

Измерители показателей качества электрической энергии «Ресурс - UF2»

Методика поверки

ЭТ.422252.009 МП

Настоящая инструкция устанавливает методы и средства поверки при выпуске из производства, в эксплуатации и после ремонта измерителей показателей качества электрической энергии «Pecypc-UF2», «Pecypc-UF2C», «Pecypc-UF2M» (далее по тексту – измерители).

Периодичность поверки в процессе эксплуатации и хранении устанавливается предприятием, использующим измеритель, с учетом условий и интенсивности его эксплуатации, но не реже одного раза в 2 года.

1 Обозначения

В настоящем документе использованы следующие обозначения:

 $U_{\text{ном}}$ – номинальное значение напряжение;

 I_{HOM} – номинальное значение силы тока;

 δU_A , δU_B , δU_C , δU_N — относительные отклонения напряжений основной частоты от номинального значения (здесь и далее A, B, C, N — обозначение фазы);

 δU_{AB} , δU_{BC} , δU_{CA} — относительные отклонения междуфазных напряжений основной частоты от номинального значения (здесь и далее AB, BC, CA — обозначение междуфазного напряжения);

 δUt - размах изменения напряжения;

 U_A , U_B , U_C , U_N – действующие значения фазных напряжений;

 U_{AB} , U_{BC} , U_{CA} – действующие значения междуфазных напряжений;

 U_{I} – напряжение прямой последовательности трехфазной системы междуфазных напряжений;

 U_2 — напряжение обратной последовательности трехфазной системы междуфазных напряжений;

 U_{θ} – напряжение нулевой последовательности трехфазной системы фазных напряжений;

 K_{2U} – коэффициент несимметрии напряжений по обратной последовательности;

 ${\it K}_{0U}$ – коэффициент несимметрии напряжений по нулевой последовательности;

 Δf – отклонение частоты от номинального значения;

 $\phi_{\textit{UAB}}$, $\phi_{\textit{UBC}}$, $\phi_{\textit{UCA}}$ — угол фазового сдвига между фазными напряжениями;

 $\phi_{U(n)}$ — начальный фазовый угол n-ой гармонической составляющей фазного напряжения;

 K_U – коэффициент искажения синусоидальности напряжений;

 K_{UA} , K_{UB} , K_{UC} , K_{UN} - коэффициенты искажения синусоидальности фазных напряжений;

 $K_{UAB},\ K_{UBC},\ K_{UCA}$ - коэффициенты искажения синусоидальности междуфазных напряжений;

 $K_{U(n)A}, K_{U(n)B}, K_{U(n)C}, K_{U(n)N}$ - коэффициенты n-ых гармонических составляющих фазных напряжений;

 $K_{U(n)AB}, K_{U(n)BC}, K_{U(n)CA}$ - коэффициенты n-ых гармонических составляющих междуфазных напряжений;

 $I_{(I)A}$, $I_{(I)B}$, $I_{(I)C}$, $I_{(I)N}$ — действующие значения силы тока основной частоты;

 I_{A} , I_{B} , I_{C} , I_{N} – действующие значения силы тока;

 I_I – сила тока прямой последовательности;

 I_2 – сила тока обратной последовательности;

 I_{θ} – сила тока нулевой последовательности;

 $\phi_{\textit{UIA}}$, $\phi_{\textit{UIB}}$, $\phi_{\textit{UIC}}$, $\phi_{\textit{UIN}}$ — угол фазового сдвига между напряжением и током основной частоты;

 $\phi_{UI(n)}$ — угол фазового сдвига между n-ми гармоническими составляющими напряжения и тока;

 ϕ_{UII} — угол фазового сдвига между напряжением прямой последовательности системы фазных напряжений и током прямой последовательности;

 ϕ_{UI2} — угол фазового сдвига между напряжением обратной последовательности системы фазных напряжений и током обратной последовательности;

 ϕ_{UI0} — угол фазового сдвига между напряжением нулевой последовательности системы фазных напряжений и током нулевой последовательности;

 K_{I} - коэффициент искажения синусоидальности тока;

 $K_{IA}, K_{IB}, K_{IC}, K_{IN}$ - коэффициенты искажения синусоидальности фазных токов;

 $K_{I(n)A}, K_{I(n)B}, K_{I(n)C}, K_{I(n)N}$ - коэффициенты n-ых гармонических составляющих фазных токов;

 $\Delta t_{\rm n}$ – длительность провала напряжения;

 $\Delta t_{\text{пер}U}$ – длительность временного перенапряжения;

 $\delta U_{\rm n}$ – глубина провала напряжения;

 $\mathbf{K}_{\text{пер }U}$ – коэффициент временного перенапряжения;

N – количество провалов или временных перенапряжений;

 P_{St} - кратковременная доза фликера,

 P_{Lt} - длительная доза фликера,

 $P_{\rm ABC}$ – трехфазная активная мощность;

 P_{A} , P_{B} , P_{C} – однофазные активные мощности;

 Q_{ABC} – трехфазная реактивная мощность;

 $\boldsymbol{Q}_{\mathrm{A}}, \boldsymbol{Q}_{\mathrm{B}}, \boldsymbol{Q}_{\mathrm{C}}$ – однофазные реактивные мощности;

 $oldsymbol{S}_{\mathrm{ABC}}$ – трехфазная полная мощность;

 S_{A}, S_{B}, S_{C} – полные однофазные мощности;

 P_0 – значение активной мощности измеренное образцовым счетчиком;

 ${\it Q}_0$ – значение реактивной мощности измеренное образцовым счетчиком.

2 Операции поверки

2.1 При проведении поверки должны быть выполнены операции, указанные в таблице 2.1.

Таблица 2.1 - Операции поверки

Наименование операции	Номер пункта
Подготовка к проведению поверки	6
Внешний осмотр	7.1
Проверка электрического сопротивления изоляции	7.2
Опробование	7.3
Определение метрологических характеристик	7.4
Оформление результатов поверки	8

3 Средства поверки

3.1 При проведении поверки рекомендуется применять основные и вспомогательные средства поверки, указанные в таблице 3.1.

Таблица 3.1 - Основные и вспомогательные средства поверки

Наименование средств поверки	Основные технические характеристики	Технические требования
Многофункциональный калибратор переменного напряжения и тока «Ресурс-К2»	относительная погрешность формирования напряжения $ \pm \left[0.05 + 0.01 \cdot (\textbf{\textit{U}}_{\textbf{Hom}}/\textbf{\textit{U}} - 1) \right], $ относительная погрешность формирования силы тока $ \pm \left[0.05 + 0.01 \cdot (\textbf{\textit{I}}_{\textbf{Hom}}/\textbf{\textit{I}} - 1) \right] $	TY 422953 - 005 - 53718944 - 00
Образцовый электронный трехфазный ваттметр-счетчик ЦЭ6802	класс точности при измерении: – активной мощности (энергии) – 0,05 %; – реактивной мощности (энергии) – 0,1 %	ТУ 25-7565.010-93
Прибор для поверки вольтметров переменного тока B1-9	диапазон выходных напряжений от 0.01 до 10 В, погрешность $\pm (0.05 + (0.005))$ /Uн	ЯЫ2.761005 ТУ
Мегомметр Ф4101	диапазон измерений $0-20$ ГОм, относительная погрешность $\pm 2,5$ %	ТУ 25-04.2467-75
Секундомер СОСпр-2б-2	Класс точности - второй	ТУ 25.1894.003-90
Радиоприёмник		

- 3.2 Допускается применение других основных и вспомогательных средств поверки, обеспечивающих определение метрологических характеристик с требуемой точностью.
- 3.3 Все средства поверки должны быть исправны и иметь свидетельства (отметки в формулярах или паспортах) о поверке.

4 Требования безопасности

- 4.1 При поверке должны быть соблюдены требования безопасности ГОСТ 12.3.019, ГОСТ 22261, ГОСТ 24855, "Правил технической эксплуатации электроустановок потребителей" и "Правил техники безопасности при эксплуатации электроустановок потребителей", а также меры безопасности, изложенные в руководстве по эксплуатации измерителя и другого применяемого оборудования.
- 4.2 Лица, допускаемые к поверке измерителя, должны иметь квалификационную группу по технике безопасности не ниже III.
- 4.3 Перед поверкой средства измерений, которые подлежат заземлению, должны быть надежно заземлены. Подсоединение зажимов защитного заземления к контуру заземления должно производиться ранее других соединений, а отсоединение после всех отсоединений.

5 Условия поверки

При проведении поверки должны соблюдаться следующие условия:

- температура окружающего воздуха, °С.....от 15 до 25;
- атмосферное давление, кПа (мм рт. ст.)от 84 до 106 (от 630 до 795);
- частота напряжения электропитания, Гц от 49,5 до 50,5;

- действующее значение напряжения электропитания, В от 215,6 до 224,4;
- коэффициент искажения синусоидальности напряжения электропитания, не более, %......

6 Подготовка к проведению поверки

Перед проведением поверки необходимо выполнить следующие операции:

- а) выдержать измеритель в условиях окружающей среды, указанных в 5, не менее 2 ч, если он находился в других климатических условиях;
- б) соединить зажимы защитного заземления используемых средств поверки с контуром заземления;
- в) подключить средства поверки к сети электропитания, включить и дать им прогреться в течение времени, указанного в технической документации на них.

7 Проведение поверки

7.1 Внешний осмотр

При внешнем осмотре измерителя должно быть установлено:

- а) соответствие комплектности перечню, указанному в паспорте;.
- б) соответствие номера, указанного на маркировочной планке, номеру, записанному в паспорте;
 - в) наличие четкой маркировки;
 - г) наличие предохранителей соответствующего номинала;
- д) отсутствие механических повреждений, которые могут повлиять на его работу (повреждение корпуса, разъемов, клавиатуры, индикатора);

Измерители, имеющие дефекты, бракуются и направляются в ремонт.

7.2 Проверка электрического сопротивления изоляции

Сопротивление изоляции измеряется мегомметром Ф4101 с рабочим напряжением 500 В между следующими цепями:

- а) соединенными между собой контактами разъема электропитания и корпусом (зажимом защитного заземления);
- б) соединенными между собой измерительными входами и корпусом (зажимом защитного заземления);
- в) соединенными между собой токовыми измерительными входами и соединенными между собой измерительными входами напряжения;
 - г) токовыми измерительными входами разных каналов;
- д) входами интерфейса RS485 и соединенными между собой входами электропитания, измерения, зажимом защитного заземления;
- е) соединенными между собой линиями интерфейса RS-232 и соединенными между собой входами электропитания, измерения, зажимом защитного заземления, линиями интерфейса RS-485.

Отсчёт результата измерения следует производить не ранее, чем через 30 с после подачи измерительного напряжения.

Измеритель считается выдержавшим испытание, если значение сопротивления изоляции не менее 20 МОм.

7.3 Опробование

При опробовании следует выполнить следующие операции:

- а) подготовить измеритель к работе согласно руководству по эксплуатации;
- б) включить измеритель в сеть электропитания;

- в) проверить работу сигнализации включения электропитания и убедиться в прохождении всех стартовых тестов;
 - г) произвести пуск измерителя;
- д) проверить сохранность введенных в память измерителя исходных данных и непрерывную работу часов при отключении электропитания на время 30 мин.
 - 7.4 Определение метрологических характеристик
- 7.4.1 Определение погрешности при измерении показателей качества электрической энергии, характеристик напряжения, силы тока и углов фазовых сдвигов.
 - 7.4.1.1 Используемое оборудование и схемы поверки

Определение метрологических характеристик измерителя производится с помощью многофункционального калибратора переменного напряжения и тока «Ресурс–К2» (далее – калибратор).

Схемы поверки представлены на рисунках Б.1,...,Б.4.

7.4.1.2 Характеристики испытательных сигналов

Значения характеристик 5 испытательных сигналов представлены в таблице 7.1. Значения коэффициентов *n*-ых гармонических составляющих фазных напряжений и токов для разных форм сигналов представлены в таблице 7.2. Значения коэффициентов *n*-ых гармонических составляющих междуфазных напряжений представлены в таблице 7.3.

