразования рабочего (образцового) ПР, имп/ m^{3}, установленное в ИВК.

Для массовых ПР частоту $f_{\text {Пр(0) }}$ вычисляют по формуле:

$$
f_{\Pi P(0)}=\frac{Q_{M} \times K_{n P(0)} \times 1000}{3600}
$$

где $\quad Q_{M}$ - значение массового расхода из рабочего диапазона расхода ПР, т/ч;
K - значение коэффициента преобразования ПР, имп/кг, установленное в ИВК.
Если рабочий ПР и образцовый (контрольный) ПР - разного типа, должно соблюдаться равенство:

$$
Q_{M} \cong \frac{Q_{V} \times \rho}{1000}
$$

где ρ - плотность продукта, кг/м ${ }^{3}$.
Допускается подавать частотный сигнал на входы частотных каналов рабочего ПР и образцового ПР с одного частотного выхода УПВА. В этом случае $f_{\Pi Р}=f_{0}$.

Для каждой серии входных параметров проводят не менее трех измерений. Результаты измерений заносят в протокол по форме приложения Д.
6.3.5.1Обработку результатов измерений проводят в зависимости от конфигурации ИВК и выбранной схемы поверки, (пункты М-О).
М. Конфигурация OMNI: тип рабочего ПР - объемный, тип образцового ПР объемный.

М. 1 Алгоритм вычисления - API 11.1 (2004)

Относительную погрешность преобразования входных сигналов ИВК в значение ме-тер-фактора $\delta_{M F}$ определяют в зависимости от выбранной схемы поверки.

M.1.1 Схема поверки 1.

$\delta_{M F}=\frac{M F-M F_{P}}{M F_{P}} * 100 \%$
где:
$M F$ - значение метер-фактора по показаниям ИВК.
Расчетное значение метер-фактора $M F_{p}$:
$M F_{P}=\frac{K_{\Pi P}}{K_{P}}$
$K_{\Pi P}$ - установленное значение коэффициента преобразования поверяемого ПР,имп/ ${ }^{3}$;
K_{P} - расчетное значение коэффициента преобразования поверяемого ПР, имп/м ${ }^{3}$;
$K_{P}=\frac{f_{\text {IP }} * C_{T L M} * C_{P L M}}{f_{0} * C_{T L P} * C_{P L P}} * \frac{K_{0}}{M F_{0}}$
$f_{\text {пр }}, f_{0}$ - установленные частоты от УПВА, Гц;
K_{0} - установленное значение коэффициента преобразования образцового ПР, имп/м ${ }^{3}$;
$M F_{0}$ - установленное значение метер-фактора образцового ПР;
$M F_{P}=\frac{f_{0} * C_{T L P} * C_{P L P}}{f_{\Pi I P} * C_{T L M} * C_{P L M}} * \frac{K_{\Pi P}}{K_{0}} * M F_{0}$
При расчете $C_{T L M}, C_{P L M}, C_{T L P}, C_{P L P}$ используется значение плотности по ПП рабочего ПР.
Значение $\delta_{M F}$ не должно превышать 0.025%.

M.1.2 Схема поверки 2 и схема поверки 3.

$\delta_{M F}=1.1 * \sqrt{\delta^{\prime}{ }_{M F}{ }^{2}+\delta_{K ~}{ }^{2}}{ }^{2}$
где:
$\delta_{M F}^{\prime}=\frac{M F-M F_{P}}{M F_{P}} * 100 \%$
$M F_{P}$ - определяется по ф-ле (246);

$$
\begin{equation*}
\delta_{K A}=\sqrt{k_{t}^{2} *\left[\left(\Delta t_{I P}\right)^{2}+\left(\Delta \Delta_{0}\right)^{2}\right]+k_{P}^{2} *\left[\left(\Delta P_{I P}\right)^{2}+\left(\Delta P_{0}\right)^{2}\right]} \tag{249}
\end{equation*}
$$

Значение $\delta_{M F}$ не должно превышать 0.025%.

М. 2 Алгоритм вычисления - API 11.1 (1980)

Относительную погрешность преобразования входных сигналов ИВК в значение ме-тер-фактора $\delta_{M F}$ определяют в зависимости от выбранной схемы поверки.

М.2.1 Схема поверки 1.

$\delta_{M F}$ - определяется по ф-ле (243).
При расчете $C_{T L M}, C_{P L M}, C_{T L P}, C_{P L P}$ используется значение плотности продукта при н.у., указанное в свойствах продукта.

Значение $\delta_{M F}$ не должно превышать 0.025%.

М.2.2 Схема поверки 2 и схема поверки 3.

$\delta_{M F}$ - определяется по ф-ле (247).
При расчете $C_{T L M}, C_{P L M}, C_{T L P}, C_{P L P}$ используется значение плотности продукта при н.у., указанное в свойствах продукта.

Значение $\delta_{M F}$ не должно превышать 0.025%.

