УТВЕРЖДАЮ Первый заместитель генерального директора заместитель по научной работе ФГУП «ВНИИФТРИ» А.Н. Щипунов

Осциллографы DSOV084A, DSAV084A, MSOV084A, DSOV134A, DSAV134A, MSOV134A, DSOV164A, DSAV164A, MSOV164A, DSOV204A, DSAV204A, MSOV204A, DSOV254A, DSAV254A, MSOV254A, DSAV254A, MSOV254A, MSOV334A, MSOV334A

Методика поверки

651-16-11 МП

.е.речч56-16

р.п. Менделеево 2016 г.

1 Общие сведения

1.1 Настоящая методика распространяется на осциллографы DSOV084A, DSAV084A, MSOV084A, DSOV134A, DSAV134A, MSOV134A, DSOV164A, DSAV164A, MSOV164A, DSOV204A, DSAV204A, MSOV204A, DSOV254A, DSAV254A, MSOV254A, DSOV334A, DSAV334A, MSOV334A (далее - осциллографы) компании «Keysight Technologies Microwave Products (M) Sdn.Bhd.», Малайзия, и устанавливает порядок и объем их первичной и периодической поверки.

1.2 Интервал между поверками - 1 год.

2 Операции поверки

2.1 При поверке осциллографов выполнить работы в объеме, указанном в таблице 1.

Таблица 1

		Проведение операции при:		
Наименование операции	Номер пункта методики поверки	первичной поверке (после ре- монта)	периоди- ческой поверке	
1 Внешний осмотр	8.1	да	да	
2 Опробование	8.2	да	да	
3 Идентификация программного обеспечения	8.3	да	да	
4 Определение абсолютной погреш- ности установки напряжения сме- щения	8.4	да	да	
5 Определение абсолютной погреш- ности установки коэффициента от- клонения	8.5	да	да	
6 Определение относительной по- грешности по частоте внутреннего опорного генератора	8.6	да	да	
7 Определение полосы пропускания	8.7	да	да	

2.2 При получении отрицательных результатов при выполнении любой из операций поверка прекращается и прибор бракуется.

3 Средства поверки

3.1 При проведении поверки использовать средства измерений и вспомогательное оборудование, представленные в таблице 2.

Таблица 2

гаолица 2	
№ пунктов ме-	Наименование рабочих эталонов или вспомогательных средств поверки: но-
тодики повер-	мер документа регламентирующего технические требования к рабочим эта-
ки	лонам или вспомогательным средствам; разряд по государственной повероч-
	ной схеме и (или) метрологические и основные технические характеристики
	средства поверки
8.5, 8.6	Генератор сигналов E8257D (опция 540): диапазон частот от 250 кГц до 40
	ГГц, пределы допускаемой относительной погрешности установки частоты
	$\pm 7.5 \cdot 10^{-8}$; максимальный уровень выходной мощности не менее 10 дБ/мВт.
	пределы допускаемой относительной погрешности установки уровня мощно-

	сти не более ± 1.2 дБ. Генератор произвольной формы 33250А: диапазон ча-
	стот от 1 мГц до 80 МГц.
8.5	Блок измерительный ваттметра N1914A с преобразователем мощности N8487A: настотный лиапазон от 10 МГн до 50 ГГн линаминеский лиапазон
	от минус 35 до 20 дБ/мВт, пределы допускаемой погрешности измерений
	мощности: до ± 4%;
8.4	Мультиметр Agilent 3458А: диапазон измерений напряжения постоянного то-
	ка от 0 до 1000 В, пределы допускаемой абсолютной погрешности: $\pm (1.5 \cdot 10^{-5})$
	⁶ D+0.3·10 ⁻⁶ E) в диапазоне от 0,1 до 1 B, ± (0,5·10 ⁻⁶ D+0,05·10 ⁻⁶ E) в диапазоне от
	1 до 10 В, где D – показания мультиметра, Е – верхний предел диапазона из-
	мерений
8.6	частотомер электронно-счетный 53152А: диапазон частот от 10 Гц до 46 ГГц
	МГц, пределы основной допускаемой абсолютной погрешности измерений
	частоты при работе от внутреннего генератора \pm (F·10-7 + Δ F), где F – частота
	сигнала, ΔF – разрешение по частоте;
	стандарт частоты рубидиевый FS725: пределы допускаемой относительной
	погрешности частоты 10 МГц $\pm 1.10^{-10}$
	Вспомогательные средства поверки
8.5	Делитель мощности 11667С: диапазон частот от 0 до 50 ГГц, диапазон уров-
	ней мощности входного сигнала от 0 до 27 дБ/мВт
8.4 - 8.5	Переходники с N-типа на BNC, с 3,5 мм на BNC и с 2,4 мм на BNC, источник
	питания Keysight 6614C

