

Закрытое Акционерное Общество «АКТИ-Мастер» АКТУАЛЬНЫЕ КОМПЬЮТЕРНЫЕ ТЕХНОЛОГИИ и ИНФОРМАТИКА

> 127254, Москва, Огородный проезд, д. 5, стр. 5 тел./факс (495)926-71-85 E-mail: <u>post@actimaster.ru</u> <u>http://www.actimaster.ru</u>

> > **УТВЕРЖДАЮ**

Генеральный директор ЗАО «АКТИ-Мастер» ADE UE В.В. Федулов АКТИ-Мастер июля 2017 г. 05 CTI-Master MOCKB EIT ERIE

Государственная система обеспечения единства измерений

Преобразователи напряжения измерительные цифро-аналоговые модульные NI PXIe-4463

Методика поверки NI4463MII-2017

Заместитель генерального директора по метрологии ЗАО «АКТИ-Мастер»

Д.Р. Васильев

г. Москва 2017 Настоящая методика поверки распространяется на преобразователи напряжения измерительные цифро-аналоговые модульные NI PXIe-4463 (далее – модули), изготавливаемые компаниями "National Instruments Corporation" (США), "National Instruments Corporation" (Венгрия) и "National Instruments Malaysia Sdn. Bhd. (Малайзия)", и устанавливает методы и средства их поверки.

Интервал между поверками – 1 год.

Таблица 1 – Операции поверки

1 ОПЕРАЦИИ ПОВЕРКИ

1.1 При проведении поверки должны быть выполнены операции, указанные в таблице 1.

	Номер	Проведение операции	
Наименование операции	пункта	при поверке	
	методики	первичной	периодической
Внешний осмотр и подготовка к поверке	6	да	да
Опробование и функциональное тестирование	7.2	да	да
Определение смещения напряжения	7.3	да	да
Определение погрешности воспроизведения среднеквадратических значений синусоидального напряжения частотой 1 kHz	7.4	да	да
Определение неравномерности амплитудно- частотной характеристики	7.5	да	да
Определение погрешности частоты	7.6	да	да

1.2 Если у поверяемого модуля используется один из двух каналов AO0 и AO1, по запросу пользователя поверка может быть проведена только для этого канала, при этом должна быть сделана соответствующая запись в свидетельстве о поверке.

2 СРЕДСТВА ПОВЕРКИ

2.1 Рекомендуется применять средства поверки, указанные в таблице 2.

Допускается применять другие аналогичные средства поверки, обеспечивающие определение метрологических характеристик поверяемых генераторов с требуемой точностью.

2.2 Средства измерений должны быть исправны, поверены и иметь документы о поверке.

	Наименование	Номер	Требуемые	Рекомендуемый тип
№	средства	пункта	технические	средства поверки, рег.
	поверки	методики	характеристики	номер реестра
1	2	3	4	5
			Средства измерений	
1	Вольтметр	7.3 – 7.5	абсолютная погрешность измерения	Мультиметр Agilent
			постоянного напряжения	(Keysight) 3458A;
			от 0 до 5 mV не более ±0.01 mV	рег. № 25900-03
			относительная погрешность	
			измерения переменного напряжения	
			(rms) 0.1; 1; 10 V частотой	
			от 1 до 22.4 kHz не более ± 0.033 %	