М. 3 Алгоритм вычисления - Mass Calculation

Относительную погрешность преобразования входных сигналов ИВК в значение ме-тер-фактора $\delta_{M F}$ определяют в зависимости от выбранной схемы поверки.

M.3.1 Схема поверки 1.

$$
\begin{equation*}
\delta_{M F}=\frac{M F-M F_{P}}{M F_{P}} * 100 \% \tag{250}
\end{equation*}
$$

где:

$$
\begin{equation*}
M F_{P}=\frac{f_{0} * \rho_{\Pi \Pi(\pi y)}}{f_{\Pi P} * \rho_{\Pi \Pi(\pi P)}} * \frac{K_{\Pi P}}{K_{0}} * M F_{0} \tag{251}
\end{equation*}
$$

Если нет плотномера ПУ, то $\rho_{\text {пп(пу) }}=\rho_{\text {пп(пр) }}$
Значение $\delta_{M F}$ не должно превышать 0.025%.

М.3.2 Схема поверки 2.

$$
\begin{equation*}
\delta_{M F}=1.1 * \sqrt{\delta_{M F}{ }^{2}+\delta_{K A}{ }^{2}} \tag{252}
\end{equation*}
$$

где:

$$
\begin{equation*}
\delta^{\prime}{ }_{M F}=\frac{M F-M F_{P}}{M F_{P}} * 100 \% \tag{253}
\end{equation*}
$$

$M F_{P}$ - определяется по ф-ле (251);

Значение $\delta_{M F}$ не должно превышать 0.025%.

М.3.3 Схема поверки 3.

$$
\begin{equation*}
\delta_{M F}=1.1 * \sqrt{\delta_{M F}^{\prime \prime}+\delta_{K A}^{2}} \tag{255}
\end{equation*}
$$

где:
$\delta_{M F}^{\prime \prime}=\delta_{M F}^{\prime}+\delta_{\rho(\Pi P)}^{\prime}+\delta_{\rho(\Pi Y)}^{\prime}$
$\delta^{\prime}{ }_{M F}$ определяется по ф-ле (253);
$\delta_{\rho(\Pi P)}^{\prime}-$ определяется по ф-ле (5) для ПП ПР;
$\delta_{p(\Pi У)}^{\prime}$ - определяется по ф-ле (5) для ПП ПУ;
$\delta_{K A}$ - определяется по ф-ле (254).
Значение $\delta_{\text {MF }}$ не должно превышать 0.025%.

N. Конфигурация OMNI: тип рабочего ПР - массовый, тип образцового ПР -

 объемный.N. 1 Алгоритм вычисления - API 11.1 (2004)

Относительную погрешность преобразования входных сигналов ИВК в значение ме-тер-фактора $\delta_{M F}$ определяют в зависимости от выбранной схемы поверки.

N.1.1 Схема поверки 1.

$\delta_{M F}=\frac{M F-M F_{P}}{M F_{P}} * 100 \%$
$M F_{P}=\frac{K_{\Pi P}}{K_{P}}$
$K_{\text {пр }}$ - установленное значение коэффициента преобразования поверяемого ПР,имп/кг.
K_{P} - расчетное значение коэффициента преобразования поверяемого ПР,имп/кг:
$K_{P}=\frac{f_{\Pi P}}{f_{0} * \rho_{\Pi I P}} * \frac{K_{0}}{M F_{0}}$
$M F_{P}=\frac{f_{0} * \rho_{\Pi P 0}}{f_{\Pi P}} * \frac{K_{\Pi P}}{K_{0}} * M F_{0}$
$K_{0}\left[\right.$ имп $\left./ \mathrm{M}^{3}\right], M F_{0}[-]-$ установленные значения для образцового ПР;
$\rho_{\text {Про }}$ - плотность жидкости по ПП ПУ, приведенная к условиям образцового ПР,кг/м ${ }^{3}$
$\rho_{\Pi P 0}=\rho_{\Pi \Pi(\Pi y)} * \frac{C_{T L \Pi P 0} * C_{P L \Pi P 0}}{C_{T L \Pi \Pi(\Pi y)} * C_{P L ~ \pi n(\pi y)}}$
Значение $\delta_{\text {MF }}$ не должно превышать 0.025%.

N.1.2 Схема поверки 2.

$$
\begin{equation*}
\delta_{M F}=1.1 *{\sqrt{\delta_{M F}^{\prime}}{ }^{2}+\delta_{K A}^{2}}^{2} \tag{262}
\end{equation*}
$$

где:

$$
\begin{equation*}
\delta^{\prime}{ }_{M F}=\frac{M F-M F_{P}}{M F_{P}} * 100 \% \tag{263}
\end{equation*}
$$

$M F_{P}$ - определяется по ф-ле (260);

Значение $\delta_{M F}$ не должно превышать 0.025%.