3.2 Допускается использование других средств измерений и вспомогательного оборудования, имеющих метрологические и технические характеристики не хуже характеристик приборов, приведенных в таблице 2.

3.3 Применяемые средства поверки должны быть утверждённого типа. исправны и иметь действующие свидетельства о поверке (отметки в формулярах или паспортах).

4 Требования к квалификации поверителей

4.1 К проведению поверки осциллографов допускается инженерно-технический персонал со среднетехническим или высшим образованием, ознакомленный с руководством по эксплуатации (РЭ) и документацией по поверке, допущенный к работе с электроустановками и имеющие право на поверку (аттестованными в качестве поверителей).

5 Требования безопасности

5.1 При проведении поверки должны быть соблюдены требования безопасности в соответствии с действующими нормативными документами.

5.2 К работе с осциллографами допускаются лица, изучившие требования безопасности по ГОСТ 22261-94, ГОСТ Р 51350-99, инструкцию по правилам и мерам безопасности и прошедшие инструктаж на рабочем месте.

5.3 При проведении поверки необходимо принять меры защиты от статического напряжения, использовать антистатические заземленные браслеты и заземлённую оснастку. Запрещается проведение измерений при отсутствии или неисправности антистатических защитных устройств.

6 Условия поверки

6.1 Поверку проводить при следующих условиях: - температура окружающего воздуха, °С относительная влажность воздуха. %
 атмосферное давление, мм рт. ст.
 напряжение питания, В
 частота, Гц
 температура выбирается в соответствии с руководствами по эксплуатации средств поверки.
 Все средства измерений использующиеся при поверке оснициографов, должны работать в

Все средства измерений, использующиеся при поверке осциллографов, должны работать в нормальных условиях эксплуатации.

7 Подготовка к поверке

7.1 Перед проведением поверки необходимо выполнить следующие подготовительные работы:

- выполнить операции, оговоренные в документации изготовителя на поверяемый осциллограф по его подготовке к работе;

- выполнить операции, оговоренные в РЭ на применяемые средства поверки по их подготовке к измерениям;

- осуществить прогрев приборов для установления их рабочих режимов.

8 Проведение поверки

8.1 Внешний осмотр

8.1.1 При внешнем осмотре проверить:

- отсутствие механических повреждений и ослабление элементов, четкость фиксации их положения;

- чёткость обозначений, чистоту и исправность разъёмов и гнёзд, наличие и целостность печатей и пломб;

- наличие маркировки согласно требованиям эксплуатационной документации.

8.1.2 Результаты поверки считать положительными, если выполняются все перечисленные требования. В противном случае осциллограф бракуется.

8.2 Опробование

8.2.1 Подготовить осциллограф к работе в соответствии с технической документацией фирмы-изготовителя. Проверить отсутствие сообщений о неисправности в процессе загрузки осциллографа.

8.2.2 Результаты поверки считать положительными, если выполняются процедуры. приведенные в пп. 8.2.1.

8.3 Идентификация программного обеспечения

Проверку соответствия заявленных идентификационных данных программного обеспечения (ПО) осциллографа проводить в следующей последовательности:

- проверить наименование ПО;

- проверить идентификационное наименование ПО;

- проверить номер версии (идентификационный номер) ПО;

- определить цифровой идентификатор ПО (контрольную сумму исполняемого кода). Для расчета цифрового идентификатора применяется программа (утилита) «MD5_FileChecker». Указанная программа находится в свободном доступе сети Internet (сайт www.winmd5.com).

Результаты поверки считать положительными, если идентификационные данные ПО соответствуют идентификационным данным, приведенным в таблице 3.