Таблица 2 – Средства поверки

Продолжение таблицы 2

1		2	Λ	5	
1	2	3	4	<u> </u>	
2	Частотомер	/.6	относительная погрешность	частотомер	
			измерения частоты 20 kHz	универсальный	
			не более $\pm 1 \cdot 10^{-6}$	Tektronix FCA3000	
				с опцией MS;	
				рег. № 51532-12	
		Вспо	могательные средства и принадлежност	И	
1	Шасси	Разделы	не менее 4-х слотов РХІе	National Instruments	
	PXI Express	6, 7		PXIe-1075	
2	Модуль	Разделы	$HDD \ge 40 \text{ GB}$	National Instruments	
	контроллера	6, 7	$O3Y \ge 512 \text{ MB}$	PXIe-8105	
3	Монитор	Разделы			
	_	6, 7	-	-	
4	Клавиатура	Разделы			
	компьютерная	6, 7	-	-	
5	Манипулятор	Разделы			
	«мышь»	6, 7	-	-	
6	Кабель ВЧ	7.3 – 7.6	BNC(m,m) для варианта BNC	-	
			mXLR(f)-BNC(m) для варианта mXLR	NI 140150-0R46	
7	Адаптер	7.3 – 7.6	BNC(f)-banana(m,m)	-	
	Программное обеспечение				
1	Операционная	Разделы	управление работой модуля	Windows XP	
	система	6, 7		(Windows 7)	
2	Драйвер	Разделы	управление работой модуля	National Instruments	
		6, 7		NI-DAQmx версии 14.5	
				и выше	
2	Программа	разделы	управление режимами и параметрами	National Instruments	
	управляющая	7.2, 7.3	работы модуля	"LabVIEW Signal	
				Express"	

З ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

К проведению поверки допускаются лица с высшим или среднетехническим образованием, имеющие практический опыт в области электрических измерений.

4 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

4.1 При проведении поверки должны быть соблюдены требования безопасности в соответствии с ГОСТ 12.3.019-80.

4.2 Во избежание несчастного случая и для предупреждения повреждения модуля необходимо обеспечить выполнение следующих требований:

- подсоединение шасси с модулем и средствами поверки к сети должно производиться с помощью сетевого кабеля из комплекта шасси;

- заземление шасси и средств поверки должно производиться посредством заземляющих контактов сетевых кабелей;

- присоединения модуля и оборудования следует выполнять при отключенных входах и выходах (отсутствии напряжения на разъемах);

- запрещается работать с модулем в условиях температуры и влажности, выходящих за пределы рабочего диапазона, а также при наличии в воздухе взрывоопасных веществ;

- запрещается работать с модулем в случае обнаружения его повреждения.

5 УСЛОВИЯ ОКРУЖАЮЩЕЙ СРЕДЫ ПРИ ПОВЕРКЕ

При проведении поверки должны соблюдаться следующие условия окружающей среды:

- температура воздуха (23 ±5) °С;
- относительная влажность воздуха от 30 до 70 %;
- атмосферное давление от 84 до 106.7 kPa.

6 ВНЕШНИЙ ОСМОТР И ПОДГОТОВКА К ПОВЕРКЕ

6.1 Внешний осмотр

6.1.1 При проведении внешнего осмотра проверяются:

- чистота и исправность разъемов модуля;
- отсутствие механических повреждений корпуса модуля или платы;
- правильность маркировки и комплектность модуля.

6.1.2 При наличии дефектов или повреждений, препятствующих нормальной эксплуатации поверяемого модуля, его следует направить в сервисный центр для проведения ремонта.

6.2 Подготовка к поверке

6.2.1 Перед началом работы следует изучить руководство по эксплуатации модуля, а также руководства по эксплуатации применяемых средств поверки.

6.2.2 Выполнить установку модуля:

1) установить в 3 левых слота шасси РХІе модуль контроллера;

2) присоединить к контроллеру монитор, клавиатуру и мышь;

3) подсоединить шасси и монитор к сети 220 V/50 Hz;

4) установить модуль в слот шасси РХІе;

5) в свободные слоты шасси установить фальш-панели; выбрать на шасси режим высокой скорости вентилятора;

6) включить шасси и контроллер, дождаться загрузки Windows.

Если на контроллере не установлен драйвер NI-DAQmx версии 14.5 и выше, то следует инсталлировать драйвер из комплекта модуля в соответствии с указаниями руководства по эксплуатации модуля.

6.2.3 Подготовить к работе мультиметр и частотомер.

