УТВЕРЖДАЮ Руководитель ГЦИ СИ заместитель генерального директора ФГУП «ВНИИФТРИ»

УТВЕРЖДАЮ Начальник ГЦИ СИ «Воентест» 32 ГНИИИ МО РФ

М.В. Балаханов

2009 г.

_____С.И.Донченко

_____ 2009 г.

ИНСТРУКЦИЯ

Генераторы сигналов сложной формы AFG3021B, AFG3022B, AFG3011 компании «Tektronix (China) Co., Ltd.», КНР

Методика поверки 071-1638-02 МП

2009 г.

Настоящая методика поверки распространяется на генераторы сигналов сложной формы AFG3021B, AFG3022B, AFG3011 (далее – генераторы) производства компании «Tektronix (China) Co., Ltd.», КНР, и устанавливает методы и средства их первичной и периодической поверки.

Межповерочный интервал - один год.

1 ОПЕРАЦИИ ПОВЕРКИ

1.1 При проведении поверки должны быть выполнены операции, указанные в таблице 1.

Таблица 1

Наименование опе-	Номер	Проведение опера	ции при
раций	пункта	Ввозе импорта	периодической
	методики	(после ремонта)	поверке
Внешний осмотр	7.1	Да	Да
Опробование	7.2	Дa	Дa
Определение метрологических характеристик	7.3	Дa	Дa
Определение погрешности установки частоты	7.3.1	Дa	Дa
Определение погрешности уста- новки амплитуды выходного сиг- нала	7.3.2	Дa	Дa
Определение погрешности уста- новки напряжения смещения по- стоянного тока	7.3.3	Дa	Да
Определение частотной неравно- мерности уровня сигнала синусои- дальной формы	7.3.4	Да	Да
Определение уровня гармониче- ских составляющих в выходном сигнале	7.3.5	Дa	Дa
Определение суммарных гармони- ческих искажений	7.3.6	Дa	Дa
Определение уровня негармониче- ских составляющих в выходном сигнале	7.3.7	Да	Да
Определение длительности фронта и среза сигнала прямоугольной формы	7.3.8	Да	Да

2 СРЕДСТВА ПОВЕРКИ

2.1 При проведении поверки должны применяться средства поверки, указанные в таблице 2.

Таблица 2							
Номер	Наименование рабочего эталона или вспомогательного средства поверки;						
пункта	номер документа, регламентирующего технические требования к средству;						
методики	разряд по государственной поверочной схеме и (или) метрологические и						
	основные технические характеристики						
731	Частотомер электронно-счетный 53132А (диапазон частот от 0 до						
7.3.1	1,5 ГГц, пределы допускаемой погрешности измерений ±10 ⁻⁸)						
732733	Мультиметр 3458А (диапазон измерений напряжения от 1 мВ до 1000 В,						
7.3.4	пределы допускаемой относительной погрешности измерений \pm 0,03 %)						
735736	Анализатор спектра С4-85 (диапазон частот от 100 Гц до 22 ГГц, пределы						
7.3.3, 7.3.0,	допускаемой погрешности измерений уровня ± 0,5 дБ, пределы допускае-						
1.5.1	мой погрешности измерений частоты $\pm 10^{-7}$);						
738	Осциллограф цифровой TDS5104В (ширина полосы пропускания						
1.5.0	1 ГГц)						

2.2 Применяемые при поверке по настоящей методике в качестве рабочих эталонов приборы должны быть поверены на основном эталонном оборудовании в ФГУП "ВНИ-ИФТРИ" и иметь отметку в свидетельствах о возможности их применения в качестве рабочих эталонов.

2.3 При проведении поверки допускается использование эталонных средств измерений, соответствующих по своим метрологическим и техническим характеристикам, указанным в таблице 2.

З ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

3.1 К проведению поверки могут быть допущены лица, имеющие высшее или среднетехническое образование, практический опыт в области радиотехнических измерений и квалификацию поверителя.

4 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

4.1 При проведении поверки должны быть соблюдены все требования безопасности в соответствии с ГОСТ 12.3.019-80.

5 УСЛОВИЯ ПОВЕРКИ

5.1 При проведении поверки должны быть соблюдены нормальные условия, установленные ГОСТ 8.395-80.

6 ПОДГОТОВКА К ПОВЕРКЕ

6.1 Поверитель должен изучить технические описания и инструкции по эксплуатации (ТО и ИЭ) поверяемого генератора и используемых средств поверки.