Поверка при номинальном значении измеряемого напряжения $220/(220\cdot\sqrt{3})$ В и номинальном значении измеряемого тока 5 А производится при всех испытательных сигналах таблицы 7.1.

Поверка при номинальном значении измеряемого напряжения $(100/\sqrt{3})/100~\mathrm{B}$ и номинальном значении измеряемого тока 1 А производится при всех испытательных сигналах таблицы 7.1.

- 7.4.1.3 При задании каждого испытательного сигнала производится не менее 5 измерений всех характеристик. За погрешность измерителя принимается максимальное значение погрешности.
- 7.4.1.4 Для определения погрешностей при измерении характеристик провалов и временных перенапряжений задается испытательный сигнал 1 из таблицы 7.1. Характеристики провалов и временных перенапряжений представлены в таблице 7.4.

7.4.1.5 Порядок операций

Для поверки рекомендуется использовать программу автоматизированной поверки ("Поверка Pecypc-UF2"), входящую в дополнительный комплект поставки калибратора «Ресурс-К2». В этом случае задание испытательных сигналов и обработка результатов измерений выполняются в автоматическом или автоматизированном режиме.

При проведении поверки следует выполнить следующие операции:

- а) Подключить измеритель к калибратору, как показано на рисунках Б.1 («Pecypc-UF2») или Б.3 («Pecypc-UF2C», «Pecypc-UF2M»). Подключение производить с помощью измерительных кабелей входящих в состав калибратора, используя цветовую маркировку изоляции проводов.
- б) Задать с помощью калибратора первый испытательный сигнал из таблицы 7.1 для напряжения с номинальным значением $220/(220\cdot\sqrt{3})$ В и силы тока с номинальным значением 5 А.
 - в) Произвести запись результатов измерений.

г) Выполнить действия б, в для испытательных сигналов номер 2, 3, 4, 5 таблицы 7.1.

Таблица 7.1 - Характеристики испытательных сигналов

Name Color	Таблица 7.1	- Характеристик	и испытательных сигн	алов		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Характери-			Испытательные сиг	гналы	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	стики	1	2	3	4	5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	δ U4 %	0	+20	-20	-10	+10
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		0	+20	-20	-10	+10
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		-				II.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					·	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	δU_{CA} , %					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	U_A	$oldsymbol{U}_{ ext{ iny HOM}}$	$1,2079 \cdot U_{\text{HOM}}$	$0.8245 \cdot U_{\text{HOM}}$	$0.9992 \cdot U_{\text{HOM}}$	$1,1163 \cdot U_{\text{HOM}}$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$U_{\scriptscriptstyle{\mathrm{HOM}}}$				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		<i>I</i> /		0.8245.II	0.9992.1/	1 1163. <i>II</i>
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		I/			0,0002 U	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		U _{HOM}		0,8245 <i>U</i> _{HOM}	0,9992·U _{HOM}	1,1103·U _{HOM}
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			1			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$U_{\scriptscriptstyle ext{HOM}}$				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	U_{CA}	$oldsymbol{U}_{ ext{ iny HOM}}$	$1,2079 \cdot U_{\scriptscriptstyle ext{HOM}}$	$0,8245 \cdot U_{\scriptscriptstyle ext{HOM}}$		$1,1373 \cdot U_{\scriptscriptstyle ext{HOM}}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	U_{I}	$oldsymbol{U}_{ ext{ iny HOM}}$	$1,2 \cdot U_{\text{HOM}}$	$0.8 \cdot U_{\scriptscriptstyle ext{HOM}}$	$0.897 \cdot U_{\text{HOM}}$	$1,0991 \cdot U_{\text{HOM}}$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		0				0.032· <i>U</i> _{vov}
Φειαε 120° 120° 120° 120° 120° 120° 120° 120° 120° 120° 115° Φεια 120° 120° 120° 120° 120° 120° 120° 120° 120° 130° 125° Δε, Για 0 -1 +1 -5 +5 +5 Κω, % 0 0 0 5,83 2,91 Κω, % 1 Tun 1 Tun 4 Tun 3 Tun 2 Tun 5 Κω, % 0 11,52 24,98 48,22 17,27 Κω, % 0 11,52 24,98 48,22 17,27 Κω, % 0 11,52 24,98 48,22 17,27 Κω, % 0 10,23 20,4 36,40			0			0.032.I/
Φ\(\text{Cet}\) 120° 120° 115° \(\text{Q\text{Cet}\) 120° 120° 130° 125° \(\text{Q\text{Cet}\) 120° 130° 125° \(\text{A}\), \(\text{F}\) 0 0 -1 +1 -5 +5 \(\text{A}\), \(\text{F}\) 0 0 0 5.83 2.91 \(\text{Kay}\), \(\text{\$\chin}\) 0 0 0 5.83 2.91 \(\text{Kay}\), \(\text{\$\chin}\) 0 0 0 5.83 2.91 \(\text{Kay}\), \(\text{\$\chin}\) 0 0 5.83 2.91 \(\text{Kay}\) 0 0 5.83 2.91 \(\text{Kay}\) 0 0 5.83 2.91 \(\text{Kay}\) 0 1<		·	, , ,			
Φ(CA) 120° 120° 130° 125° Δf, Γπ 0 -1 +1 -5 +5 KgC, % 0 0 0 5,83 2,91 KgC, % 0 0 0 5,83 2,91 Kgang Tun 1 Tun 4 Tun 3 Tun 2 Tun 5 Kgang Tun 1 Tun 4 Tun 3 Tun 2 Tun 5 Kgang Tun 1 Tun 4 Tun 3 Tun 2 Tun 5 Kgang 0 11,52 24,98 48,22 17,27 Kgang 0 10,23 20,4 36,40 15,00 Kgang 0 10,23 20,4						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Фивс					
	ϕ_{UCA}					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Δf , Гц	0	-1	+1	-5	+5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	K _{2II} , %	0	0	0	5,83	2,91
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0	0	0	5,83	2,91
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Тип 1	Тип 4	Тип 3		Ź
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	K _{U(n)A}					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$K_{U(n)N}$					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			·			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Λ <i>UB</i> , %					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	K _{UC} , %					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	K_{UN} , %		-			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	K_{UAB} , %		,		-	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	K_{UCA} , %	0	10,23	20,4	36,08	13,78
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$I_{\scriptscriptstyle \mathrm{HOM}}$	$1.2 \cdot I_{\text{HOM}} (0.4 I_{\text{HOM}})^{1}$	$0.1 \cdot I_{\text{HOM}}$	$0.2 \cdot I_{\text{HOM}}$	$0.5 \cdot I_{\text{HOM}} (0.1 I_{\text{HOM}})^{1}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			$1.2 \cdot \boldsymbol{I}_{\text{res}} \cdot (0.4 \boldsymbol{I}_{\text{res}})^{1)}$	0.1.1		$0.5 \cdot I_{\text{res}} (0.1 I_{\text{res}})^{1)}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				0,1.I	0.2.I	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		I HOM		0,1 I _{HOM}	0,2 I _{HOM}	0,5 I (0,1 I) ¹
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			45			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						$0.50/\cdot I_{\text{HOM}}(0.1014 I_{\text{HOM}})^{1/2}$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	I_B				$0,222 \cdot I_{\text{HOM}}$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	I_C	$I_{\scriptscriptstyle \mathrm{HOM}}$	$1,208 \cdot I_{\text{HOM}} (0,4027 I_{\text{HOM}})^{1)}$	$0,103 \cdot \boldsymbol{I}_{\text{HOM}}$	$0,222 \cdot I_{\text{HOM}}$	$0.507 \cdot I_{\text{HOM}} (0.1014 I_{\text{HOM}})^{1)}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$I_{\scriptscriptstyle \mathrm{HOM}}$				
$\begin{array}{ c c c c c c c c c c }\hline I_2 & 0 & 0 & 0 & 0 & 0,0116 I_{\text{HOM}} & 0,0146 I_{\text{HOM}} & (0,00292 \ I_{\text{HOM}})^{1/2} \\ \hline I_0 & 0 & 0 & 0 & 0,0116 I_{\text{HOM}} & 0,0146 I_{\text{HOM}} & (0,00292 \ I_{\text{HOM}})^{1/2} \\ \hline \phi_{UIA} & 0 & 30^{\circ} & 60^{\circ} & -30^{\circ} & -60^{\circ} \\ \hline \phi_{UIB} & 0 & 30^{\circ} & 60^{\circ} & -30^{\circ} & -60^{\circ} \\ \hline \phi_{UIC} & 0 & 30^{\circ} & 60^{\circ} & -30^{\circ} & -60^{\circ} \\ \hline \phi_{UIV} & 0 & 30^{\circ} & 60^{\circ} & -30^{\circ} & -60^{\circ} \\ \hline \phi_{UII} & 0 & 30^{\circ} & 60^{\circ} & -30^{\circ} & -60^{\circ} \\ \hline \phi_{UII} & 0 & 30^{\circ} & 60^{\circ} & -30^{\circ} & -60^{\circ} \\ \hline \phi_{UII} & 0 & 0 & 0 & -30,5^{\circ} & -61^{\circ} \\ \hline \phi_{UII} & 0 & 0 & 0 & -30,5^{\circ} & -61^{\circ} \\ \hline \phi_{UII} & 0 & 0 & 0 & -30,5^{\circ} & -61^{\circ} \\ \hline K_{I(n)A} & Tun 1 & Tun 4 & Tun 3 & Tun 2 & Tun 5 \\ \hline K_{I(n)B} & Tun 1 & Tun 4 & Tun 3 & Tun 2 & Tun 5 \\ \hline K_{I(n)R} & Tun 1 & Tun 4 & Tun 3 & Tun 2 & Tun 5 \\ \hline K_{I(n)N} & Tun 1 & Tun 4 & Tun 3 & Tun 2 & Tun 5 \\ \hline K_{I(n)N} & Tun 1 & Tun 4 & Tun 3 & Tun 2 & Tun 5 \\ \hline K_{I(n)N} & Tun 1 & Tun 4 & Tun 3 & Tun 2 & Tun 5 \\ \hline K_{I(n)N} & Tun 1 & Tun 4 & Tun 3 & Tun 2 & Tun 5 \\ \hline K_{I(n)N} & 0 & 11,52 & 24,98 & 48,22 & 17,27 \\ \hline K_{IB},\% & 0 & 11,52 & 24,98 & 48,22 & 17,27 \\ \hline K_{IC},\% & 0 & 11,52 & 24,98 & 48,22 & 17,27 \\ \hline K_{IN},\% & 0 & 11,52 & 24,98 & 48,22 & 17,27 \\ \hline K_{IN},\% & 0 & 11,52 & 24,98 & 48,22 & 17,27 \\ \hline K_{IN},\% & 0 & 11,52 & 24,98 & 48,22 & 17,27 \\ \hline K_{IN},\% & 0 & 11,52 & 24,98 & 48,22 & 17,27 \\ \hline K_{IN},\% & 0 & 11,52 & 24,98 & 48,22 & 17,27 \\ \hline K_{IN},\% & 0 & 11,52 & 24,98 & 48,22 & 17,27 \\ \hline K_{IN},\% & 0 & 11,52 & 24,98 & 48,22 & 17,27 \\ \hline K_{IN},\% & 0 & 11,52 & 24,98 & 48,22 & 17,27 \\ \hline K_{IN},\% & 0 & 11,52 & 24,98 & 48,22 & 17,27 \\ \hline K_{IN},\% & 0 & 11,52 & 24,98 & 48,22 & 17,27 \\ \hline K_{IN},\% & 0 & 11,52 & 24,98 & 48,22 & 17,27 \\ \hline K_{IN},\% & 0 & 11,52 & 24,98 & 48,22 & 17,27 \\ \hline K_{IN},\% & 0 & 11,52 & 24,98 & 48,22 & 17,27 \\ \hline K_{IN},\% & 0 & 11,52 & 24,98 & 48,22 & 17,27 \\ \hline K_{IN},\% & 0 & 11,52 & 24,98 & 48,22 & 17,27 \\ \hline K_{IN},\% & 0 & 11,52 & 24,98 & 48,22 & 17,27 \\ \hline K_{IN},\% & 0 & 11,52 & 24,98 & 48,22 & 17,27 \\ \hline K_{IN},\% & $		$I_{\scriptscriptstyle ext{HOM}}$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						•
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Φ_{UIA}					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Φ_{UIB}					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Φ_{UIC}	0	30°		-30°	-60°
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0	30°	60°	-30	-60
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0	30°	60°	-30°	-60°
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0				
$egin{array}{ c c c c c c c c c c c c c c c c c c c$			-			II.
$K_{I(n)B}$ Тип 1 Тип 4 Тип 3 Тип 2 Тип 5 $K_{I(n)C}$ Тип 1 Тип 4 Тип 3 Тип 2 Тип 5 $K_{I(n)N}$ Тип 1 Тип 4 Тип 3 Тип 2 Тип 5 $K_{I(n)N}$ Тип 1 Тип 4 Тип 3 Тип 2 Тип 5 $K_{I(n)N}$ 0 11,52 24,98 48,22 17,27 K_{IB} , % 0 11,52 24,98 48,22 17,27 K_{IC} , % 0 11,52 24,98 48,22 17,27 K_{IN} , % 0 11,52 24,98 48,22 17,27			-	,		
$K_{I(n)C}$ Тип 1 Тип 4 Тип 3 Тип 2 Тип 5 $K_{I(n)N}$ Тип 1 Тип 4 Тип 3 Тип 2 Тип 5 $K_{I(n)N}$ Тип 1 Тип 4 Тип 3 Тип 2 Тип 5 $K_{I(n)N}$ 0 11,52 24,98 48,22 17,27 K_{IC} , % 0 11,52 24,98 48,22 17,27 K_{IN} , % 0 11,52 24,98 48,22 17,27						
$K_{I(n)N}$ Тип 1 Тип 4 Тип 3 Тип 2 Тип 5 K_{LA} , % 0 11,52 24,98 48,22 17,27 K_{IB} , % 0 11,52 24,98 48,22 17,27 K_{IC} , % 0 11,52 24,98 48,22 17,27 K_{IN} , % 0 11,52 24,98 48,22 17,27						
K_{IA} , % 0 11,52 24,98 48,22 17,27 K_{IB} , % 0 11,52 24,98 48,22 17,27 K_{IC} , % 0 11,52 24,98 48,22 17,27 K_{IN} , % 0 11,52 24,98 48,22 17,27	$K_{I(n)C}$					
K_{IB} , % 0 11,52 24,98 48,22 17,27 K_{IC} , % 0 11,52 24,98 48,22 17,27 K_{IN} , % 0 11,52 24,98 48,22 17,27	$K_{I(n)N}$					
K_{IC} , % 0 11,52 24,98 48,22 17,27 K_{IN} , % 0 11,52 24,98 48,22 17,27	K_{IA} , %	•				
K_{IC} , % 0 11,52 24,98 48,22 17,27 K_{IN} , % 0 11,52 24,98 48,22 17,27	K_{IB} , %	0	11,52		48,22	
K _{IN} , % 0 11,52 24,98 48,22 17,27	K _{IC} , %	0	11,52	24,98	48,22	17,27
	K _{IN} , %	0			48,22	
	11	испытательного си	·	•	•	