Таблица 3	
Наименование ПО	SetupInfiniium05010000
Идентификационное наименование ПО	firmware for the V-Series oscilloscopes

Номер версии (идентификационный номер) ПО	Версия не ниже 05010000
Цифровой идентификатор ПО (контрольная сумма)	-
Алгоритм вычисления цифрового идентификатора ПО	-

8.4 Определение абсолютной погрешности установки напряжения смещения

8.4.1 Абсолютная погрешность установки напряжения смещения определяется по формуле (1):

 $\Delta_{\rm CM} = \pm \left(\Delta_{\rm foas} + \Delta_0 \right) \; ; \qquad \qquad$

где Δ_{6a3} = - базовая составляющая погрешности установки напряжения смещения:

 $\Delta_0 = -$ составляющая погрешности установки напряжения смещения из-за дрейфа

(1)

«нуля».

8.4.2 Определение составляющей погрешности установки напряжения смещения из-за дрейфа «нуля»

8.4.2.1 Прогреть осциллограф в течении 30 минут.

8.4.2.2 Установить значение входного импеданса 50 Ом.

8.4.2.3 Отсоединить все кабели от входов осциллографа.

8.4.2.4 Нажать клавишу DEFAULT SETUP для настройки осциллографа:

нажать программную клавишу SETUP > ACQUISITION....;

когда отобразится меню ACQUISITION, сделать установки в соответствии с рисунком 1.

8.4.2.5 Настроить осциллограф для измерения напряжения следующим образом:

- установить коэффициент отклонения канала 1 равным 10 мВ/дел;

- перейти на вкладку Vertical Meas в левой стороне экрана и перетащить значок Средняя измерения на канал 1 сигнала

- нажать программную клавишу «Vavg» в левом нижнем углу экрана измерений (рисунок 2).

Когда отобразиться программное окно ENTER MEASUREMENT INFO, выбрать значе-

ния:

Source = Channel 1;

Measurement area = Entire Display;

и нажать программную клавишу ОК (рисунок 3).

Рисунок 1

Рисунок 2

Measurement		OK
V avg		Cancel
Source	?	Help \ ?
Measurement Area		
 Entire Display 		

Рисунок 3

8.4.2.6 Нажать клавишу CLEAR DISPLAY на осциллографе и подождать, пока значение #Avgs в левом верхнем углу экрана осциллографа не станет равно 256.

8.4.2.7 Записать полученное значение среднего напряжения U_{ср} (определяется как «Mean» на экране осциллографа) в таблицу 4.

Таблица 4 Значение ко-Допустимые Измеренные значения U_{ср}, мВ эффициента значения U_{ср} канал 1 канал 2 канал 3 канал 4 отклонения (Δ₀), мВ 2 3 4 5 6 1 ± 1,8 5 мВ/дел 10 мВ/дел ± 1.8 20 мВ/дел $\pm 2,6$ 50 мВ/дел ± 5 100 мВ/дел ± 9 200 мВ/дел ± 17 500 мВ/дел ± 41 1 В/дел ± 81

Примечание - Если поверх всех значений в нижней части экрана осциллографа отображается знак вопроса, необходимо нажать клавишу CLEAR DISPLAY и подождать, пока значение #Avgs в левом верхнем углу экрана осциллографа не станет равно 256. 8.4.2.8 Изменить значение коэффициента отклонения канала 1 на 10 мВ/дел, нажать клавишу CLEAR DISPLAY и подождать, пока значение #Avgs в левом верхнем углу экрана осциллографа не стает равно 256, затем записать полученное значение среднего напряжения U_{cp} (определяется как «Mean» на экране осциллографа) в таблицу 4.

8.4.2.9 Повторить п. 8.4.2.8 для всех значений коэффициента отклонения канала 1 из таблицы 4.

8.4.2.10 Нажать клавишу Default Setup, отключить канал 1 и включить канал 2.

8.4.2.11 Настроить осциллограф для измерения значения U_{cp} на канале 2:

- нажать программную клавишу SETUP MENU и выбрать значение ACQUISITION;

- когда отобразится меню ACQUISITION SETUP, установить значение #Avgs равным 256:

- изменить значение коэффициента отклонения канала 2 на 5 мВ/дел;

- нажать программную клавишу «Vavg» в левом нижнем углу экрана измерений (рисунок 2):

- когда отобразиться программное окно ENTER MEASUREMENT INFO, выбрать значения:

Source = Channel 2

Measurement area = Entire Display

и нажать программную клавишу ОК (рисунок 3).