6.2 Поверяемый генератор и используемые средства поверки должны быть заземлены и прогреты под током в течение времени, указанного в ТО и ИЭ.

7 ПРОВЕДЕНИЕ ПОВЕРКИ

7.1 Внешний осмотр

7.1.1 При проведении внешнего осмотра проверить:

- чистоту и исправность разъемов и гнезд;
- наличие предохранителей;
- отсутствие механических повреждений корпуса и ослабления крепления элементов конструкции (определить на слух при наклонах генератора);
- сохранность органов управления, четкость фиксации их положения;
- комплектность согласно РЭ.

Генераторы, имеющие дефекты, бракуют и направляют в ремонт.

7.2 Опробование

Процедура опробования состоит из операций самотестирования и калибровки.

7.2.1 Включить питание поверяемого генератора и дать ему прогреться в течение 20 минут. Опробование проводить при температуре окружающей среды от 5 °C до 40 °C.

7.2.2 Запустить процедуру опробования с помощью меню Utility для чего:

- нажать последовательно клавиши Utility (лицевая панель)>-more (клавиша в оправе) >Diagnostics/Calibration> Execute Diagnostics;
- подождать, пока завершится самотестирование;
- проверить, как прошло самотестирование; если самотестирование не обнаружило неисправностей, на дисплее появится сообщение "PASSED"; если обнаружена неисправность, на дисплее появится код ошибки;
- нажать любую кнопку лицевой панели, чтобы завершить самотестирование.

7.2.3 Процедура калибровки проверяет правильность функционирования генератора. Операция проводить при температуре окружающей среды от 20 °C до 30 °C.

Выполнить следующие операции:

- нажать последовательно клавиши Utility (лицевая панель)>-more (клавиша в оправе) >Diagnostics/Calibration> Execute Calibration;
- подождать, пока завершится калибровка;
- проверить, как прошла калибровка; если калибровка не обнаружила неисправностей, на дисплее появится сообщение "PASSED"; если обнаружена неисправность, на дисплее появится код ошибки;
- нажать любую кнопку лицевой панели, чтобы завершить самотестирование. Генератор не прошедший опробование, бракуют и направляют в ремонт.

7.3 Определение метрологических характеристик

7.3.1 Определение погрешности установки частоты

7.3.1.1 Поверяемый генератор подключить к частотомеру 53132A (см. рисунок 1) с помощью 50-омного BNC кабеля.

7.3.1.2 На поверяемом генераторе нажать клавишу **Default** на лицевой панели, затем клавишу **OK**, чтобы восстановить заводские настройки.

7.3.1.3 На поверяемом генераторе выполнить следующие установки:

- выбрать функцию Синус, нажав последовательно клавиши Sine и Continuous;

- установить значение частоты выходного сигнала 1,000000 МГц;

- установить значение амплитуды выходного сигнала 1,00 В (размах);

- включить канал Ch1, нажав кнопку On над его разъемом.

7.3.1.4 Измерить частоту выходного сигнала.

7.3.1.5 Нажать клавишу Pulse на лицевой панели и измерить значение частоты.

Результаты поверки считать положительными, если измеренные значения частоты находятся в пределах от 0,999999 до 1,000001 МГц.

7.3.2 Определение погрешности установки амплитуды

7.3.2.1 Соединить мультиметр с поверяемым генератором с помощью 50-омного кабеля через 50-омную проходную нагрузку (Рисунок 2).

7.3.2.2 На поверяемом генераторе выполнить следующие установки:

- выбрать функцию Синус, нажав последовательно клавиши Sine и Continuous;

- установить значение частоты выходного сигнала 1,000000 кГц;

- установить значение амплитуды выходного сигнала в соответствии с таблицей 3 (СКЗ);

- включить канал Ch1, нажав кнопку On над его разъемом.

7.3.2.3 Измерить значение амплитуды выходного сигнала и результат занести в таблицу 3.

Рисунок 2 - Определение погрешности установки амплитуды выходного сигнала.

7.3.2.4 Повторить операции по 7.3.2.1 – 7.3.2.3 для канала 2 (Ch2).