N.1.3 Схема поверки 3.

$$
\begin{equation*}
\delta_{M F}=1.1 * \sqrt{\delta_{M F}^{\prime \prime}+\delta_{K A}^{2}} \tag{265}
\end{equation*}
$$

где:
$\delta^{\prime \prime}{ }_{M F}=\delta^{\prime}{ }_{M F}+\delta^{\prime}{ }_{\rho(\pi V)}$
$\delta_{\text {MF }}^{\prime}$ определяется по ф-ле (263);
$\delta^{\prime}{ }_{\rho(\text { пу })}$ - определяется по ф-ле (5) для ПП ПУ;
$\delta_{\text {K }}$ - определяется по $ф$-ле (264).
Значение $\delta_{M F}$ не должно превышать 0.025%.

N. 2 Алгоритм вычисления - API 11.1 (1980)

Относительную погрешность преобразования входных сигналов ИВК в значение ме-тер-фактора $\delta_{\text {MF }}$ определяют в зависимости от выбранной схемы поверки.

N.2.1 Схема поверки 1.

$$
\begin{equation*}
\delta_{M F}=\frac{M F-M F_{P}}{M F_{P}} * 100 \% \tag{267}
\end{equation*}
$$

где:
$M F_{P}=\frac{f_{0} * \rho_{\Pi P 0}}{f_{\Pi P}} * \frac{K_{\Pi P}}{K_{0}} * M F_{0}$
$K_{0}\left[\right.$ имп $\left./ \mathrm{M}^{3}\right], M F_{0}[-]$ - установленные значения для образцового ПР;
$\rho_{\text {про }}$ - плотность жидкости, приведенная к условиям образцового ПР от плотности при нормальных условиях, указанной в свойствах продукта [кг/м ${ }^{3}$]:
$\rho_{\Pi P 0}=\rho_{\text {ri.,. }} * C_{T L}$ пP0 $* C_{P L}$ ПP0
Значение $\delta_{\text {MF }}$ не должно превышать 0.025%.

N.2.2 Схема поверки 2 и схема поверки 3..

$\delta_{M F}=1.1 * \sqrt{\delta_{M F}^{\prime}{ }^{2}+\delta_{K A}{ }^{2}}$
где:
$\delta^{\prime}{ }_{M F}=\frac{M F-M F_{P}}{M F_{P}} * 100 \%$
$M F_{P}$ - определяется по ф-ле (268);
$\delta_{K A}=\sqrt{k_{t}^{2} *\left(\Delta t_{\Pi T P 0}\right)^{2}+k_{p}^{2} *\left(\Delta P_{\Pi T P 0}\right)^{2}}$
Значение $\delta_{M F}$ не должно превышать 0.025%.

N. 3 Алгоритм вычисления - Mass Calculation

Относительную погрешность преобразования входных сигналов ИВК в значение ме-тер-фактора $\delta_{M F}$ определяют в зависимости от выбранной схемы поверки.

N.3.1 Схема поверки 1.

$$
\begin{equation*}
\delta_{M F}=\frac{M F-M F_{P}}{M F_{P}} * 100 \% \tag{273}
\end{equation*}
$$

где:
$M F_{P}=\frac{f_{0} * \rho_{\Pi П(\Pi Y)}}{f_{\Pi P}} * \frac{K_{\Pi P}}{K_{0}} * M F_{0}$
$K_{0}\left[\right.$ имп $\left./ \mathrm{m}^{3}\right], M F_{0}[-]$ - установленные значения для образцового ПР;
$\rho_{\text {пп(пу) }}$ - плотность жидкости по ПП ПУ [кг/м $\left.{ }^{3}\right]$.
Значение $\delta_{M F}$ не должно превышать 0.025%.

N.3.2 Схема поверки 2.

$$
\begin{equation*}
\delta_{M F}=1.1 *{\sqrt{\delta_{M F}{ }^{2}+\delta_{K A}}{ }^{2}}_{\text {a }} \tag{275}
\end{equation*}
$$

где:
$\delta^{\prime}{ }_{M F}=\frac{M F-M F_{P}}{M F_{P}} * 100 \%$
$M F_{P}$ - определяется по ф-ле (274);

$$
\begin{equation*}
\delta_{K A}=\sqrt{\left(k_{\rho A}\right)^{2} *\left(\Delta_{\Pi \Pi \pi(\Pi V)}\right)^{2}+\left(k_{\rho P}\right)^{2} *\left(\Delta P_{\Pi \Pi(\Pi V)}\right)^{2}} \tag{277}
\end{equation*}
$$

Значение $\delta_{M F}$ не должно превышать 0.025%.

N.3.3 Схема поверки 3.

$$
\begin{equation*}
\delta_{M F}=1.1 * \sqrt{\delta_{M F}{ }^{2}+\delta_{K A}{ }^{2}} \tag{278}
\end{equation*}
$$

где:
$\delta_{M F}^{\prime \prime}=\delta_{M F}^{\prime}+\delta_{\rho(\Pi y)}$
$\delta^{\prime}{ }_{M F}$ определяется по ф-ле (276);
$\delta_{p(\Pi у)}^{\prime}$ - определяется по ф-ле (5) для ПП ПУ;
$\delta_{K A}$ - определяется по ф-ле (277).
Значение $\delta_{M F}$ не должно превышать 0.025%.