6.2.4 Выдержать модуль и средства поверки во включенном состоянии в соответствии с указаниями руководств по эксплуатации. Минимальное время прогрева модуля 30 min.

7 ПРОВЕДЕНИЕ ПОВЕРКИ

7.1 Общие указания по проведению поверки

7.1.1 Операции поверки 7.3 – 7.5 необходимо выполнять в последовательности, указанной в таблице 1. Для минимизации количества пересоединений следует выполнить эти операции сначала для одного из каналов модуля, а затем для другого канала.

7.1.2 В процессе выполнения операций результаты заносятся в протокол поверки.

Полученные результаты должны укладываться в пределы допускаемых значений, которые указаны в таблицах настоящего раздела документа.

При получении отрицательных результатов по какой-либо операции необходимо повторить операцию. При повторном отрицательном результате генератор следует направить в сервисный центр для проведения регулировки или ремонта.

7.2 Опробование и функциональное тестирование

7.2.1 Запустить программу "Measurement & Automation Explorer", затем в меню "Devices & Interfaces" выбрать ярлык с наименованием шасси, и убедиться в том, что в списке устройств отображается наименование модуля номер слота шасси. Кликнуть на имени модуля, при этом в окне должен отобразиться серийный номер модуля.

Записать результат проверки в таблицу 7.2.

7.2.2 В меню "Software" выбрать папку "Software", открыть вложенную папку "NI-DAQmx". В окне справа должен отобразиться номер версии (Version) драйвера. Записать результат проверки в таблицу 7.2

7.2.3 В меню "Devices & Interfaces" кликнуть на наименовании модуля в списке устройств, и запустить процедуру тестирования "Self-Test". После завершения процедуры тестирования должно появиться сообщение "The self test completed successfully".

Записать результат проверки в таблицу 7.2.

7.2.4 Запустить процедуру автоподстройки "Self-Calibrate". По завершении процедуры (несколько минут) должно появиться сообщение "The device was calibrated successfully". Записать результат проверки в таблицу 7.2.

7.2.5 Закрыть программу "Measurement & Automation Explorer".

Запустить программу "LabVIEW Signal Express" (New Project).

Нажать клавишу "Add Step" и выбрать "Create Signals" – "Create Analog Signal", при этом должно отобразиться окно "Step Setup", "Configuration".

Нажать клавишу "Add Step" и выбрать "Generate signals" – "DAQmx Generate" – "Analog Output" – "Voltage", при этом должно отобразиться окно "Step Setup".

Во внутреннем окне "Add Channels to Task" выбрать номер канала "Ao0", и подтвердить выбор нажатием "OK".

В окне "Channel Settings" кликнуть правой кнопкой мыши на строке с номером канала. Выбрать опцию "Change Physical Channel", в появившемся списке выбрать номер канала "Ao1", подтвердить выбор нажатием "OK".

В ходе проверки программы "LabVIEW Signal Express" не должно быть сообщений об ошибках.

Записать результат проверки в таблицу 7.2.

Таблица 7.2 – Опробование и функциональное тестирование

Содержание проверки	Результат проверки	Критерии проверки
отображение серийного номера и		правильно отображаются
номера спота шасси		серийный номер и номер
помера слота шасси		слота шасси
илентификация ПО		"NI-DAQmx" версии 14.5 или
идентификация по		выше
upoueuupa "Self Test"		сообщение "The self-test
npouedypa Sen-Test		completed successfully"
upououmo "Solf Calibrato"		сообщение "The device was
npouedypa Sen-Canorate		calibrated successfully"
проверка программы "LabVIEW		
Signal Express"		нет сообщении об ошиоках

7.3 Определение смещения напряжения

7.3.1 Выбрать на мультиметре режим "DCV", предел 100 mV, апертуру NPLC 100.

7.3.2 Используя соединительный кабель и адаптер, подключить выход канала модуля к входу мультиметра. Контакт "AO+" модуля должен быть соединен с гнездом "HI" мультиметра, контакт "AO–" модуля – с гнездом "LO" мультиметра.