Таблица 3							
Установленное	Нижний предел		Измеренное	Верхний пред	Верхний предел		
значение ам- плитуды	AFG3021B/ AFG3022B	AFG3011	значение ам- плитуды	AFG3021B/ AFG3022B	AFG3011		
30 мВ	28,7 мВ	28,693 мВ		31,3 мВ	31,307 мВ		
300 мВ	296 мВ	293,29 мВ		304 мВ	306,71 мВ		
800 мВ	791 мВ	783,29 мВ		809 мВ	816,71 мВ		
1,500 B	1,484 B	1,4693 мВ		1,516 B	1,5307 B		
2,000 B	1,979 B	1,9593 мВ		2,021 B	2,0407 B		
2,500 B	2,484 B	2,4493 мВ		2,526 B	2,5507 B		
3,500 B	3,464 B	3,4293 мВ		3,536 B	3,5707 B		

Результаты поверки считать положительными, если измеренные значения амплитуды находятся в пределах, указанных в таблице 3.

7.3.3 Определение погрешности установки напряжения смещения постоянного тока

7.3.3.1 Соединить мультиметр с поверяемым генератором с помощью 50-омного кабеля через 50-омную проходную нагрузку (Рисунок 2).

7.3.3.2 На поверяемом генераторе выполнить следующие установки:

- выбрать функцию DC, нажав последовательно клавиши More > More Waveform Menu > DC;

- установить значение частоты выходного сигнала 1,000000 кГц;

- установить значение смещения в соответствии с таблицей 4.

- включить канал Ch1, нажав кнопку On над его разъемом.

7.3.3.3 Измерить значение напряжения смещения и результат занести в таблицу 4.

7.3.3.4 Повторить операции по 7.3.3.1 – 7.3.3.3 для канала 2 (Ch2).

Таблица 4

Установленное	Нижний предел, В		Измеренное	Верхний предел, В		
значение сме- щения, В	AFG3021B/ AFG3022B	AFG3011	значение смещения	AFG3021B/ AFG3022B	AFG3011	
5,000	4,945 B	4,890		5,055	5,110	
0,000	минус 0,005	минус 0,010		0,005	0,010	
минус 5,000	минус 5,055	минус 5,110		минус 4,945	минус 4,890	

Результаты поверки считать положительными, если измеренные значения амплитуды находятся в пределах, указанных в таблице 4.

7.3.4 Определение неравномерности амплитуды сигнала синусоидальной формы

7.3.4.1 Соединить мультиметр с поверяемым генератором с помощью 50-омного кабеля через 50-омную проходную нагрузку (Рисунок 2).

7.3.4.2 На поверяемом генераторе выполнить следующие установки:

- выбрать функцию Sine, нажав клавишу Sine на лицевой панели;

- установить значение частоты выходного сигнала 100,0000 кГц;

- установить единицу измерения амплитуды dBm, нажав последовательно клавиши

TopMenu > Amplitude/Level Menu > -more > Units > dBm;

- установить значение амплитуды 4,0 dBm;

- включить канал Ch1, нажав кнопку On над его разъемом.

7.3.4.3 Измерить значение уровня сигнала на частоте 100 кГц и результат занести в таблицу 5 или 6 как опорное значение уровня А_{ОПОРН}.

7.3.4.4 Изменять частоту выходного сигнала поверяемого генератора в соответствии с таблицами 5 - 6, измеряя значение уровня А_{ИЗМ} и результат измерений в виде выражения (А_{ОПОРН} - А_{ИЗМ})/ А_{ОПОРН} заносить в третий столбец таблиц 5 или 6.

7.3.4.5 Повторить операции по 7.3.4.1 – 7.3.4.4 для канала 2 (Ch2).

Результаты поверки считать положительными, если измеренные значения частотной неравномерности уровня сигнала (А_{ОПОРН} - А_{ИЗМ})/ А_{ОПОРН} находятся в пределах, указанных в таблицах 5 и 6.

Таблица 5 – Генераторы AFG3021B/ AFG3022B

Установленное	Нижний предел, дБ	(А _{ОПОРН} - А _{ИЗМ})/ А _{ОПОРН}	Верхний предел
значение частоты			
100,00 кГц		$A_{O\Pi OPH}$	
500,00 кГц	минус 0,15 дБ		0,15 дБ
1,00 МГц	минус 0,15 дБ		0,15 дБ
5,00 МГц	минус 0,30 дБ		0,30 дБ
15,00 МГц	минус 0,30 дБ		0,30 дБ
25,00 МГц	минус 0,50 дБ		0,50 дБ

Таблица 6 - Генератор AFG3011

Установленное	Нижний предел	(Аопорн - Аизм)/ Аопорн	Верхний предел
значение частоты			
100,00 кГц		Аопорн	
500,00 кГц	-0,15 дБ		+0,15 дБ
1,00 МГц	-0,15 дБ		+0.15 дБ
5,00 МГц	-0,30 дБ		+0,30 дБ
10,00 МГц	-0,30 дБ		+0,30 дБ

7.3.5 Определение уровня гармонических составляющих в выходном сигнале

7.3.5.1 Поверяемый генератор подключить к анализатору спектра (см. рисунок 3) с помощью 50 - омного BNC кабеля через 50-омную проходную нагрузку.