О. Конфигурация OMNI: тип рабочего ПР - объемный, тип образцового ПР

массовый.

O.1 Алгоритм вычисления - API 11.1 (2004)

Относительную погрешность преобразования входных сигналов ИВК в значение ме-тер-фактора $\delta_{M F}$ определяют в зависимости от выбранной схемы поверки.
О.1.1 Схема поверки 1.
$\delta_{M F}=\frac{M F-M F_{P}}{M F_{P}} * 100 \%$
где:
$M F_{P}=\frac{K_{\Pi P}}{K_{P}}$
$K_{\Pi P}$ - установленное значение коэффициента преобразования поверяемого ПР,имп/ ${ }^{3}$;
K_{P} - расчетное значение коэффициента преобразования поверяемого ПР,имп/м ${ }^{3}$;
$K_{P}=\frac{f_{\Pi P} * \rho_{\Pi P}}{f_{0}} * \frac{K_{0}}{M F_{0}}$
$M F_{P}=\frac{f_{0}}{f_{\Pi P} * \rho_{\Pi P}} * \frac{K_{\Pi P}}{K_{0}} * M F_{0}$
K_{0} [имп/кг], $M F_{0}[-]$ - установленные значения для образцового ПР;
$\rho_{\text {пр }}$ - плотность жидкости, приведенная к условиям рабочего ПР от плотности по ПП ПУ [кг/м ${ }^{3}$]:

Значение $\delta_{M F}$ не должно превышать 0.025%.

О.1.2 Схема поверки 2.

$\delta_{M F}=1.1 * \sqrt{\delta^{\prime}{ }_{M F}{ }^{2}+\delta_{K A}{ }^{2}}$
где:
$\delta^{\prime}{ }_{M F}=\frac{M F-M F_{P}}{M F_{P}} * 100 \%$
$M F_{P}$ - определяется по ф-ле (285);
$\delta_{K 4}=\sqrt{\left(k_{\rho t}+k_{t}\right)^{2} *\left(\Delta t_{\pi m(\pi n)}\right)^{2}+k_{t}^{2} *\left(\Delta t_{T I P}\right)^{2}+\left(k_{\rho P}+k_{P}\right)^{2} *\left(\Delta P_{\pi ा(\pi n)}\right)^{2}+k_{p}^{2} *\left(\Delta P_{\pi P}\right)^{2}}$

Значение $\delta_{\text {MF }}$ не должно превышать 0.025%.

О.1.3 Схема поверки 3.

$$
\begin{equation*}
\delta_{M F}=1.1 * \sqrt{\delta^{\prime \prime}{ }_{M F}{ }^{2}+\delta_{K A}{ }^{2}} \tag{289}
\end{equation*}
$$

где:
$\delta^{\prime \prime}{ }_{M F}=\delta_{M F}+\delta^{\prime}{ }_{\rho(\Pi y)}$
$\delta_{\text {MF }}^{\prime}$ определяется по ф-ле (287);
$\delta^{\prime}{ }_{\rho(\text { пу })}$ - определяется по ф-ле (5) для ПП ПУ;
$\delta_{\text {К }}$ - определяется по ф-ле (288).
Значение $\delta_{\text {MF }}$ не должно превышать 0.025%.

O.2 Алгоритм вычисления - API 11.1 (1980)

Относительную погрешность преобразования входных сигналов ИВК в значение ме-тер-фактора $\delta_{M F}$ определяют в зависимости от выбранной схемы поверки.

O.2.1 Схема поверки 1.

$$
\begin{equation*}
\delta_{M F}=\frac{M F-M F_{P}}{M F_{P}} * 100 \% \tag{291}
\end{equation*}
$$

где:

$$
\begin{equation*}
M F_{P}=\frac{f_{0}}{f_{\Pi P} * \rho_{\Pi \Pi(\Pi y)}} * \frac{C_{T L \Pi P 0} * C_{P L \Pi P 0}}{C_{\Pi L \Pi P} * C_{P L \Pi P}} * \frac{K_{\Pi P}}{K_{0}} * M F_{0} \tag{292}
\end{equation*}
$$

При расчете $C_{T L ~ п Р 0 ~}^{0}, C_{P L ~ П Р 0 ~}, C_{T L \text { пр }}, C_{P L \text { пР }}$ используется значение плотности продукта при н. у., указанное в свойствах продукта.

Значение $\delta_{\text {MF }}$ не должно превышать 0.025%.