Таблица 7.2 - Значения коэффициентов \mathbf{n} -ых гармонических составляющих фазных напряжений и токов

n Tok	Тип		Тип 2		Тип	3	Тип	4	Тип	5
n	$K_{U(n)}$	$\phi_{\mathrm{U}(\mathrm{n})}$,	$K_{U(n)}, K_{I(n)},$	$\varphi_{\mathrm{U}(\mathrm{n})}$,	$K_{U(n)}$,	$\phi_{\mathrm{U}(n)}$,	$K_{U(n)}$,	$\phi_{U(n)}$	$K_{U(n)}$,	$\phi_{\mathrm{U}(n)}$,
	$K_{I(n)}$, %	$\varphi_{UI(n)}$, 1)	0 /	$\varphi_{\mathrm{UI}(\mathrm{n})}$,	$K_{I(n)}$, %	$\varphi_{UI(n)}$,	$K_{I(n)}$, %	$\varphi_{UI(n)}$,		$\varphi_{UI(n)}$,
2	0	0	0	0	4	0	2	0	3	0
3	0	0	30	0	4	0	5	0	7,5	30°
4	0	0	0	0	4	0	1	0	1,5	0
5	0	0	0	0	4	0	6	0	9	60°
6	0	0	0	0	4	0	0,5	0	0,75	0
7	0	0	0	0	4	0	5	0	7,5	90°
8	0	0	0	0	4	0	0,5	0	0,75	0
9	0	0	0	0	4	0	1,5	0	2,25	120°
10	0	0	20	0	4	0	0,5	0	0,75	0
11	0	0	0	0	4	0	3,5	0	5,25	150°
12	0	0	0	0	4	0	0,2	0	0,3	0
13	0	0	0	0	4	0	3,0	0	4,5	180°
14	0	0	0	0	4	0	0,2	0	0,3	0
15	0	0	0	0	4	0	0,3	0	0,45	-150°
16	0	0	0	0	4	0	0,2	0	0,3	0
17	0	0	0	0	4	0	2,0	0	3	-120°
18	0	0	0	0	4	0	0,2	0	0,3	0
19	0	0	0	0	4	0	1,5	0	2,25	-90°
20	0	0	20	0	4	0	0,2	0	0,3	0
21	0	0	0	0	4	0	0,2	0	0,3	-60°
22	0	0	0	0	4	0	0,2	0	0,3	0
23	0	0	0	0	4	0	1,5	0	2,25	-30°
24	0	0	0	0	4	0	0,2	0	0,3	0
25	0	0	0	0	4	0	1,5	0	2,25	0
26	0	0	0	0	4	0	0,2	0	0,3	0
27	0	0	0	0	4	0	0,2	0	0,3	30°
28	0	0	0	0	4	0	0,2	0	0,3	0
29	0	0	0	0	4	0	1,32	0	1,92	60°
30	0	0	10	0	4	0	0,2	0	0,3	0
31	0	0	0	0	4	0	1,25	0	1,86	90°
32	0	0	0	0	4	0	0,2	0	0,3	0
33	0	0	0	0	4	0	0,2	0	0,3	120°
34	0	0	0	0	4	0	0,2	0	0,3	0
35	0	0	0	0	4	0	1,13	0	1,70	150°
36	0	0	0	0	4	0	0,2	0	0,3	0
37	0	0	0	0	4	0	1,08	0	1,62	180°
38	0	0	0	0	4	0	0,2	0	0,3	0
39	0	0	0	0	4	0	0,2	0	0,3	-150°
40	0 1) Пля сиги	0	5	0	4	0	0,2	0	0,3	0

¹⁾ Для сигналов напряжения начальная фаза *n*-ой гармонической составляющей, для сигналов тока угол фазового сдвига между соответствующими гармоническими составляющими тока и напряжения одноименной фазы

Таблица 7.3 – Значения коэффициентов *n*-ых гармонических составляющих междуфазных напряжений

пряже п	Тип 1		Тип 2		Тип 3	Тип 4		Тип 5		
	$K_{U(n)AB},$ $K_{U(n)BC},$ $K_{U(n)CA}$	$K_{U(n)AB}$	$K_{U(n)BC}$	$K_{U(n)CA}$	$K_{U(n)AB},$ $K_{U(n)BC},$ $K_{U(n)CA}$	$K_{U(n)AB},$ $K_{U(n)BC},$ $K_{U(n)CA}$	$K_{U(n)AB}$	$K_{U(n)BC}$	$K_{U(n)CA}$	
2	0	0	0	0	4	2	3	3,22	2,77	
3	0	9,48	0	8,57	0	0	0	1,16	1,10	
4	0	0	0	0	4	1	1,5	1,36	1,59	
5	0	0	0	0	4	6	9	10,18	7,48	
6	0	0	0	0	0	0	0	0,23	0,22	
7	0	0	0	0	4	5	7,5	6,01	8,26	
8	0	0	0	0	4	0,5	0,75	0,88	0,54	
9	0	0	0	0	0	0	0	1,02	0,97	
10	0	4,24	20	20,74	4	0,5	0,75	0,51	0,84	
11	0	0	0	0	4	3,5	5,25	6,22	3,18	
12	0	0	0	0	0	0	0	0,18	0,17	
13	0	0	0	0	4	3,0	4,5	2,46	5,07	
14	0	0	0	0	4	0,2	0,3	0,35	0,14	
15	0	0	0	0	0	0	0	0,33	0,31	
16	0	0	0	0	4	0,2	0,3	0,12	0,33	
17	0	0	0	0	4	2,0	3	3,47	1,02	
18	0	0	0	0	0	0	0	0,25	0,29	
19	0	0	0	0	4	1,5	2,25	0,58	2,42	
20	0	8,35	20	14,19	4	0,2	0,3	0,33	0,06	
21	0	0	0	0	0	0	0	0,28	0,27	
22	0	0	0	0	4	0,2	0,3	0,03	0,31	
23	0	0	0	0	4	1,5	2,25	2,37	0,11	
24	0	0	0	0	0	0	0	0,31	0,29	
25	0	0	0	0	4	1,5	2,25	0,12	2,14	
26	0	0	0	0	4	0,2	0,3	0,29	0,03	
27	0	0	0	0	0	0	0	0,33	0,31	
28	0	0	0	0	4	0,2	0,3	0,06	0,26	
29	0	0	0	0	4	1,32	1,92	1,68	0,47	
30	0	6,10	0	5,52	0	0	0	0,34	0,33	
31	0	0	0	0	4	1,25	1,86	0,66	1,42	
32	0	0	0	0	4	0,2	0,3	0,23	0,12	
33	0	0	0	0	0	0	0	0,35	0,34	
34	0	0	0	0	4	0,2	0,3	0,15	0,19	
35	0	0	0	0	4	1,13	1,7	1,08	0,89	
36	0	0	0	0	0	0	0	0,36	0,34	
37	0	0	0	0	4	1,08	1,62	1,03	0,84	
38	0	0	0	0	4	0,2	0,3	0,15	0,19	
39	0	0	0	0	0	0	0	0,35	0,34	
40	0	3,92	5	5,43	4	0,2	0,3	0,23	0,12	

Таблица 7.4 - Характеристики провалов и временных перенапряжений

	Характеристики	Обозначение фазы или междуфазного напряжения								
ный сигнал	провалов, пе- ренапряжений	A	В	С	N	AB	BC	CA		
	$\delta U_{\scriptscriptstyle \Pi}$, %	30	-	-	-	•	-	•		
1	$\Delta t_{\pi}^{(1)}$, c	30	-	-	-	•	-	•		
	N	1	-	-	-	•	-	•		
	$\delta U_{\scriptscriptstyle \Pi}$, %	ı	50	-	-	23,62	23,62	ı		
2	$\Delta t_{\pi}^{(1)}$, c	ı	1	-	-	1	1	ı		
	N	-	5	-	-	5	5	-		

	Характеристики		Обозначен	ние фазы и	ли между	разного на	апряжения	
ный сигнал	провалов, пе- ренапряжений	A	В	С	N	AB	BC	CA
	$\delta \mathit{U}_{\scriptscriptstyle \Pi},\%$	-	-	90	90	•	39,17	39,17
3	$\Delta t_{\Pi}^{(1)}$, c	-	-	0,1	0,1	•	0,1	0,1
	N	-	-	10	10	•	10	10
	$K_{nep\ U}$	1,15	-	-	-	•	-	•
4	$\Delta t_{\text{nep}U}^{(1)}$, c	30	-	-	-	ı	-	ı
	N	1	-	-	-	ı	-	ı
	$K_{nep\ U}$	-	1,3	-	-	1,15	1,15	ı
5	$\Delta t_{\text{nep}U}^{(1)}$, c	-	1	-	-	1	1	ı
	N	-	5	-	-	5	5	ı
	$K_{\text{nep }U}$	-	-	1,4	1,4	-	1,21	1,21
6	$\Delta t_{\text{nep}U}^{(1)}$, c	-	-	0,1	0,1	-	0,1	0,1
	N	-	-	10	10	-	10	10

¹⁾ Период повторения провалов и перенапряжений задается в два раза больше длительности формируемых провалог и перенапряжений.