7.3.5.2 На поверяемом генераторе нажать клавишу **Default** на лицевой панели, затем клавишу **OK**, чтобы восстановить заводские настройки.

Рисунок 3 - Определение уровня гармонических составляющих

7.3.5.3 На поверяемом генераторе выполнить следующие установки:

- выбрать функцию Sine, нажав клавишу Sine на лицевой панели;

- установить значение частоты выходного сигнала 20,00 кГц;

- установить единицу измерения амплитуды V_{PP} (размах), нажав последовательно кла-

виши TopMenu > Amplitude/Level Menu > -more > Units > V_{PP};

- установить значение амплитуды 1,00 V_{PP};

- включить канал Ch1, нажав кнопку **On** над его разъемом.

7.3.5.4 Произвести установки на анализаторе спектра в соответствии с установкой частоты на поверяемом генераторе.

7.3.5.5 Измерить значение уровня сигнала на основной частоте. Использовать этот уровень как опорную величину А_{ОПОРН} в операциях по п. 7.3.5.6.

7.3.5.6 Измерить уровни высших гармоник по отношению к уровню сигнала на основной частоте и занести результаты в таблицы 7, 8.

7.3.5.7 Повторить операции по 7.3.5.2 – 7.3.5.6 для канала 2 (Ch2).

Результаты поверки считать положительными, если уровни высших гармоник по отношению к А_{ОПОРН} ниже предельного значения, приведенного в последнем столбце таблиц 7, 8.

Таблица 7

Анализатор спектра]	Измеренные значения гармоник				Предел, дБс	
Центр.	Полоса	Полоса	Аопорн	2 гар-	3 гар-	4 гар-	5 гар-	
частота	обзора	разре-		моника	моника	моника	моника	
	_	шения						
100 кГц	200 кГц	500 Гц	20 кГц	40 кГц	60 кГц	80 кГц	100 кГц	минус 60
500 кГц	1 МГц	2 кГц	100 кГц	200 кГц	300 кГц	400 кГц	500 кГц	минус 60
5 МГц	10 МГц	20 кГц	1 МГц	2 МГц	3 МГц	4 МГц	5 МГц	минус 50
125 МГц	250 МГц	20 кГц	25 МГц	50 МГц	75 МГц	100МГц	125МГц	минус 40
	Анал Центр. частота 100 кГц 500 кГц 5 МГц 125 МГц	Анализатор спек Центр. Полоса частота обзора 100 кГц 200 кГц 500 кГц 1 МГц 5 МГц 10 МГц 125 МГц 250 МГц	Анализатор спектра Центр. Полоса частота обзора 100 кГц 200 кГц 500 кГц 1 МГц 5 МГц 10 МГц 250 МГц 250 МГц	Анализатор спектра Полоса Полоса Аопорн центр. Полоса полоса Аопорн частота обзора разре- шения 100 кГц 200 кГц 500 Гц 20 кГц 500 кГц 1 МГц 2 кГц 100 кГц 5 МГц 10 МГц 20 кГц 1 МГц 125 МГц 250 МГц 20 кГц 25 МГц	Анализатор спектра Измеренны Центр. Полоса Полоса Аопорн 2 гар-моника частота обзора разре- шения моника моника 100 кГц 200 кГц 500 Гц 20 кГц 40 кГц 500 кГц 1 МГц 2 кГц 100 кГц 200 кГц 5 МГц 10 МГц 20 кГц 1 МГц 2 МГц 125 МГц 250 МГц 20 кГц 25 МГц 50 МГц	Анализатор спектра Измеренные значения Центр. Полоса Полоса Аопорн 2 гар- 3 гар- частота обзора разре- моника моника моника 100 кГц 200 кГц 500 Гц 20 кГц 40 кГц 60 кГц 500 кГц 1 МГц 2 кГц 100 кГц 300 кГц 5 МГц 10 МГц 20 кГц 3 МГц 125 МГц 250 МГц 20 кГц 25 МГц 50 МГц 75 МГц	Анализатор спектра Измеренные значения гармоник Центр. Полоса Полоса Аопорн 2 гар- 3 гар- 4 гар- частота обзора разре- моника моника моника моника 100 кГц 200 кГц 500 Гц 20 кГц 40 кГц 60 кГц 80 кГц 500 кГц 1 МГц 2 кГц 100 кГц 200 кГц 300 кГц 400 кГц 5 МГц 10 МГц 20 кГц 1 МГц 2 МГц 3 МГц 4 МГц 125 МГц 250 МГц 20 кГц 25 МГц 50 МГц 100 МГц 100 МГц	Анализатор спектра Измеренные значения гармоник Центр. Полоса Полоса Аопорн 2 гар- 3 гар- 4 гар- 5 гар- частота обзора разре- моника моника моника моника 100 кГц 200 кГц 500 Гц 20 кГц 40 кГц 60 кГц 80 кГц 100 кГц 500 кГц 1 МГц 2 кГц 100 кГц 200 кГц 500 кГц 500 кГц 5 МГц 10 МГц 20 кГц 1 МГц 2 МГц 3 МГц 4 МГц 5 МГц 125 МГц 250 МГц 20 кГц 25 МГц 25 МГц 20 кГц 25 МГц 125 МГц 50 МГц 125 МГц 12