О.2.2 Схема поверки 2.

$$
\begin{equation*}
\delta_{M F}=1.1 * \sqrt{\delta^{\prime}{ }_{M F}{ }^{2}+\delta_{K A}{ }^{2}} \tag{293}
\end{equation*}
$$

где:

$$
\begin{equation*}
\delta_{M F}^{\prime}=\frac{M F-M F_{P}}{M F_{P}} * 100 \% \tag{294}
\end{equation*}
$$

$M F_{P}$ - определяется по ф-ле (292);

Значение $\delta_{\text {MF }}$ не должно превышать 0.025%.

O.2.3 Схема поверки 3.

$$
\begin{equation*}
\delta_{M F}=1.1 * \sqrt{\delta^{\prime \prime}{ }_{M F}{ }^{2}+\delta_{K A}{ }^{2}} \tag{296}
\end{equation*}
$$

где:
$\delta^{\prime \prime}{ }_{M F}=\delta_{M F}^{\prime}+\delta_{p(\Pi y)}^{\prime}$
$\delta^{\prime}{ }_{M F}$ определяется по ф-ле (294);
$\delta^{\prime}{ }_{\rho(\text { пу) }}$ - определяется по ф-ле (5) для ПП ПУ;
$\delta_{K 4}$ - определяется по ϕ-ле (295).
Значение $\delta_{\text {MF }}$ не должно превышать 0.025%.

O. 3 Алгоритм вычисления - Mass Calculation

Относительную погрешность преобразования входных сигналов ИВК в значение ме-тер-фактора $\delta_{M F}$ определяют в зависимости от выбранной схемы поверки.

О.3.1 Схема поверки 1.

$$
\begin{equation*}
\delta_{M F}=\frac{M F-M F_{P}}{M F_{P}} * 100 \% \tag{298}
\end{equation*}
$$

где:
$M F_{P}=\frac{f_{0}}{f_{\Pi P} * \rho_{\text {ПП(ПP)}}} * \frac{K_{\Pi P}}{K_{0}} * M F_{0}$
$K_{\text {пр }}\left[\right.$ имп $\left./ \mathrm{m}^{3}\right]$ - установленное значение для рабочего ПР;
$K_{0}\left[\right.$ имп/кг], $M F_{0}[-]$ - установленные значения для образцового ПР;
$\rho_{\text {Пп (пР })}$ - плотность жидкости по ПП ПР $\left[\kappa г / \mathrm{m}^{3}\right]$.
Значение $\delta_{\text {MF }}$ не должно превышать 0.025%.

O.3.2 Схема поверки 2.

$$
\begin{equation*}
\delta_{M F}=1.1 * \sqrt{\delta_{M F}^{\prime}{ }^{2}+\delta_{K A}{ }^{2}} \tag{300}
\end{equation*}
$$

где:

$$
\begin{equation*}
\delta_{M F}^{\prime}=\frac{M F-M F_{P}}{M F_{P}} * 100 \% \tag{301}
\end{equation*}
$$

$M F_{P}$ - определяется по ϕ-ле (299);

$$
\begin{equation*}
\delta_{K A}=\sqrt{k_{\rho P}{ }^{2} *\left(\Delta t_{\pi n(\Pi I P}\right)^{2}+k_{\rho P}{ }^{2} *\left(\Delta P_{\pi I n(\Pi P)}\right)^{2}} \tag{302}
\end{equation*}
$$

0.3.3 Схема поверки 3.

$$
\begin{equation*}
\delta_{M F}=1.1 * \sqrt{\delta^{\prime \prime}{ }_{M F}{ }^{2}+\delta_{K A}{ }^{2}} \tag{303}
\end{equation*}
$$

где:

$$
\begin{equation*}
\delta_{M F}^{\prime \prime}=\delta_{M F}^{\prime}+\delta_{\rho(\Pi P)}^{\prime} \tag{304}
\end{equation*}
$$

$\delta_{\text {MF }}^{\prime}$ определяется по ф-ле (301);
$\delta^{\prime}{ }_{\rho(\Pi Р)}$ - определяется по ф-ле (5) для ПП ПР;
$\delta_{K 4}$ - определяется по ф-ле (302).
Значение $\delta_{\text {MF }}$ не должно превышать 0.025%.

Р. Конфигурация OMNI: тип рабочего ПР - массовый, тип образцового ПР - мас-

 совый.
P.1. API 11.1 (2004), API 11.1 (1980), Mass Calculation

Относительную погрешность преобразования входных сигналов ИВК в значение ме-тер-фактора $\delta_{M F}$ определяют:
P.1.1 Схемы поверки 1, 2,3.
$\delta_{M F}=\frac{M F-M F_{P}}{M F_{P}} * 100 \%$
где:
$M F_{P}=\frac{K_{\Pi P}}{K_{P}}$
$K_{\Pi P}$ - установленное значение коэффициента преобразования поверяемого ПР [имп/кг];
$K_{P}=\frac{f_{\Pi Р}}{f_{0}} * \frac{K_{0}}{M F_{0}} \quad[$ имп $/$ кг $]$
$M F_{P}=\frac{f_{0}}{f_{\Pi P}} * \frac{K_{\Pi P}}{K_{0}} * M F_{0}$
K_{0} [имп/кг], $M F_{0}[-]$ - установленные значения для образцового ПР;

7 Оформление результатов поверки.