- д) Задать с помощью калибратора испытательный сигнал номер 1.
- е) На выходах каналов напряжений калибратора поочередно сформировать провалы напряжений с характеристиками заданными в таблице 7.4.
 - ж) После окончания провалов напряжений считать результаты измерений.
- з) На выходах каналов напряжений калибратора поочередно сформировать временные перенапряжения с характеристиками, заданными в таблице 7.4.
- и) После окончания временных перенапряжений считать результаты измерений.
- к) На выходах каналов напряжений калибратора поочередно сформировать колебания напряжений с характеристиками:
 - размах изменения напряжения 1.46 %,
 - число изменений 7 в минуту.
- л) После окончания 30 минут считать результаты измерений. Заданное значение дозы фликера равно 1,0.
- м) Для характеристик, у которых нормируются абсолютные погрешности ΔX , вычислить значения погрешностей, по формуле:

$$\Delta X = X - X_0,$$

где X_0 – заданное значение характеристики;

X – измеренное значение характеристики;

н) Для характеристик, у которых нормируются относительные погрешности δX , вычислить значения погрешностей, в процентах, по формуле:

$$\delta X = (X - X_0)/X_0 \cdot 100.$$

о) Для характеристик, у которых нормируются приведенные погрешности γX , вычислить значения погрешностей, в процентах, по формуле:

$$\gamma X = (X - X_0)/X_{\text{HOM}} \cdot 100,$$

где $X_{\text{ном}}$ – номинальное значение измеряемой величины.

п) Подключить измеритель к калибратору «Pecypc-K2», как показано на рисунках Б.2 («Pecypc-UF2») или Б.4 («Pecypc-UF2C», «Pecypc-UF2M»). Подключение производить с помощью измерительных кабелей входящих в состав калибратора или измерителя, используя цветовую маркировку изоляции проводов.

- р) Выполнить действия $\boldsymbol{\delta}$ \boldsymbol{o} используя испытательные сигналы напряжения с номинальным значением (100/ $\sqrt{3}$)/100 В и силы тока с номинальным значением 1 А.
- 7.4.2 Определение погрешности при измерении действующего значения напряжения по входам «10 В».

7.4.2.1 Используемое оборудование и схемы поверки

Определение метрологических характеристик измерителя производится с помощью прибора для поверки вольтметров переменного тока В1-9 (далее - генератор). Операция выполняется для модификации «Ресурс-UF2MB». Измерительные входы напряжения 10 В прибора подключаются к выходу генератора.

7.4.2.2 Характеристики испытательных сигналов

Характеристики испытательных сигналов напряжения, формируемого генератором B1-9, представлены в таблице 7.5.

Таблица 7.5 – Характеристики испытательных сигналов при определении погрешностей по входу 10 В

No No	Напряжение	Частота
1	100 мВ	53 Гц
2	1 B	47 Гц
3	5 B	50 Гц

7.4.2.3 При задании каждого испытательного сигнала производится не менее 5 измерений всех характеристик. За погрешность измерителя принимается максимальное значение погрешности.

7.4.2.4 Порядок операций

Для поверки необходимо перевести измеритель в режим «Uвх 10 В», установив соответствующее значение параметра «I вх». После задания сигнала необходимо установить в измеряемом канале режим «10 В» и считать с индикатора прибора результат измерения напряжения.

При проведении поверки следует выполнить следующие операции:

- а) Подключить измеритель к генератору В1-9.
- б) Задать в измерителе режим работы «Uвх 10 В».
- в) Задать на выходе генератора первый сигнал из таблицы 7.5.
- г) Задать по фазе A режим «10 В», считать результаты измерений с индикатора прибора.
- д) Отменить по фазе A режим «10 В» и задать его по фазе B, считать результаты измерений с индикатора прибора.
 - е) аналогично произвести измерения по входу С и N.

Рассчитать погрешность измерения действующего значения напряжения.

- ж) Повторить операции 7.4.2.4 для всех испытательных сигналов.
- 7.4.3 Определение погрешности при измерении мощности
- 7.4.3.1 Определение погрешности производить методом образцового прибора. В качестве образцового прибора использовать ваттметр-счетчик образцовый трехфазный ЦЭ6802. В качестве источника фиктивной мощности используется многофункциональный калибратор переменного напряжения и тока «Ресурс-К2». При поверке определяется погрешность измерения трехфазной активной и реактивной мощности.
- 7.4.3.2 Схема поверки измерителя при измерении активной мощности прямого направления приведена на рисунке В.1.

Схема поверки измерителя при измерении реактивной мощности приведена на рисунке В.2.

- 7.4.3.3 Характеристики испытательных сигналов, задаваемых калибратором, указания на испытательные схемы, диапазоны измерений и формулы для расчета погрешностей приведены в таблице 7.6. При испытании задаются номинальные значения напряжения. Угол фазового сдвига между напряжениями 120°.
 - 7.4.3.5 Порядок операций при каждом испытательном сигнале:
 - а) собрать схему поверки,
 - б) задать испытательный сигнал,
- в) считать и записать в протокол значение мощности, измеренное поверяемым прибором (\boldsymbol{P} , Вт, \boldsymbol{Q} , вар,) и ЦЭ6802 (\boldsymbol{P}_0 , Вт, \boldsymbol{Q}_0 , вар,),
- г) рассчитать относительную погрешность при измерении активной мощности по формуле:

$$\delta P = ((P - P_0)/P_0) \cdot 100 \%,$$

д) рассчитать относительную погрешность при измерении реактивной мощности по формуле:

$$\delta Q = ((Q - Q_0)/Q_0) \cdot 100 \%,$$

- е) записать результаты в протокол,
- ж) при определении погрешности измерения полной мощности (сигнал 9) используются результаты измерений активной мощности (сигнал 5) и реактивной мощности (сигнал 6),
- з) значение погрешности измерения полной мощности определяется по формуле:

$$\delta S = ((S - S_o)/S_o) \cdot 100 \%,$$
 где S - полная мощность, измеренная поверяемым прибором, $S = \sqrt{P^2 + Q^2}$,

$$S_0$$
- полная мощность, измеренная ЦЭ6802, $S_0 = \sqrt{P_0^2 + Q_0^2}$

- 7.4.4 Определение погрешности при измерении энергии
- 7.4.4.1 Определение погрешности производится методом образцового прибора. В качестве образцового прибора используется электронный трехфазный ваттметр-счетчик ЦЭ6802. В качестве источника фиктивной мощности используется многофункциональный калибратор переменного напряжения и тока «Ресурс-К2».
 - 7.4.4.2 Схемы соединений приведены в приложении В.
- 7.4.4.3 Погрешность измерителя при измерении активной энергии определяется при задании испытательных сигналов таблицы 7.7.
- 7.4.4.4 Погрешность измерителя при измерении реактивной энергии определяется при задании испытательных сигналов таблицы 7.7.
- 7.4.4.5 Порядок операций при определении погрешности измерения активной энергии:
 - а) собрать схему поверки,
 - б) задать испытательный сигнал,
- в) через 5 мин после выполнения предыдущего пункта установить нулевые значения силы фазных токов,
 - г) произвести сброс поверяемого и образцового счетчиков,

- д) установить значения выходных токов калибратора соответствующих заданному испытательному сигналу,
- е) через 5 минут (с допуском ± 5 с) после выполнения предыдущего пункта установить значения выходных токов калибратора равными нулю,
- ж) считать и записать в протокол значения активной энергии измеренной поверяемым прибором (W_A , $B ext{T} \cdot ext{T}$) и ЦЭ6802 (W_{Ao} , $B ext{T} \cdot ext{T}$),
- з) рассчитать относительную погрешность при измерении активной энергии по формуле:

$$\delta W_{\rm A} = ((W_{\rm A} - W_{\rm Ao})/W_{\rm Ao}) \cdot 100 \%.$$

Таблица 7.6 Характеристики испытательных сигналов в режиме измерения мощности

Сиг-	Харак-	Диапазоны	Cxe	ма	Угол фазового	Значение	Предел основ	ной допускаемой
нал	теристи-	измерения	повер	жи	сдвига между	тока	погрешности, %	
	ка		без ТТ	c TT	током и напряже-		UF2 (приве-	UF2C,UF2M
					нием, ф		денной)	(относительной)
1	P	220B, 5A	B.1	B.3	0	$0,01 \cdot \boldsymbol{I}_{\scriptscriptstyle \mathrm{HOM}}$	±0,2	±0,4
2	P	220B, 5A	B.1	B.3	0	$0,05 \cdot I_{\text{HOM}}$	±0,2	±0,2
3	P	220B, 5A	B.1	B.3	0	$0,2\cdot \boldsymbol{I}_{\scriptscriptstyle{\mathrm{HOM}}}$	±0,2	±0,2
4	P	220B, 5A	B.1	B.3	-60°	$I_{\scriptscriptstyle ext{HOM}}$	±0,2	±0,3
5	P	220B, 5A	B.1	B.3	60°	$1,2\cdot \boldsymbol{I}_{\scriptscriptstyle{\mathrm{HOM}}}$	±0,2	±0,2
6	$\boldsymbol{\varrho}$	220B, 5A	B.2	B.4	60°	$1,2\cdot \boldsymbol{I}_{\scriptscriptstyle{\mathrm{HOM}}}$	±0,5	±0,5
7	$\boldsymbol{\varrho}$	220B, 5A	B.2	B.4	30°	$0,1\cdot \boldsymbol{I}_{\scriptscriptstyle{\mathrm{HOM}}}$	±0,5	±0,65
8	$\boldsymbol{\varrho}$	220B, 5A	B.2	B.4	-30°	$0,02 \cdot I_{\text{\tiny HOM}}$	±0,5	±1,45
9	S	220B, 5A	-	ı	60°	$1,2\cdot \boldsymbol{I}_{\scriptscriptstyle{\mathrm{HOM}}}$	±0,5	±0,5
10	P	57B, 5A	B.1	B.3	0	$0,2\cdot \boldsymbol{I}_{\scriptscriptstyle{\mathrm{HOM}}}$	±0,2	±0,2
11	$\boldsymbol{\varrho}$	57B, 5A	B.2	B.4	30°	$0,1\cdot \boldsymbol{I}_{\scriptscriptstyle{\mathrm{HOM}}}$	±0,5	±0,65
12	Q	57B, 1A	B.2	B.4	60°	$1,2\cdot \boldsymbol{I}_{\scriptscriptstyle{\mathrm{HOM}}}$	±0,5	±0,5
13	P	57B, 1A	B.1	B.3	-60°	$I_{\scriptscriptstyle{ ext{HOM}}}$	±0,2	±0,3
14	P	220B, 1A	B.1	B.3	0	$0,05 \cdot I_{\text{HOM}}$	±0,2	±0,2
15	Q	220B, 1A	B.2	B.4	-30°	$0,02 \cdot I_{\text{\tiny HOM}}$	±0,5	±1,45

- 7.4.4.6 Порядок операций при определении погрешности измерения реактивной энергии:
 - а) выполнить операции a e пункта 7.4.3.5,
- б) считать и записать в протокол испытания значения реактивной энергии измеренной поверяемым прибором (W_P , вар·ч) и ЦЭ6802 (W_{Po} , вар·ч),
- в) рассчитать относительную погрешность испытуемого прибора при измерении реактивной энергии по формуле:

$$\delta W_{\rm P} = ((W_{\rm P} - W_{\rm Po})/W_{\rm Po}) \cdot 100 \%.$$

- 7.4.5 Определение погрешности измерения времени (хода часов реального времени)
- 7.4.5.1 Для определения погрешности использовать секундомер и радиоприемник.
 - 7.4.5.2 Порядок операций:
- а) включить радиоприемник и настроить его на прием сигналов точного времени;
- б) по началу шестого сигнала точного времени с помощью секундомера измерить длительность интервала времени Δt_1 между двумя событиями: началом