Таблица 8

AFG3011	Анализатор спектра			Измеренные значения гармоник					Предел,
									дБс
Частота	Центр.	Полоса	Полоса	Аопорн	2 гармо-	3 гар-	4 гар-	5 гар-	
	частота	обзора	разре-		ника	моника	моника	моника	
			шения						
20 кГц	100 кГц	200 кГц	500 Гц	20 кГц	40 кГц	60 кГц	80 кГц	100 кГц	минус 55
100 кГц	500 кГц	1 МГц	2 кГц	100 кГц	200 кГц	300 кГц	400 кГц	500 кГц	минус 55
1 МГц	5 МГц	10 МГц	20 кГц	1 МГц	2 МГц	3 МГц	4 МГц	5 МГц	минус 45
10 МГц	10 МГц	20 МГц	20 кГц	10 МГц	20 МГц	30 МГц	40 МГц	50 МГц	минус 45
	/50 МГц	/100 МГц	/20 кГц						

7.3.6 Определение суммарных гармонических искажений

7.3.6.1 Поверяемый генератор подключить к анализатору спектра (см. рисунок 3) с помощью 50 - омного BNC кабеля через 50-омную проходную нагрузку.

7.3.6.2 На поверяемом генераторе выполнить следующие установки:

- выбрать функцию Sine, нажав клавише Sine на лицевой панели;

- установить значение частоты выходного сигнала 20,00 кГц;

- установить единицу измерения амплитуды V_{PP} (размах), нажав последовательно кла-

виши TopMenu > Amplitude/Level Menu > -more > Units > V_{PP};

- установить значение амплитуды 1,00 V_{PP};

- включить канал Ch1, нажав кнопку On над его разъемом.

7.3.6.3 На анализаторе спектра сделать следующие установки:

- центральная частота – 100 кГц;

- полоса обзора – 200 кГц;

- полоса разрешения – 500 Гц.

7.3.6.4 Измерить и записать уровни семи гармоник синусоидального сигнала 20 кГц (от V_1 до V_7).

7.3.6.5 Вычислить значение суммарных гармонических искажений (СГИ) по формуле:

$$C\Gamma И = \frac{\sqrt{\sum V_n^2}}{V_1}$$

7.3.6.6 Повторить операции по 7.3.6.2 – 7.3.6.5 для канала 2 (Ch 2). Результаты поверки считать положительными, если значение СГИ меньше 0,2 %.

7.3.7 Определение уровня негармонических составляющих в выходном сигнале

7.3.7.1 Поверяемый генератор подключить к анализатору спектра (см. рисунок 3) с помощью 50 - омного BNC кабеля через 50-омную проходную нагрузку.

7.3.7.2 На поверяемом генераторе выполнить следующие установки:

- выбрать функцию Sine, нажав клавишу Sine на лицевой панели;

- установить значение частоты выходного сигнала 20,00 кГц;

- установить единицу измерения амплитуды V_{PP} (размах), нажав последовательно клавиши **TopMenu** > **Amplitude**/Level Menu > -more > Units > V_{PP};

- установить значение амплитуды 1,00 V_{PP};

- включить канал Ch1, нажав кнопку On над его разъемом.

7.3.7.3 На анализаторе спектра установить центральную частоту 10 МГц. Другие установки анализатора спектра показаны в нижеследующих таблицах.

7.3.7.4 Измерить максимальное значение паразитных негармонических составляющих выходного сигнала на каждой частоте и результаты занести в таблицы 9, 10.