8.4.2.12 Нажать клавишу CLEAR DISPLAY на осциллографе и подождать, пока значение #Avgs в левом верхнем углу экрана осциллографа не стает равно 256.

Записать полученное значение среднего напряжения U_{cp} (определяется как «Mean» на экране осциллографа) в таблицу 4.

Повторить пункт 8.4.2.10 для всех значений коэффициента отклонения канала 2 из таблицы 4.

8.4.2.13 Повторить операции п.п. 8.4.2.10 – 8.4.2.12 для каналов 3 и 4.

8.4.2.14 Провести вышеописанные операции для значения импеданса, равного 1 МОм, записывая измеренные значения в таблицу 5.

гаолица 5.						
Значение ко-	Допустимые	Измеренные значения U _{ср} , мВ				
эффициента	значения U _{ср}	канал 1	канал 2	канал 3	канал 4	
отклонения	(Δ ₀), мВ		l			
1	2	3	4	5	6	
5 мВ/дел	± 1,8					
10 мВ/дел	$\pm 1,8$					
20 мВ/дел	± 2,6					
50 мВ/дел	± 5					
100 мВ/дел	± 9					
200 мВ/дел	± 17					
500 мВ/дел	± 41					
1 В/дел_	± 81					
2 В/дел	± 161					
5 В/дел	± 401					

Таблица 5.

8.4.2.15 Результаты поверки считать положительными, если значения U_{ср} находятся в пределах. приведенных в графе 2 таблиц 4 и 5. В противном случае осциллограф бракуется и направляется в ремонт.

8.4.3 Определение базовой составляющей погрешности установки напряжения смещения

8.4.3.1 Подключить выход источника питания через тройник ко входу 1 осциллографа и входу цифрового мультиметра.

8.4.3.2 Нажать клавишу DEFAULT SETUP для настройки осциллографа - нажать программную клавишу SETUP MENU и выбрать значение ACQUISITION; когда отобразится меню ACQUISITION SETUP, сделать установки в соответствии с рисунком 1.

8.4.3.3 Установить коэффициент отклонения 1 канала 5 мВ/дел. В меню ACQUISITION выбрать ENABLED AVERAGING и ввести количество усреднений

равное 256. Когда отобразиться программное окно ENTER MEASUREMENT INFO, выбрать значения:

Source = Channel 1;

Measurement area = Entire Display;

и нажать программную клавишу ОК (рисунок 4).

8.4.3.4 Установить значение напряжения смещения 1 канала равным плюс 60 мВ и значение импеданса 50 Ом.

8.4.3.5 Установить значение выходного напряжения источника питания равным плюс 60 мВ.

8.4.3.6 Нажать клавишу CLEAR DISPLAY на осциллографе и подождать, пока значение #Avgs в левом верхнем углу экрана осциллографа не станет равно 256.

8.4.3.7 Включить на осциллографе функцию автоматического измерения среднего значения напряжения Vavg, и в окне измерения выбрать MEASURMENT AREA - ENTIRE DISPLAY.

Рисунок 4

8.4.3.8 Нажать кнопку CLEAR DISPLAY. После достижения показаний счетчика усреднений в верхнем левом углу дисплея значения 256, записать показания мультиметра U_{м+} и показания U_{ocu+} (Vavg) осциллографа в таблицу 6.

8.4.3.9 Рассчитать $\Delta_{\delta a3^+}$ как разницу между показаниями мультиметра U_{M^+} и показаниями U_{ocu^+} .

8.4.3.10 Установить значение выходного напряжения источника питания равным минус 60 мВ.

8.4.3.11 Установить значение напряжения смещения 1 канала равным минус 60 мВ и значение импеданса 50 Ом.

8.4.3.12 Нажать кнопку CLEAR DISPLAY. После достижения показаний счетчика усреднений в верхнем левом углу дисплея значения 256, записать показания мультиметра U_м. и показания осциллографа U_{оси}. в таблицу 6.

8.4.3.13 Рассчитать $\Delta_{\delta a3}$ как разницу между показаниями мультиметра U_{M} и показаниями U_{ocu} .