шестого радиосигнала точного времени и появлением соответствующего этому радиосигналу часа на индикаторе измерителя;

- в) через 24 часа с помощью секундомера измерить длительность интервала времени Δt_2 между двумя событиями: началом шестого радиосигнала точного времени и появлением соответствующего этому радиосигналу часа на индикаторе измерителя;
 - г) рассчитать погрешность по формуле:

 $\Delta t = \Delta t_2 - \Delta t_1$

Таблица 7.7 Характеристики испытательных сигналов в режиме измерения энергии

	P							
Сиг	- Характе-	Диапазоны	Схема		Угол фазового	Значение	Предел основной допускаемой	
нал	ристика	измерения	пове	рки	сдвига между	тока	погрешности, %	
			без ТТ	c TT	током и напря-		UF2	UF2C, UF2M
					жением, ф		(приведенной)	(относительной)
1	W_{A}	57B, 5A	B.1	B.3	0	$0,2\cdot \boldsymbol{I}_{\scriptscriptstyle{\mathrm{HOM}}}$	±0,2	±0,2
2	W_{A}	220B, 1A	B.1	B.3	0	$0,05 \cdot I_{\text{\tiny HOM}}$	±0,2	±0,2
3	$W_{\rm P}$	220B, 5A	B.2	B.4	60°	$1,2\cdot \boldsymbol{I}_{\scriptscriptstyle{\mathrm{HOM}}}$	±0,5	±0,5
4	W_{P}	57B, 1A	B.2	B.4	60°	$1.2 \cdot I_{\text{HOM}}$	±0,5	±0,5

7.5 Определение метрологических характеристик измерителя при использовании трансформаторов тока

Операции поверки выполняются при наличии в комплектации измерителя трансформаторов тока (ТТ).

При проведении поверки к входам измерителя должны быть подключены ТТ в соответствии с руководством по эксплуатации.

К токовым выходам калибратора подключаются согласующие катушки, которые являются первичными обмотками ТТ. Параметры согласующих катушек, значений параметров «Вход I» и «Первичный ток» измерителей представлены в таблице 7.8.

Поверка измерителей модификаций «Pecypc-UF2C» и «Pecypc-UF2M» в комплекте с ТТ при измерении характеристик тока, напряжения и углов фазового сдвига может производиться двумя вариантами:

- а) подключением TT фазы N на согласующую катушку фазы C вместе с TT фазы C;
- б) поверкой сначала ТТ фаз A, B, C и затем ТТ фаз A, B, N при подключении ТТ фазы N на согласующую катушку фазы C.

Таблица 7.8 – Исходные данные для поверки ТТ

Номинальное значение	Количество витков провод-	Вход І	Первичный
первичного тока ТТ, А	ника согласующей катушки		ток
1	1	TT 1.0 A	1 A
5	1	TT 5.0 A	5 A
50	10	TT 50.0 A	5 A
100	20	TT 100.0 A	5 A
200	40	TT 200.0 A	5 A
500	100	TT 500.0 A	5 A
1000	100	TT 1000.0 A	10 A
3000	100	TT 1000.0 A	30 A

При поверке измерителя по входу «ТТ 1.0 А» формируются испытательные сигналы тока и напряжения в соответствии с таблицей 7.1, номинальное значение тока равно 1 А, номинальное значение напряжения $(100/\sqrt{3})/100$ В.

При поверке измерителя по входу «ТТ 5.0 А» формируются испытательные сигналы тока и напряжения в соответствии с таблицей 7.1, номинальное значение тока равно 5 А, номинальное значение напряжения $(100/\sqrt{3})/100$ В.

При поверке измерителя по другим входам ТТ («ТТ 50 А», «ТТ 100 А»,...) формируются испытательные сигналы тока и напряжения в соответствии с таблицей 7.1, номинальное значение тока равно 5 А, номинальное значение напряжения $220/(220 \cdot \sqrt{3})$ В.

Порядок операций:

- а) подключить к токовым выходам калибратора согласующие катушки в соответствии с таблицей 7.8;
 - б) подключить к входам поверяемого измерителя ТТ;
 - в) установить ТТ на согласующие катушки;
- г) определить погрешности при измерении характеристик токов и углов фазовых сдвигов (7.4.1);
- д) определить погрешности при измерении мощности (7.4.2), схема поверки приведена на рисунках В.3 и В.4 (приложение В);
- е) определить погрешности при измерении энергии (7.4.3), схема поверки приведена на рисунках В.3 и В.4 (приложение В);
 - и) выполнить действия а з для всех ТТ, входящих в комплект измерителя.
 - 8 Оформление результатов поверки

Результаты поверки заносятся в протокол поверки измерителя (рекомендуемое приложение Г). При положительных результатах поверки производится соответствующая запись в паспорте измерителя и наносится оттиск поверительного клейма, заверенный подписью поверителя. При отрицательных результатах поверки использование измерителя запрещается, клейма поверителя гасятся. После устранения причин несоответствия измеритель подлежит предъявлению на поверку повторно.

При положительных результатах поверки протокол может оформляться и храниться на магнитных носителях без получения копии на бумажном носителе.

ПРИЛОЖЕНИЕ А

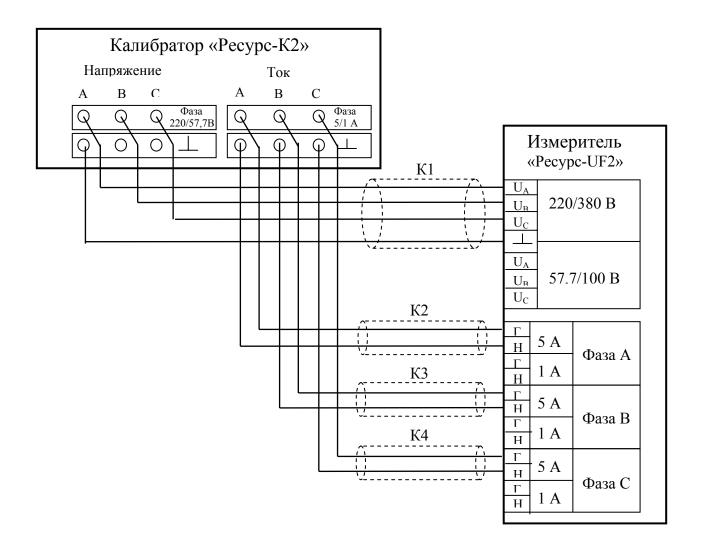
Метрологические характеристики измерителей Таблица А.1 - Диапазоны измерений и пределы допускаемых погрешностей

Таблица А.Т - Диапазоны изм	лерении и пре,	·	огрешностеи	
Измеряемая характеристика	Диапазон измерений	Основные погрешности: - абсолютная Δ; - относительная δ, %; - приведенная γ, %	Дополнительные условия	Модификации
1 Действующее значение ¹⁾ : – напряжения <i>U</i> ; – напряжения основной частоты	от $0.8 \cdot U_{\text{ном}}$ до $1.2 \cdot U_{\text{ном}}$	± 0,2 (δ)		
(первой гармоники) $U_{(1)}$; - напряжения прямой последовательности $U1$	от $0,01 \cdot U_{\text{ном}}$ до $0,8 \cdot U_{\text{ном}}$	± 0,2 (γ)	_	
	от 0,10 до 10 В	± 0,5 (δ)	для $oldsymbol{U}, oldsymbol{U}_{(1)},$	
	от 0,025 до 0,1В	± 1,0 (δ)	для входа «10 В»	
$2 \text{ Установившееся отклонение} $ напряжения $\delta U_{\mathrm{y}}^{-1}$, %	-20 - +20	± 0,2 (Δ)	_	
3 Действующее значение ¹⁾ : - напряжения обратной последовательности <i>U2</i> ; - напряжения нулевой последовательности <i>U0</i>	от $0.01 \cdot U_{\text{ном}}$ до $1.2 \cdot U_{\text{ном}}$	± 0,2 (γ)		
4 Частота f , Γ ц	45 – 55	± 0,02 (Δ)	_	
5 Отклонение частоты Δf , Γ ц	-5 -+5	± 0,02 (Δ)	_	
6 Коэффициент искажения синусоидальности напряжения K_U , %	0,1 – 30	$\pm (0.05+0.02\cdot \mathbf{\textit{K}}_{\textit{U}}) (\mathbf{\Delta})$	_	
7 Коэффициент п -ой гармони-	0,05 - 30		$2 \le n \le 10$]
ческой составляющей напряжения	0,05-20	$\pm (0.03+0.02 \cdot K_{U(n)}) (\Delta)$	$10 < n \le 20$	
$K_{U(n)}$, %	0.05 - 10	$= (0,03,0,02 \mathbf{R}_{U(n)}) (\Delta)$	$20 < n \le 30$	
	0.05 - 5		$30 < n \le 40$	Pecypc-UF2,
8 Коэффициент несимметрии напряжений по обратной последовательности $K_{2U}^{(1)}$, %	0-20	± 0,2 (Δ)	_	Pecypc-UF2C, Pecypc-UF2M
9 Коэффициент несимметрии напряжений по нулевой последовательности K_{0U}^{1} , %	0-20	± 0,2 (Δ)	-	
10 Длительность провала напряжения Δt_{π} , с	0,01 – 60	± 0,01 (Δ)	_	
11 Длительность временного перенапряжения $\Delta t_{\text{пер }U}$, с	0,01 - 60	± 0,01 (Δ)	_	
12 Глубина провала напряжения $\delta U_{\rm n},\%$	10 – 100	± 1,0 (Δ)	_	
13 Коэффициент временного перенапряжения $\mathbf{\textit{K}}_{\text{пер }U}$	1,1 – 1,4	± 0,01 (Δ)	-	
14 Размах изменения напряжения $\delta U_{\rm t}$ %	0,2 - 20	± 8 (δ)	-	
15 Кратковременная доза фликера P_{St}	0,25 – 10	± 5 (δ)	_	
16 Длительная доза фликера ${m P}_{\rm Lt}$	0,25 – 10	± 5 (δ)	-	
17 Угол фазового сдвига между фазными напряжениями основной частоты (первой гармоники) ϕ_U	от - 180° до + 180°	± 0,1° (Δ)	_	
18 Угол фазового сдвига меж-	1000	± 1° (Δ)	$5 \% \le K_{U(n)}$	1
ду п-ми гармоническими состав-	от - 180° до +	± 3° (Δ)	$1 \% \le K_{U(n)} < 5 \%$	1
ляющими фазных напряжений $\phi_{U(n)}$	180°	± 10° (Δ)	$0.2 \% \le K_{U(n)} < 1 \%$	