7.1 Результаты поверки оформляют протоколами по формам, приведенным в приложениях В, Г, Д.
7.2 При положительных результатах поверки оформляют свидетельство о поверке ИВК в соответствии с ПР 50.2.006 и ставят клеймо на мастику одного из его крепежных винтов в соответствии с ПР 50.2.007.
7.3 При отрицательных результатах поверки ИВК к эксплуатации не допускают, оттиск поверительного клейма гасят и выдают извещение о непригодности с указанием причин в соответствии с ПР 50.2.006.
7.4 Алгоритм и схема поверки ИВК выбирается в зависимости от состава системы измерений количества и качества нефти и нефтепродуктов.
7.5 Протокол поверки ИВК, приведенный в приложении Г, заполняется в соответствии с функциями, реализуемыми системой измерений количества и показателей качества нефти и нефтепродуктов.

Приложение A
(обязательное)
Вычисление поправочных коэффициентов на объем продукта.
А. 1 Поправочный коэффициент, учитывающий влияние температуры на объем продукта, определенный при температуре продукта в ПР, вычисляют по формуле

$$
\begin{equation*}
V C F=\exp \left\{-\alpha_{t_{r}} \times\left[t_{\pi P}-t_{r}\right] \times\left[1+0.8 \times \alpha_{t_{r}} \times\left(t_{\Pi P}-t_{r}\right)\right]\right\} \tag{A.1}
\end{equation*}
$$

где $\quad t_{\pi P}$ - температура нефти в $П Р,{ }^{\circ} \mathrm{C}$;
$\alpha_{T_{r}}=\frac{K_{0}+\left(K_{1} \times \rho_{\tau_{r}}\right)}{\left(\rho_{T_{r}}\right)^{2}}+K_{2}$
$\rho_{T_{r}}$ - плотность нефти при стандартной температуре и избыточном давлении, равном нулю, кг/ m^{3};
Коэффициенты K_{0}, K_{1}, K_{2} определяются по таблице АРІ (AEI).
Таблица AP1

Продукт	Диапазон плотности (60\%)		K0		K1		K2	
	$\mathrm{kr} / \mathrm{m}^{3}$	API	c	F				
						F	C	F
Нефть	610.6-1163.5	$100--10$	613.9723	341.0957	0			
Очищенные	нефтепродукты			341.055	0	0	0	0
Нефтяное топливо	838.3127-1163.500	37--10	186.9696	103.8720	0.48618			
Топпиво для реаит. дв-пей	$787.5195-838.3127$	48-37	594.5418	330.3010	0	0	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$
Переходная зона	$770.3520-787.5195$	52-48	2680.3206	1489.0670	0	0		
Бензины	$610.6000-770.3520$	100-52	346.4228	192.4571	0.4388	0.2438	$\begin{gathered} -0.00336312 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} -0.00186840 \\ 0 \\ \hline \end{gathered}$
Смазочные масла	800.9-1163.5	45--10						
	800.9-1163.5	45--10	0	0	0.62780	0.34878	0	0

Таблица AE1

Product	Commodily Groups							
	Density Range ($60^{\circ} \mathrm{F}$)		K0		K1		K2	
	kg/m3	API	c	F	c	F	c	F
Crude Oil	610.6-1163.5	100--10	613.9723	341.0957	0	0	0	0
Refined Products								
Fuel Oils	838.3127-1163.500	$37--10$	180.9696	103.8720	0.48618	0.27010	0	0
Jet Fuels	787.5195-838.3127	48-37	594.5418	330.3010	0	0	0	0
Transition Zone	$770.3520-787.5195$	52-48	2680.3206	1489.0670	0	0	-0.00336312	-0.00186840
Gasolines	610.6000-770.3520	100-52	346.4228	192.4571	0.4388	0.2438	0	0
Lubricating Oils	800.9-1163.5	$45--10$	0	0	0.62780	0.34878	0	0