Таблиг	ta 6					
Установлен-	Напряжение на вы-	Показа-	Показа-	Показа-	Показа-	Δ_{6a3} (±).
ный коэф-	ходе источника пи-	ния	ния	ния ос-	ния ос-	мВ
фициент от-	тания/ установлен-	мульти-	мульти-	цилло-	цилло-	
клонения	ное постоянное	метра	метра	графа	графа	
	смещение, В	U _{M+}	U _M -	U _{ocu+}	Uocu-	
1 В/ дел	± 4					131
500 мВ/ дел	± 4					91
200 мВ/ дел	± 2,4					47
100 мВ/ дел	± 1,2					24
50 мВ/ дел	± 0,6					12.5
20 мВ/ дел	$\pm 0,24$					5.6
10 мВ/ дел	± 0,12					3,3
5 мВ/ дел	$\pm 0,06$					2.55

8.4.3.14 Повторить пп. 8.4.3.2 - 8.4.3.13, изменяя напряжение на выходе источника питания и коэффициент отклонения канала 1 в соответствии с таблицей 5.

8.4.3.15 Повторить измерения для значения выходного импеданса 1 МОм, записывая результаты измерений в таблицу 7.

Таблица 7.

Установлен-	Напряжение на вы-	Показа-	Показа-	Показа-	Показа-	Δ_{6a3} (±). мВ
ный коэф-	ходе источника пи-	ния муль-	ния	ния ос-	ния ос-	
фициент от-	тания/ установлен-	тиметра	мульти-	цилло-	цилло-	
клонения	ное постоянное	U_{M^+}	метра	графа	графа	
	смещение, В		U _M .	U _{ocu+}	U _{ocu-}	
5 В/ дел	± 100					1650.0
2 В/ дел	± 100					1410.0
1 В/ дел	± 100					1310.0
500 мВ/ дел	± 20					291.0
200 мВ/ дел	± 20					267.0
100 мВ/ дел	± 20					259.0
50 мВ/ дел	± 10					130.0
20 мВ/ дел	± 10					127.6
10 мВ/ дел	± 5					64,3
5 мВ/ дел	± 2					26.4

8.4.3.16 Результаты поверки считать положительными, если значения Δ_{6a3} не превышают указанных в таблицах 6 и 7. В противном случае осциллограф бракуется и направляется в ремонт.

8.5 Определение абсолютной погрешности установки коэффициента отклонения

8.5.1 Подключить выход источника питания через тройник ко входу 1 осциллографа и входу цифрового мультиметра.

8.5.2 Убедиться, что напряжение на входе каналов осциллографа не превышает значений ± 5 В.

8.5.3 Прогреть осциллограф в течении 30 минут.

8.5.4 Отсоединить все кабели от входов осциллографа.

8.5.5 Нажать клавишу Default Setup для настройки осциллографа - нажать программную клавишу Setup menu и выбрать значение Acquisition; когда отобразится меню Acquisition Setup, сделать установки в соответствии с рисунком 1.

8.5.6 Установить на источнике питания напряжение плюс 15 мВ, а значение импеданса осциллографа 50 Ом.

8.5.7 Настроить осциллограф для измерений среднего значения напряжения следующим образом: - установить коэффициент отклонения канала 1 равным 5 мВ/дел;

- нажать программную клавишу «Vavg» в левом нижнем углу экрана измерений (рису-

нок 2).

Когда отобразиться программное окно ENTER MEASUREMENT INFO, выбрать значения:

Source = Channel 1;

Measurement area = Entire Display;

и нажать программную клавишу ОК (рисунок 3).

8.5.8 Нажать клавишу CLEAR DISPLAY на осциллографе и подождать, пока значение #Avgs в левом верхнем углу экрана осциллографа не станет равно 256.

8.5.9 Записать полученные значения среднего напряжения, измеренные мультиметром (U_{м+}) и осциллографом (U_{осц+}) (определяется как «Mean» на экране осциллографа) в таблицу 8.

Примечание - Если поверх всех значений в нижней части экрана осциллографа отображается знак вопроса, необходимо нажать клавишу CLEAR DISPLAY и подождать, пока значение #Avgs в левом верхнем углу экрана осциллографа не станет равно 256.

8.5.10 Установить на источнике питания напряжение минус 15 мВ.

8.5.11 Нажать клавишу CLEAR DISPLAY на осциллографе и подождать, пока значение #Avgs в левом верхнем углу экрана осциллографа не станет равно 256.