		T		T		
Измеряемая характеристика	Диапазон измерений	Основные погрешности: - абсолютная Δ; - относительная δ, %; - приведенная γ, %	Дополнительные условия	Модификации		
19 Действующее значение ¹⁾²⁾ : - силы тока <i>I</i> ;	от $0,05 \cdot I_{\text{ном}}$ до $1,2 \cdot I_{\text{ном}}$	± 0,2 (δ)	-			
- силы тока основной частоты $I_{(1)}$; - силы тока нулевой последова-	от $0{,}01{\cdot}{m{I}_{\scriptscriptstyle{\mathrm{HOM}}}}$ до $0{,}05{\cdot}{m{I}_{\scriptscriptstyle{\mathrm{HOM}}}}$	± 0,01 (γ)	-	Pecypc-UF2C,		
тельности <i>I0</i> ; - силы тока нулевой последова- тельности <i>I0</i> ;	от 0,0004- I _{ном}	$\pm (1+0.35(0.01 \cdot \boldsymbol{I}_{\text{HOM}}/\boldsymbol{I}_{(1)}-1)$ (8)	для I	Pecypc-UF2M		
- силы тока обратной последова- тельности <i>12</i> ;	до $0,01 \cdot I_{\text{ном}}$	$\pm (1+0.7(0.01 \cdot \boldsymbol{I}_{HOM}/\boldsymbol{I}_{(1)}-1)$ (8)	для $I_{(1)}$			
,	от $0,01\cdot I_{\text{ном}}$ до $1,2\cdot I_{\text{ном}}$	± 0,2 (γ)	-	Pecypc-UF2		
20 Коэффициент искажения	0,1-100	$\pm (0.05+0.02 \cdot K_I) (\Delta)$	$0, 1 \cdot I_{\text{HOM}} \le I \le 1, 5 \cdot I_{\text{HOM}}$	Pecypc-UF2C,		
синусоидальности кривой тока	0,5 - 100	$\pm (0,1+0,03\cdot K_I)(\Delta)$	$0.01 \cdot \boldsymbol{I}_{\text{HOM}} \leq \boldsymbol{I} < 0.1 \cdot \boldsymbol{I}_{\text{HOM}}$	PecypcUF2M		
<i>K</i> ₁ , %	0,1 – 100	$\pm (0.05+0.02 \cdot \mathbf{K_I}) (\Delta)$	$0.5 \cdot \boldsymbol{I}_{\text{HOM}} \leq \boldsymbol{I} \leq 1.2 \cdot \boldsymbol{I}_{\text{HOM}}$	_		
	0.5 - 100	$\pm (0.1+0.03 \cdot \mathbf{K_I}) (\Delta)$	$0.1 \cdot \boldsymbol{I}_{\text{HOM}} \leq \boldsymbol{I} \leq 0.5 \cdot \boldsymbol{I}_{\text{HOM}}$	Pecypc-UF2		
21 Коэффициент <i>n</i> —ой (<i>n</i> — от 2 до 40) гармонической состав-	0,05 – 100	_ (0,1 0,00 1-1) (=)	$0.1 \cdot \boldsymbol{I}_{\text{HOM}} \leq \boldsymbol{I} < 1.5 \cdot \boldsymbol{I}_{\text{HOM}}$ $2 \leq \boldsymbol{n} \leq 10$			
ляющей тока $K_{I(n)}$, %	0,05 - 50		$0.1 \cdot \boldsymbol{I}_{\text{HOM}} \le \boldsymbol{I} < 1.5 \cdot \boldsymbol{I}_{\text{HOM}}$ $10 < \boldsymbol{n} \le 20$			
	0,05 – 20	$\pm (0.03+0.02 \cdot K_{I(n)}) (\Delta)$	$0.1 \cdot \boldsymbol{I}_{\text{HOM}} \leq \boldsymbol{I} < 1.5 \cdot \boldsymbol{I}_{\text{HOM}}$ $20 < \boldsymbol{n} \leq 30$			
	0,05 – 10		$0.1 \cdot \boldsymbol{I}_{\text{HOM}} \le \boldsymbol{I} < 1.5 \cdot \boldsymbol{I}_{\text{HOM}}$ $30 < \boldsymbol{n} \le 40$	Pecypc-UF2C,		
	0,5 – 100		$0.01 \cdot \boldsymbol{I}_{\text{HOM}} \leq \boldsymbol{I} < 0.1 \cdot \boldsymbol{I}_{\text{HOM}}$ $2 \leq \boldsymbol{n} \leq 10$	Pecypc-UF2M		
	0,5 – 50	± (0.1±0.02 W) (A)	$0.01 \cdot \boldsymbol{I}_{\text{HOM}} \le \boldsymbol{I} < 0.1 \cdot \boldsymbol{I}_{\text{HOM}}$ $10 \le \boldsymbol{n} \le 20$			
	0,5-20	$\pm (0.1+0.03 \cdot K_{I(n)}) (\Delta)$	$0.01 \cdot \boldsymbol{I}_{\text{HOM}} \le \boldsymbol{I} < 0.1 \cdot \boldsymbol{I}_{\text{HOM}}$ $20 \le \boldsymbol{n} \le 30$			
	0,5 – 10		$0.01 \cdot \boldsymbol{I}_{\text{HOM}} \le \boldsymbol{I} < 0.1 \cdot \boldsymbol{I}_{\text{HOM}}$ $30 \le \boldsymbol{n} \le 40$			
	0,05 – 30		$0.5 \cdot \boldsymbol{I}_{\text{HOM}} \le \boldsymbol{I} < 1.2 \cdot \boldsymbol{I}_{\text{HOM}}$ $2 \le \boldsymbol{n} \le 10$			
	0,05 – 20	$\pm (0.03+0.02\cdot \boldsymbol{K}_{I(n)})(\boldsymbol{\Delta})$	$0.5 \cdot \boldsymbol{I}_{\text{HOM}} \le \boldsymbol{I} < 1.2 \cdot \boldsymbol{I}_{\text{HOM}}$ $10 < \boldsymbol{n} \le 20$			
	0,05 – 10		$0.5 \cdot \boldsymbol{I}_{\text{HOM}} \le \boldsymbol{I} < 1.2 \cdot \boldsymbol{I}_{\text{HOM}}$ $20 < \boldsymbol{n} \le 40$	Pecypc-UF2		
	0,5-30		$0.1 \cdot \boldsymbol{I}_{\text{HOM}} \le \boldsymbol{I} < 0.5 \cdot \boldsymbol{I}_{\text{HOM}};$ $2 \le \boldsymbol{n} \le 10$	- coopposit		
	0,5 – 20	$\pm (0,1+0,03\cdot \boldsymbol{K_{I(n)}}) (\Delta)$	$0.1 \cdot I_{\text{HOM}} \le I < 0.5 \cdot I_{\text{HOM}};$ $10 < n \le 20$			
	0,5 – 10		$0.1 \cdot I_{\text{HOM}} \le I < 0.5 \cdot I_{\text{HOM}};$ $20 < n \le 40$			
22 Угол фазового сдвига $\mathbf{\phi}_{UI}$		± 0,1° (Δ)	$0.05 \cdot \boldsymbol{I}_{\text{HOM}} \leq \boldsymbol{I} \leq 1.5 \cdot \boldsymbol{I}_{\text{HOM}}$			
между напряжением и током	от - 180° до	± 0,3° (Δ)	$0.01 \cdot \boldsymbol{I}_{\text{HOM}} \le \boldsymbol{I} < 0.05 \cdot \boldsymbol{I}_{\text{HOM}}$	Pecypc-UF2M		
основной частоты одной фазы 3)	+ 180° до	± 0,1° (Δ)	$0.5 \cdot \boldsymbol{I}_{\text{HOM}} \leq \boldsymbol{I} \leq 1.2 \cdot \boldsymbol{I}_{\text{HOM}}$			
	. 100	± 0,3° (Δ)	$0,1 \cdot \boldsymbol{I}_{\text{HOM}} \leq \boldsymbol{I} < 0,5 \cdot \boldsymbol{I}_{\text{HOM}}$	Pecypc-UF2		
		± 3° (Δ)	$0.01 \cdot \boldsymbol{I}_{\text{HOM}} \leq \boldsymbol{I} < 0.1 \cdot \boldsymbol{I}_{\text{HOM}}$			
23 Угол фазового сдвига ф _{UI0} между напряжением и током нулевой последовательности	от - 180° до + 180°	± 3° (Δ)	$0.01 \cdot I_{\text{HOM}} \le I0 < 1.2 \cdot I_{\text{HOM}}$ $0.01 \cdot U_{\text{HOM}} \le U0 < 1.2 \cdot U_{\text{HOM}}$	Pecypc-UF2C, Pecypc-UF2M Pecypc-UF2		

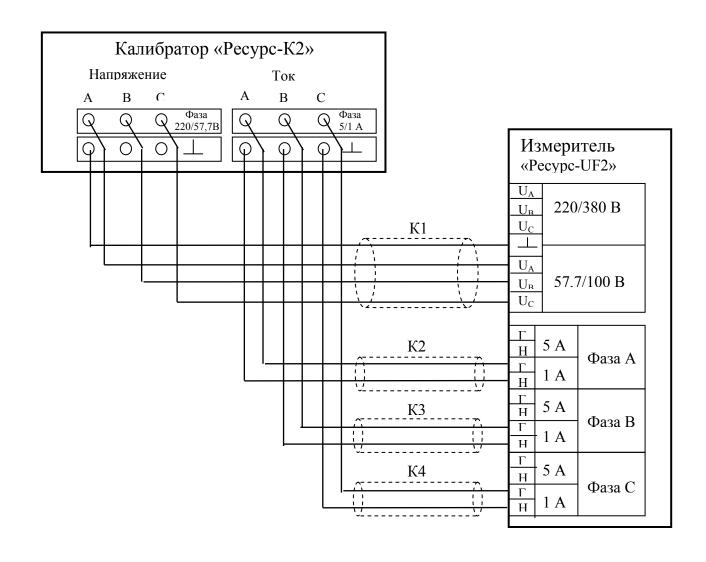
Измеряемая характеристика	Диапазон измерений	Основные погрешности: - абсолютная Δ; - относительная δ,%; - приведенная γ, %	Дополнительные условия	Модификации		
24 Угол фазового сдвига ϕ_{UII} между напряжением и током прямой последовательности ³⁾	от - 180° до + 180°	$\pm 0.1^{\circ}$ (Δ) $\pm 0.3^{\circ}$ (Δ) $\pm 0.1^{\circ}$ (Δ) $\pm 0.3^{\circ}$ (Δ) $\pm 3^{\circ}$ (Δ)	$\begin{array}{l} 0.05 \cdot I_{\text{HOM}} \leq I \leq 1.5 \cdot I_{\text{HOM}} \\ 0.01 \cdot I_{\text{HOM}} \leq I < 0.05 \cdot I_{\text{HOM}} \\ 0.5 \cdot I_{\text{HOM}} \leq I \leq 1.2 \cdot I_{\text{HOM}} \\ 0.1 \cdot I_{\text{HOM}} \leq I < 0.5 \cdot I_{\text{HOM}} \\ 0.01 \cdot I_{\text{HOM}} \leq I < 0.1 \cdot I_{\text{HOM}} \end{array}$	Pecypc-UF2C, Pecypc-UF2M		
25 Угол фазового сдвига ϕ_{UI2} между напряжением и током обратной последовательности	от - 180° до + 180°	± 3° (Δ)	$0.01 \cdot I_{\text{HOM}} \le I < 0.1 \cdot I_{\text{HOM}}$ $0.01 \cdot I_{\text{HOM}} \le I2 < 1.2 \cdot I_{\text{HOM}}$ $0.01 \cdot U_{\text{HOM}} \le U2 < 1.2 \cdot U_{\text{HOM}}$	Pecypc-UF2C, Pecypc-UF2M Pecypc-UF2		
26 Угол фазового сдвига между п -ми гармоническими состав-		± 2° (Δ)	$0.05 \cdot I_{\text{HOM}} \le I \le 1.5 \cdot I_{\text{HOM}};$ $5 \% \le K_{I(n)}; 5 \% \le K_{U(n)}$			
ляющими напряжения и тока одной фазы $\phi_{UI(n)}$		± 5° (Δ)	$\begin{array}{c} 0.05 \cdot I_{\text{HOM}} \leq I \leq 1.5 \cdot I_{\text{HOM}}; \\ 1 \% \leq K_{I(n)} < 5 \%; \\ 1 \% \leq K_{U(n)} < 5 \% \end{array}$			
	от - 180° до + 180°	± 10° (Δ)	$\begin{array}{l} 0.05 \cdot I_{\text{HOM}} \leq I \leq 1.5 \cdot I_{\text{HOM}}; \\ 0.2 \% \leq K_{I(n)} < 1 \%; \\ 0.2 \% \leq K_{U(n)} < 1 \% \end{array}$	Pecypc-UF2C, Pecypc-UF2M		
		± 3° (Δ)	$\begin{vmatrix} 0.01 \cdot I_{\text{HOM}} \le I \le 0.05 \cdot I_{\text{HOM}}; \\ 5 \% \le K_{I(n)}; 5 \% \le K_{U(n)} \end{vmatrix}$			
		± 10° (Δ)	$\begin{array}{c} 0.01 \cdot I_{\text{HOM}} \leq I \leq 0.05 \cdot I_{\text{HOM}}; \\ 1 \% \leq K_{I(n)} < 5 \%; \\ 1 \% \leq K_{U(n)} < 5 \% \end{array}$			
		± 3° (Δ)	$0.5 \cdot I_{\text{HOM}} \le I \le 1.2 \cdot I_{\text{HOM}};$ 5 % \le K _{I(n)} ; 5 % \le K _{U(n)}			
		± 5° (Δ)	$0.5 \cdot I_{\text{HOM}} \le I \le 1.2 \cdot I_{\text{HOM}};$ $1 \% \le K_{I(n)} < 5 \%;$ $1 \% \le K_{U(n)} < 5 \%$			
	от - 180° до + 180°	± 15° (Δ)	$ \begin{array}{c c} 0.5 \cdot I_{\text{HOM}} \leq I \leq 1.2 \cdot I_{\text{HOM}}; \\ 0.2 \% \leq K_{I(n)} < 1 \%; \\ 0.2 \% \leq K_{U(n)} < 1 \% \end{array} $	Pecypc-UF2		
		± 5° (Δ)	$0.1 \cdot I_{\text{HOM}} \le I \le 0.5 \cdot I_{\text{HOM}}; 5 \% \le K_{I(n)}; 5 \% \le K_{U(n)}$			
		± 15° (Δ)	$0.1 \cdot I_{\text{HoM}} \le I \le 0.5 \cdot I_{\text{HoM}};$ $1 \% \le K_{I(n)} < 5 \%;$ $1 \% \le K_{U(n)} < 5 \%$			
27 Активная мощность $P^{1)2}$: а) активная мощность по каждой фазе б) активная мощность по трем	до $(1,2\cdot U_{\text{ном}})$ •	a) $\pm 0.3 (\delta)$ b) $\pm 0.2 (\delta)$	$0.05 \cdot I_{\text{ном}} \le I \le 1.5 \cdot I_{\text{ном}};$ $0.5 < \cos \varphi \le 1$ $\cos \varphi - \kappa \cos \varphi \phi$ ициент мощности			
фазам		δ) ± 0,4 (δ)	$\begin{vmatrix} 0.01 \cdot I_{\text{HOM}} \le I < 0.05 \cdot I_{\text{HOM}}; \\ 0.5 < \cos \varphi \le 1 \end{vmatrix}$	Pecypc-UF2C, Pecypc-UF2M		
		a) ± 0.4 (δ) b) ± 0.3 (δ)	$0.1 \cdot I_{\text{HOM}} \le I \le 1.5 \cdot I_{\text{HOM}};$ $0.25 \le \cos \varphi \le 0.5$			
		δ) ± 0,5 (δ)	$\begin{vmatrix} 0.02 \cdot \boldsymbol{I}_{\text{HOM}} \leq \boldsymbol{I} < 0.1 \cdot \boldsymbol{I}_{\text{HOM}}; \\ 0.25 \leq \cos \varphi \leq 0.5 \end{vmatrix}$			
		± 0,2 (γ)	$\begin{array}{c c} 0,01 \cdot \boldsymbol{I}_{\text{HOM}} \leq \boldsymbol{I} < 1,2 \cdot \boldsymbol{I}_{\text{HOM}}; \\ 0,25 \leq \cos \varphi \leq 1 \end{array}$	Pecypc-UF2		
28 Реактивная мощность $Q^{1/2}$: а) реактивная мощность по каждой фазе;	OT $(0.5 \cdot U_{\text{HOM}}) \cdot (0.01 \cdot I_{\text{HOM}})$	± 0,5 (δ)	$0,2 \le m < 1,2$, где $m = (I \cdot U \cdot \sin \phi)/(I_{\text{HOM}} \cdot U_{\text{HOM}})$	Pecypc-UF2C, Pecypc-UF2M		
б) реактивная мощность по трем фазам	до $(1,2\cdot U_{\text{ном}}) \cdot (1,5\cdot I_{\text{ном}})$	$\begin{array}{c} \pm 0.5 \cdot (0.9 + 0.02/m) (\delta) \\ \pm 0.5 (\gamma) \end{array}$	$0.01 \le m < 0.2$ $0.01 \le m < 1.2$	Pecypc-UF2		