Приложение Б

Таблица Б1

Коэффициент влияния температуры на VCF, \% / `C																
		Плотность при $15^{\circ} \mathrm{C}, \mathrm{kr} / \mathrm{m} 3$ / Плотность по API при $60^{\circ} \mathrm{F}$														
		610.60	700.00	750.00	770.35	787.52	800.00	800.90	838.31	850.00	900.00	950.00	1000.00	1050.00	1100.00	1163.50
		100.0			52.0	48.0		45.0	37.0							-10.0
	-10	0.16	0.12	0.11	0.11	0.09	0.09	0.08	0.08	0.08	0.07	0.07	0.06	0.06	0.05	0.05
	0	0.16	0.12	0.11	0.11	0.09	0.09	0.08	0.08	0.08	0.07	0.07	0.06	0.06	0.05	0.05
	10	0.16	0.12	0.11	0.11	0.10	0.10	0.08	0.08	0.08	0.08	0.07	0.06	0.06	0.05	0.05
	20	0.17	0.13	0.11	0.12	0.10	0.10	0.08	0.09	0.09	0.08	0.07	0.06	0.06	0.05	0.05
	30	0.17	0.13	0.11	0.12	0.10	0.10	0.08	0.09	0.09	0.08	0.07	0.06	0.06	0.05	0.05
$\begin{array}{\|l\|l\|} \substack{\mathrm{g} \\ \mathrm{~g}} \end{array}$	40	0.18	0.13	0.11	0.12	0.10	0.10	0.08	0.09	0.09	0.08	0.07	0.06	0.06	0.05	0.05
范	50	0.18	0.13	0.12	0.12	0.10	0.10	0.08	0.09	0.09	0.08	0.07	0.06	0.06	0.05	0.05
-	60	0.18	0.14	0.12	0.12	0.10	0.10	0.08	0.09	0.09	0.08	0.07	0.06	0.06	0.05	0.05
	70	0.19	0.14	0.12	0.13	0.10	0.10	0.08	0.09	0.09	0.08	0.07	0.07	0.06	0.05	0.05
	80	0.19	0.14	0.12	0.13	0.11	0.11	0.09	0.09	0.09	0.08	0.07	0.07	0.06	0.05	0.05
	90	0.20	0.14	0.12	0.13	0.11	0.11	0.09	0.09	0.09	0.08	0.07	0.07	0.06	0.05	0.05
	100	0.20	0.15	0.13	0.13	0.11	0.11	0.09	0.09	0.10	0.08	0.07	0.07	0.06	0.05	0.05

Crude Oil (Нефть)

Таблица Б2

		Коэффициент влияния давления на CPL, \% / бар														
		610.60	700.00	750.00	770.35	787.52	800.00	800.90	838.31	850.00	900.00	950.00	1000.00	1050.00	1100.00	1163.50
		100.0			52.0	48.0		45.0	37.0							-10.0
	-10	0.018	0.011	0.009	0.009	0.008	0.007	0.007	0.006	0.006	0.006	0.005	0.005	0.004	0.004	0.004
	0	0.020	0.012	0.009	0.009	0.008	0.008	0.008	0.007	0.007	0.006	0.005	0.005	0.004	0.004	0.004
	10	0.023	0.013	0.010	0.009	0.009	0.008	0.008	0.007	0.007	0.006	0.006	0.005	0.005	0.004	0.004
	15	0.026	0.014	0.011	0.010	0.009	0.009	0.009	0.008	0.008	0.007	0.006	0.005	0.005	0.004	0.004
	20	0.029	0.015	0.012	0.011	0.010	0.010	0.009	0.008	0.008	0.007	0.006	0.005	0.005	0.005	0.004
	30	0.033	0.017	0.013	0.012	0.011	0.010	0.010	0.009	0.008	0.007	0.006	0.006	0.005	0.005	0.004
	40	0.037	0.018	0.014	0.012	0.012	0.011	0.011	0.009	0.009	0.008	0.007	0.006	0.005	0.005	0.004
	50	0.041	0.020	0.015	0.013	0.012	0.012	0.012	0.010	0.010	0.008	0.007	0.006	0.006	0.005	0.005
	60	0.047	0.022	0.016	0.014	0.013	0.013	0.012	0.011	0.010	0.009	0.007	0.007	0.006	0.005	0.005
	70	0.053	0.024	0.017	0.016	0.014	0.013	0.013	0.011	0.011	0.009	0.008	0.007	0.006	0.006	0.005
	80	0.060	0.026	0.019	0.017	0.015	0.014	0.014	0.012	0.011	0.010	0.008	0.007	0.006	0.006	0.005
	100	0.068	0.029	0.020	0.018	0.016	0.015	0.015	0.013	0.011	0.010	0.009	0.007	0.007	0.006	0.005

Crude Oil (Нефть)

Приложение B (рекомендуемое)

Протокол
поверки ИВК OMNI - 6000, зав. № \qquad

Таблица А. 1 - Определение погрешности преобразования входных аналоговых сигналов ИВК в значение величины

Ток, мА(напряжение, В; сопротивление, Ом)	Значение величины		Абсолютная погрешность
		расчетное	

Поверитель

\qquad
(подпись) (инициалы, фамилия) " \qquad 20 r.