8.5.12 Записать полученные значения среднего напряжения, измеренные мультиметром (U_{м-}) и осциллографом (U_{осц-}) (определяется как «Mean» на экране осциллографа) в таблицу 8.

8.5.13 Провести измерения для значения импеданса осциллографа 1 МОм.

8.5.14 Вычислить относительную погрешность установки коэффициента отклонения δ_{Ko} (в процентах) по формулам (2) и (3):

- для значения импеданса 50 Ом:

$$\delta_{\text{Ko}} = [(U_{\text{ocu}^+} - U_{\text{ocu}^-})/(U_{\text{M}^+} - U_{\text{M}^-}) - 1] \cdot 0.375; \qquad (2)$$

- для значения импеданса 1 МОм:

$$\delta_{\rm Ko} = \left[(U_{\rm ocu+} - U_{\rm ocu-}) / (U_{\rm M+} - U_{\rm M-}) - 1 \right] \cdot 0,75.$$
(3)

Таблица 8

Значение ко-	Значение	Измеренные значения напряжения			Вычисленное	Пределы до-	
эффициента	напряжения	U _M +	U _M -	U _{ocu-}	U _{ocu+}	значение по-	пускаемой по-
отклонения	на выходе					грешности	грешности
осциллогра-	источника					коэффициента	установки ко-
фа	питания					отклонения	эффициента
						δ _{κο}	отклонения.%
			Ка	нал 1			
5 мВ/дел	± 15 мВ						
10 мВ/дел	± 30 мВ						
20 мВ/дел	±60 мВ						
50 мВ/дел	± 150 мВ						± 2
100 мВ/дел	± 300 мВ						
200 мВ/дел	± 600 мВ						
500 мВ/дел	± 1,5 B						
1 В/дел	± 3 B						
500 мВ/дел	± 1,5 B						
1 В/дел	± 3 B						
Для 1	МОм						
2 В/дел	± 6 B						
5 В/дел	± 15 B						

8.5.15 Повторить измерения для всех значений коэффициента отклонения из таблицы 8. При каждом измерении устанавливать положительное и отрицательное значение напряжения на выходе источника питания из таблицы 8.

8.5.16 Повторить измерения для всех каналов осциллографа.

8.5.17 Результаты поверки считать положительными, если значения погрешности установки коэффициентов отклонения находятся в пределах ± 2 %. В противном случае осциллограф бракуется и направляется в ремонт.

8.6 Определение относительной погрешности по частоте внутреннего опорного генератора

8.6.1 Собрать измерительную схему в соответствии с рисунком 5. При этом выход опорного сигнала (10 МГц REF) на задней панели осциллографа подключить к входу А частотомера.

Рисунок 5

8.6.2 На частотомере установить: режим измерения частоты по входу А; входное сопротивление частотомера 50 Ом, переключатель X1/X10 в положение X1; вход открытый.

8.6.3 На осциллографе нажать клавишу Utility и программируемые клавиши Options. Rear Panel, Ref signal Output, 10MHz output.

8.6.4 Измерить частотомером частоту опорного сигнала осциллографа и определить относительную погрешность осциллографа по частоте внутреннего опорного генератора по формуле (4):

$$\delta_{\rm or} = (10^7 - F_{\rm y})/10^7 \,, \tag{4}$$

где F₄ - показания частотомера, Гц.

8.6.5 Результаты поверки считать положительными, если значение относительной погрешности осциллографа по частоте внутреннего опорного генератора находится в пределах $\pm (0,4\cdot\delta_{on\kappa} + 0,5/T_3\cdot 10^{-6})$, где T_3 – количество лет эксплуатации осциллографа; $\delta_{on\kappa}$ – относительная погрешность опорного генератора по результатам последней поверки. В противном случае осциллограф бракуется и направляется в ремонт.

9 Оформление результатов поверки

9.1 При положительных результатах поверки на осциллограф выдается свидетельство установленной формы.

9.2 На оборотной стороне свидетельства о поверке записываются результаты поверки.

9.3 В случае отрицательных результатов поверки поверяемый осциллограф к дальнейшему применению не допускается. На него выдается извещение о непригодности к дальнейшей эксплуатации с указанием причин забракования.

Начальник отделения ФГУП «ВНИИФТРИ»

i

О.В. Каминский