Измеряемая характеристика	Диапазон измерений	Основные погрешности: - абсолютная Δ; - относительная δ, %; - приведенная γ, %	Дополнительные условия	Модификации
29 Полная мощность S ¹⁾²⁾ : a) полная мощность по каждой	от $(0,5\cdot \boldsymbol{U}_{\text{ном}})$ • • $(0,01\cdot \boldsymbol{I}_{\text{ном}})$	± 0,5 (δ)	$0.01 \cdot \boldsymbol{I}_{\text{HOM}} \leq \boldsymbol{I} \leq 1.5 \cdot \boldsymbol{I}_{\text{HOM}}$	Pecypc-UF2C, Pecypc-UF2M
фазе; б) полная мощность по трем фазам	до $(1,2\cdot U_{\text{ном}}) \cdot (1,5\cdot I_{\text{ном}})$	± 0,5 (γ)	$0.01 \cdot \boldsymbol{I}_{\text{HOM}} \leq \boldsymbol{I} < 1.2 \cdot \boldsymbol{I}_{\text{HOM}}$	Pecypc-UF2
30 Активная энергия $W_{\rm A}^{\ 2}$: а) симметричная нагрузка; б) однофазная нагрузка		По ГОСТ 30206-94 для счетчика активной энергии класса точности 0,2 S	$0.01 \cdot \boldsymbol{I}_{\text{HOM}} \le \boldsymbol{I} < 1.5 \cdot \boldsymbol{I}_{\text{HOM}}$	Pecypc-UF2C, Pecypc-UF2M
		0,2 (γ)	$0.01 \cdot I_{\text{HOM}} \le I < 1.2 \cdot I_{\text{HOM}};$ $0.25 \le \cos \varphi \le 1$	Pecypc-UF2
31 Реактивная энергия $^{1)2)}$ W_{P} :		± 0,5 (δ)	$0.2 \le m < 1.5$	Pecypc-UF2C,
		$\pm 0,5 \cdot (0,9+0,02/m)$ (8)	$0.01 \le m < 0.2$	Pecypc-UF2M
		± 0,5 (γ)	$0.01 \le m < 1.2$	Pecypc-UF2
32 Интервал времени (ход часов реального времени), с ¹⁾		3	-	Pecypc-UF2C, Pecypc-UF2M, Pecypc-UF2


¹⁾ Пределы допускаемого значения дополнительной температурной погрешности измерителя при измерении данной характеристики составляют 1/3 основной погрешности на каждые 10°C изменения температуры окружающей среды.

²⁾ Пределы допускаемого значения дополнительной погрешности, возникающей при использовании разъемных трансформаторов тока, входящих в дополнительный комплект поставки, и при отклонении проводника от перпендикуляра к центру измерительного окна, равны 0,5 основной погрешности измерителя.

³⁾ Пределы допускаемого значения дополнительной погрешности, возникающей при использовании разъемных трансформаторов тока, входящих в дополнительный комплект поставки, равны пределам основной погрешности измерителя.


ПРИЛОЖЕНИЕ Б

Определение погрешностей при измерении характеристик напряжения, силы тока и углов фазовых сдвигов. Схемы поверки

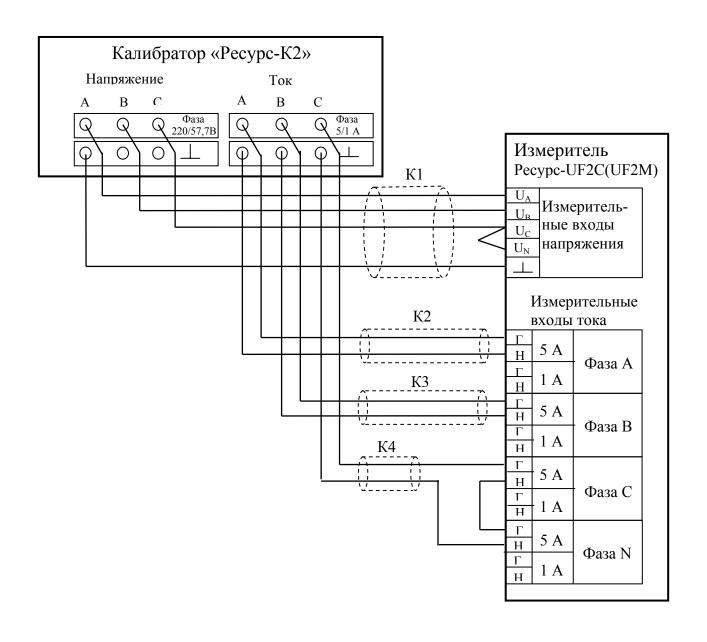

K1 – кабель соединительный для подключения каналов напряжения; K2, K3, K4 – кабель соединительный для подключения каналов тока.

Рисунок Б.1 Схема подключения измерителя «Ресурс-UF2» к калибратору при поверке прямых входов напряжения (220/380 В) и входов тока 5 А

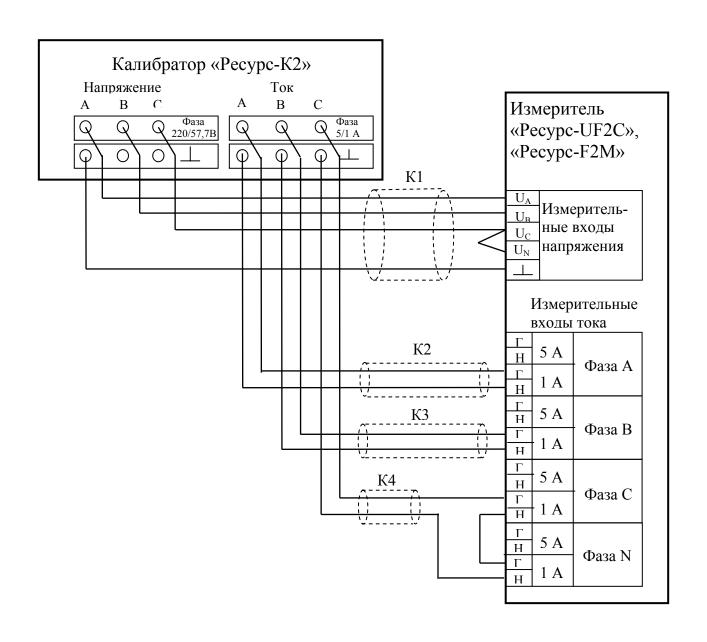

К1 – кабель соединительный для подключения каналов напряжения;
К2, К3, К4 – кабель соединительный для подключения каналов тока.

Рисунок Б.2 Схема подключения измерителя «Ресурс-UF2» к калибратору при поверке трансформаторных входов напряжения (57,7/100 В) и входов тока 1А

K1 – кабель соединительный для подключения каналов напряжения; K2, K3, K4 – кабель соединительный для подключения каналов тока.

Рисунок Б.3 Схема подключения измерителей «Pecypc-UF2C» и «Pecypc-UF2M» к калибратору при поверке измерительных входов тока 5 А

К1 – кабель соединительный для подключения каналов;К2, К3, К4 – кабель соединительный для подключения каналов тока.