Приложение Г
Протокол поверки ИВК ОМNI 6000 (3000) в режиме поверки ПР при помощи ТПУ (компакт-прувера)

Алгоритм вычисления:

\qquad

$\mathrm{V}^{3} \mathrm{~m}^{3}$	D, см	S, см	Кпу	Кинв	Е, бар

$\begin{gathered} \text { No } \\ \pi / \pi \end{gathered}$	Установленные значения												
	IIP					Пу				Плотномер			
	f. r_{4}	Q. M ${ }^{3 / 4}$	tnp, C	$\begin{gathered} \text { Pnp,.6a } \\ \text { p } \end{gathered}$	N, имп	tex,C	$\begin{gathered} \text { tвых } \\ \text { (инв),С } \\ \hline \end{gathered}$	Pbx,6ap	Рвых,бар	T,мкс	Prn, бap	trm, C	$\mathrm{c}_{\text {p,krl }}^{\text {m }}$
1													
2													

	Расчетные значения									Фактические значения	
п/п	p15,x/m3	CTS	CPS	CTLny	CPLry	CTLİp	CPLnp	$\mathrm{v}^{\text {b }}$	K, mants ${ }^{\text {a }}$	K, manta'	δ 'K,\%
1											
2											

Приложение Д (рекомендуемое)

Протокол
поверки ИВК OMNI - 6000, зав. №

\qquad

Таблица Б. 1 - Определение погрешности преобразования входных сигналов ИВК в значение коэффициента преобразования ПР

Поверитель \qquad
(подпись) (инициалы, фамилия)
\qquad
\qquad " \qquad 20 \qquad r.

Приложение E
(обязательное)
Вычисление поправочных коэффициентов на объем нефти
А. 1 Поправочный коэффициент, учитывающий влияние температуры на объем нефти, определенный для температуры нефти в ПР (CTLV), ПП (CTL_{p}) или КП ($\left.\mathrm{CTL}_{\text {КП }}\right)$, вычисляют по формуле
$\mathrm{CTL}=\exp \{-\alpha \cdot[\mathrm{T}-15] \cdot[1+0,8 \cdot \alpha \cdot(\mathrm{~T}-15)]\}$,
где $\quad \mathrm{T}$ - температура нефти в ПР $\left(\mathrm{T}_{\mathrm{V}}\right)$, ПП $\left(\mathrm{T}_{\rho}\right)$ или КП $\left(\mathrm{T}_{\text {кп }}\right),{ }^{\circ} \mathrm{C}$;
$\alpha=\frac{613,9723}{\rho_{15}^{2}}$;
ρ_{15} - плотность нефти при температуре $15^{\circ} \mathrm{C}$ и избыточном давлении, равном нулю, $\kappa г / \mathrm{m}^{3}$, вычисляемое с использованием метода итераций по формуле (Д.1)
А. 2 Поправочный коэффициент, учитывающий влияние давления на объем нефти, определенный для давления нефти в ПР (CPLV), $\Pi П\left(\mathrm{CPL}_{\rho}\right)$ или КП ($\left.\mathrm{CPL}_{\mathrm{K} \Pi}\right)$ вычисляют по формуле
$\mathrm{CPL}=\frac{1}{1-\left(\mathrm{P}-\mathrm{P}_{\mathrm{HI}}\right) \cdot \mathrm{F}}$,
где $\quad \mathrm{P}$ - давление нефти в ПР (P_{v}), ПП (P_{p}) или КП ($\mathrm{P}_{\mathrm{KП})}$ МПа;
$\mathrm{P}_{\text {нп }}$ - давление насыщенных паров нефти, МПа;
F - коэффициент сжимаемости нефти при температуре нефти в ПР, ПП или КП, І/МПа, вычисляемый по формуле
$\mathrm{F}=10^{-3} \cdot \exp \left(-1,6208+0,00021592 \cdot \mathrm{~T}+\frac{0,87096 \cdot 10^{6}}{\rho_{15}^{2}}+\frac{4,2092 \cdot \mathrm{~T} \cdot 10^{3}}{\rho_{15}^{2}}\right)$.
А. 3 Поправочный коэффициент, учитывающий влияние температуры стенок КП и переключающего стержня на вместимость калиброванного участка КП, вычисляют по формуле

CTS $=\left[1+\left(\mathrm{T}_{\text {кп }}-15\right) \cdot \mathrm{K}_{\text {кП }}\right] \cdot\left[1+\left(\mathrm{T}_{\text {инв }}-15\right) \cdot \mathrm{K}_{\text {инв }}\right]$,
где $\mathrm{K}_{\text {кп }}$ - квадратичный коэффициент объемного расширения материала стенок $К П, 1 /{ }^{\circ} \mathrm{C}$;
$\mathrm{T}_{\text {инв }}$ - температура инварового стержня, ${ }^{\circ} \mathrm{C}$;

А. 4 Поправочный коэффициент, учитывающий влияние давления на вместимость калиброванного участка КП, вычисляют по форму$\mathrm{CPS}=1+\frac{\mathrm{P}_{\mathrm{KII}} \cdot \mathrm{D}}{\mathrm{E} \cdot \mathrm{S}}$,
D - внутренний диаметр калиброванного участка КП, мм;
E - модуль упругости материала стенок КП, МПа;
S - толщина стенок калиброванного участка КП, мм.