7.3.7.5 На анализаторе спектра установить центральную частоту 300 МГц. Другие установки анализатора спектра показаны в нижеследующих таблицах.

7.3.7.6 Измерить максимальное значение паразитных негармонических составляющих выходного сигнала на каждой частоте и результаты занести в таблицы 9, 10.

7.3.7.7 Повторить операции по 7.3.7.2 – 7.3.7.6 для канала 2 (Ch2).

Результаты поверки считать положительными, если уровни негармонических составляющих по отношению к значению амплитуды выходного сигнала ниже предельного значения, приведенного в последнем столбце таблиц 9, 10. Таблица 9

AFG3021B/	Установки анализатора				Измерения	
AFG3022B		спектра				
Частота	Цен-	Полоса	Полоса	Частота	Максималь-	Предел, дБс
	тральная	обзора,	разре-	негармо-	ный уровень	
	частота,	ΜΓц	шения,	нического	негармониче-	
	ΜΓц		кГц	сигнала	ского сигнала	
100,00 кГц	10	20	20			минус 60
	300	600	20			
1,00 МГц	10	20	20			минус 50
	300	600	20			
10,00 МГц	10	20	20			минус 50
	300	600	20			
25,00 МГц	10	20	20			минус 50
	300	600	20			

Таблица 10							
AFG3011	Установки анализатора			Измерения			
		спектра			-		
Частота	Цен-	Полоса	Полоса	Частота	Максимальный	Предел, дБс	
	тральная	обзора,	разре-	негармо-	уровень негар-		
	частота,	ΜГц	шения,	нического	монического		
	ΜГц		кГц	сигнала	сигнала		
100,00 кГц	10	20	20			минус 60	
	300	600	20				
1,00 МГц	10	20	20			минус 50	
	300	600	20				
10,00 МГц	10	20	20			минус 50	
	300	600	20				

7.3.8 Определение длительности фронта и среза сигнала прямоугольной формы

7.3.8.1 Поверяемый генератор подключить к осциллографу (см. рисунок 4) с помощью 50-омного ВNC кабеля.

7.3.8.2 На поверяемом генераторе выполнить следующие установки:

- выбрать функцию Square, нажав клавишу Square на лицевой панели;

- установить значение частоты выходного сигнала 10,00 МГц (для AFG3011 -2 МГц);

- установить единицу измерения амплитуды V_{PP} (размах), нажав последовательно кла-

виши TopMenu > Amplitude/Level Menu > -more > Units > V_{PP};

- установить значение амплитуды 1,00 V_{PP};

- установить значение смещения 0,00 V, нажав последовательно клавиши лицевой панели **TopMenu** > **Offset/Low**;

- включить канал Ch1, нажав кнопку On над его разъемом.

Рисунок 4 - Определение длительности фронта и среза импульса

7.3.8.3 Настроить осциллограф так, чтобы амплитуда прямоугольного сигнала соответствовала 5-ти делениям.

7.3.8.4 Измерить на экране осциллографа длительность фронта и среза каждого импульса на уровне от 10 до 90 %.

7.3.8.5 Повторить операции по 7.3.8.2 – 7.3.8.4 для канала 2 (Ch2).

Результаты поверки считать положительными, если измеренные максимальные значения длительности фронта и среза импульсов не превышают предельных значений, приведенных в последнем столбце таблицы 11.

Таблица 11				
Тип генера-	Амплитуда сигна-	Чувствительность ос	Предельное зна-	
тора	ла (размах), В	по вертикали	по горизонтали,	чение, нс, не бо-
		мВ/дел	нс/дел	лее
AFG3021B/	1,0	200	5	18
AFG3022B	10.0	200 0 0770110070	5	10
	10,0	200 c artenoaro-	5	18
		ром х10		
AFG3011	1,0	200	20	50
	10,0	200 с аттенюато-	20	50
		ром х10		

8 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

Начальник НИО-1 ФГУП «ВНИИФТРИ»

В.З. Маневич

8.1 При выполнении операций поверки оформляются протоколы по произвольной форме.

8.2 При положительных результатах поверки выдается свидетельство о поверке, при отрицательных - извещения о непригодности с указанием причин забракования в соответствии с ПР 50.2.006-94.

Врио начальника отдела

Таблица 11

ГЦИ СИ «Воентест» 32 ГНИИИ МО РФ

А.С. Гончаров

Начальник лаборатории

ГЦИ СИ «Воентест»32 ГНИИИ МО РФ

А.В. Клеопин