Рисунок Б.4 Схема подключения измерителей «Ресурс-UF2C» и «Ресурс-UF2M» к калибратору при поверке измерительных входов тока 1 А

ПРИЛОЖЕНИЕ В

Определение погрешностей при измерении мощности и энергии. Схемы поверки

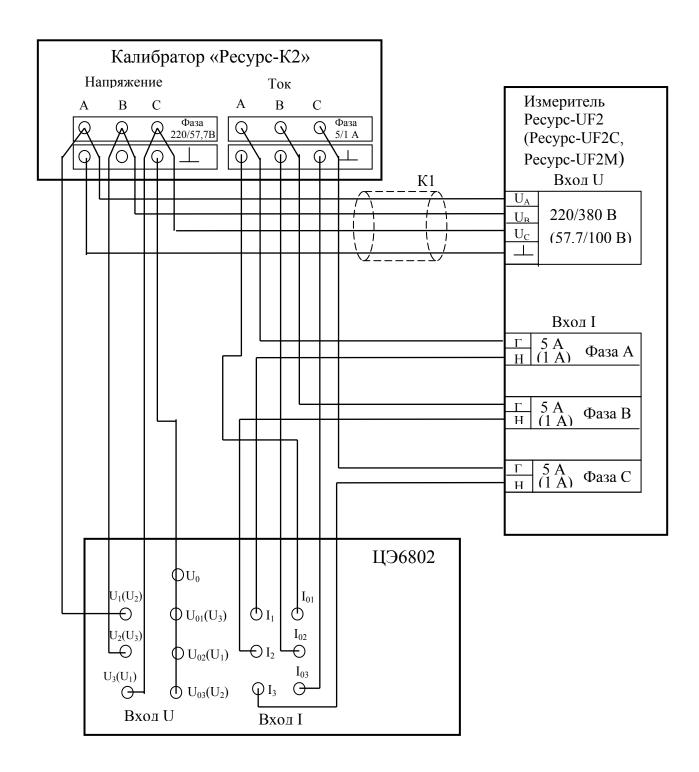
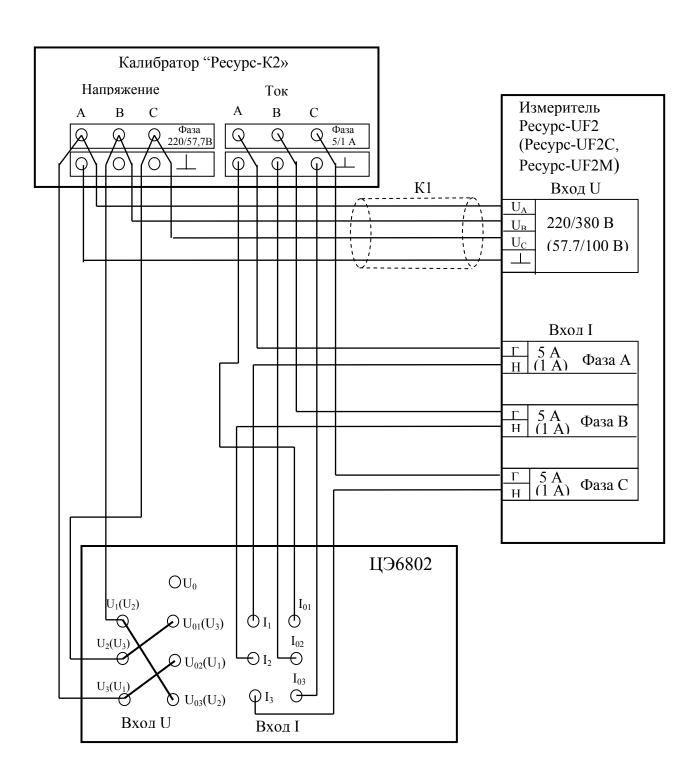
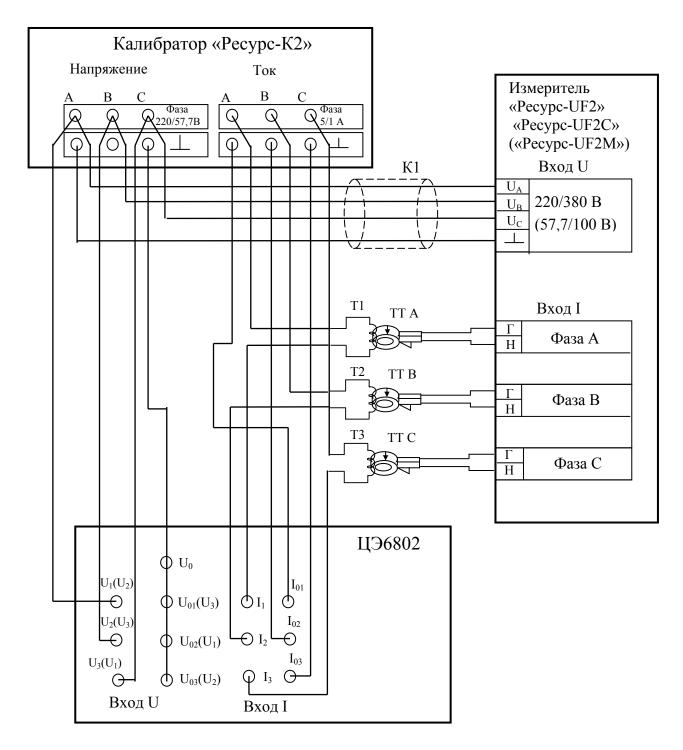
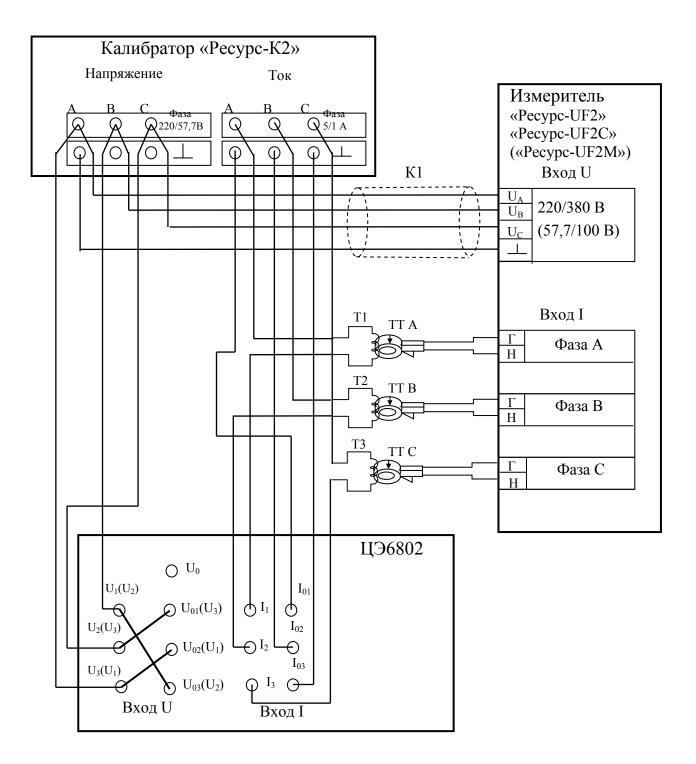


Рисунок В.1 Схема соединений для определения погрешностей при измерении активной мощности и энергии


Рисунок В.2 Схема соединений для определения погрешностей при измерении реактивной мощности и энергии

TT A, TT B, TT C – разъемные токовые трансформаторы из комплекта измерителя,

T1, T2, T3 – согласующие катушки, выполненные в соответствии с таблицей 7.8

Рисунок В.3 Схема соединений для определения погрешностей при измерении активной мощности и энергии с использованием TT

TT A, TT B, TT C – разъемные токовые трансформаторы из комплекта измерителя,

T1, T2, T3 – согласующие катушки, выполненные в соответствии с таблицей 7.8

Рисунок В.4 Схема соединений для определения погрешностей при измерении реактивной мощности и энергии с использованием TT

ПРИЛОЖЕНИЕ Г (Рекомендуемое)

ПРОТОКОЛ ПОВЕРКИ

Измерителя показателей качества электроэнергии «РЕСУРС-UF2» модификации	>
заводской номер	
Г.1 Условия поверки:	
Г.2 Определение электрического сопротивления изоляции. Вывод:	

 Γ .3 Определение погрешностей при измерении характеристик фазных и междуфазных напряжения. Результаты представлены в таблице Γ .1.

Таблица Г.1

	Общие для всех фаз характеристики		Максим	яжений							
Характеристика Диапазон измерений	$(f, \Delta f, U_1, U_2, U_0, K_{2U}, K_{0U})$				Предел допускаемой						
	Максимальная погрешность	Предел допускае- мой погрешности	A	В	С	N	AB	BC	CA	погрешности	

Вывод:

Г.4 Определение погрешности при измерении характеристик тока Результаты представлены в таблице Г.2.

Таблица Г.2

вмерений	Фаза А	Максимальна Фаза В	Фаза С	N	Предел допускае-мой погрешности
-					
The state of the s	1				l

Вывод:

 Γ .5 Определение погрешности при измерении действующего значения напряжения по входу «10 В» Результаты представлены в таблице Γ .3.

Таблица Г.3

Выходной		Вход А			Вход В		Вход С			Вход N		
сигнал В1-9	$U_{(1)}$	$U_{({\scriptscriptstyle m I})}$	δU	$U_{(1)}$	$U_{({ t I})}$	δU	$U_{(1)}$	$U_{({\scriptscriptstyle m I})}$	δU	$U_{(1)}$	$U_{({ ilde { m I}})}$	δU
0.1 B												
1 B												
5 B												

Вывод

 Γ .6 Определение погрешности при измерении мощности Результаты представлены в таблице Γ .4.

Таблица Г.4

Номер	Поверяемая	Вход напряже-	Вход тока	Фазовый угол		P₀, B⊤			S.D
изме-	характеристика	ния (220/380В,	(1A, 5A,	между током и	<i>I</i> , A	(Q_0, B_1)	Р , Вт (Q ,вар)	$\delta P(\delta Q)$, %	$\delta P_{\text{пред}}$
рения		57,735/100B)	TT)	напряжением, ф		(20, 8ap)			$(\delta Q_{\text{пред})}$, %
1	$P_{ m ABC}$	220/380 B	5 A	0	0,05 A				
2	$P_{ m ABC}$	220/380 B	5 A	0	0,25 A				
3	$P_{ m ABC}$	220/380 B	5 A	0	1 A				
4	$P_{ m ABC}$	220/380 B	5 A	-60°	5 A				
5	$P_{ m ABC}$	220/380 B	5 A	60°	6 A				
6	$oldsymbol{arrho}_{ ext{ABC}}$	220/380 B	5 A	60°	6 A				
7	$oldsymbol{arrho}_{ ext{ABC}}$	220/380 B	5 A	30°	0,5 A				
8	$oldsymbol{arrho}_{ ext{ABC}}$	220/380 B	5 A	-30°	0,1 A				
9	$oldsymbol{S}_{ ext{ABC}}$	220/380 B	5 A	60°	6 A				
10	$P_{ m ABC}$	57,735/100B	5 A	0	1 A				
11	$oldsymbol{arrho}_{ ext{ABC}}$	57,735/100B	5 A	30°	0,5 A				
12	$oldsymbol{arrho}_{ ext{ABC}}$	57,735/100B	1 A	60°	1,2 A				
13	$P_{ m ABC}$	57,735/100B	1 A	-60°	1 A				
14	P _{ABC}	220/380 B	1 A	0	0,05 A				
15	$oldsymbol{Q}_{ ext{ABC}}$	220/380 B	1 A	-30°	0,02 A				

Вывод:

Γ .7 Определение погрешности при измерении энергии Результаты представлены в таблице Γ .5.

Таблица Г.5

Поверяемая ха- рактеристика	Вход напряжения (220/380B, 57,735/100B)	Вход тока (1A, 5A, TT)	Фазовый угол между током и напряжением, ф	<i>I</i> , A	<i>W</i> _{A0} , Вт*ч (<i>W</i> _{P0} ,вар*ч)	<i>W</i> _A , Вт*ч (<i>W</i> _P ,вар*ч)	δ <i>W</i> , %	$\delta W_{ ext{пред}}$, %
W_{A}	57,735/100B	5 A	0°	1 A				
W_{A}	220/380 B	1 A	0°	0,05 A				
$W_{\rm p}$	220/380 B	5 A	60°	6 A				
$W_{\rm p}$	57,735/100B	1 A	60°	1,2 A				

Г.8 Определение погрешности хода часов Результат измерений:

Вывод:

Г.9 Вывод по результатам поверки.

Дата Подпись поверителя

М.П.