1 1 2 000 (2) (4 6 Top Module PF AO+ AO-Bottom Module 5 Mounting Screw Chassis Ground 6 4 Mounting Screw 1 EDs Рисунок 1 – расположение контактов модуля NI PXIe-4463

Расположение контактов модуля показано на рисунке 1.

7.3.3 Войти в меню "Create Analog Signal".
В окне "Step Setup", "Configuration" сделать установки: Signal type: DC Signal; Repeated Signal (поставить флажок) Offset (V): 0,00000
Sampling Conditions Sample rate (S/s): 51200 (51,2k)

Block size (samples): 100000 (100k)

7.3.4 Войти в меню "DAQmx Generate", "Analog Output".

В окне "Channel Settings" кликнуть правой кнопкой мыши на строке с номером канала. Выбрать опцию "Change Physical Channel", в появившемся списке выбрать нужный номер канала, подтвердить выбор нажатием "ОК".

В окне "Step Setup" сделать установки:

Generation Mode: Continuous Samples (поставить флажок на значке справа) Samples to Write: 10000 (10k)

Voltage Output Setup – Signal Output Range: ввести первое значение диапазона, указанное в столбце 1 таблицы 7.3 (Max Value – положительное значение, Min Value – отрицательное значение).

7.3.5 Запустить генерацию сигнала нажатием клавиши "Run".

После установления показаний записать отсчет мультиметра в столбец 2 таблицы 7.3. Он должен находиться в пределах, указанных в столбце 3 таблицы 7.3.

7.3.6 Задавать в окне Signal Output Range последовательно остальные диапазоны, указанные

в столбце 2 таблицы 7.3.4. После установления показаний записывать отсчеты мультиметра в столбец 2 таблицы 7.3. Они должны находиться в пределах, указанных в столбце 3 таблицы 7.3.

7.3.7 Остановить генерацию сигнала нажатием клавиши "Stop".

тиолици 7.5 Сте	щение наприжении		
Диапазон,	Измеренное смещение, mV		Пределы допускаемых
V peak	AO0	AO1	значений, mV
1		2	3
±0,14142			±0.20
±1,4142			±0.30
±10			±0.50

Таблица 7.3 – Смещение напряжения

7.4 Определение погрешности воспроизведения среднеквадратических значений синусоидального напряжения частотой 1 kHz

7.4.1 Выбрать на мультиметре режим "ACV" и автоматический предел измерения, апертуру NPLC 100.

7.4.2 Войти в меню "Create Analog Signal". В окне "Step Setup", "Configuration" сделать установки:

Signal type: Sine wave; Repeated Signal (поставить флажок)

Sampling Conditions

Sample rate (S/s): 51200 (51,2k)

Block size (samples): 100000 (100k)

Offset (V): 0,00000

Frequency (Hz): 1000 (1,0000k)

Amplitude: ввести первое значение амплитуды U peak, указанное в столбце 2 таблицы 7.4 (соответствующее значение rms указано в столбце 3).

7.3.4.3 Войти в меню "DAQmx Generate", "Analog Output".

В окне "Step Setup" сделать установки:

Generation Mode: Continuous Samples (поставить флажок на значке справа) Samples to Write: 10000 (10k)

Voltage Output Setup – Signal Output Range: ввести первое значение диапазона измерений, указанное в столбце 1 таблицы 7.3.4

7.4.4 Запустить генерацию сигнала нажатием клавиши "Run". После установления показаний записать отсчет мультиметра в столбец 4 таблицы 7.4. Он должен находиться в пределах, указанных в столбце 5 таблицы 7.4.

7.4.5 Задавать в меню "DAQmx Generate" последовательно остальные диапазоны, указанные в столбце 2 таблицы 7.4.

После установки нового диапазона переходить в меню "Create Analog Signal", вводить в окне "Step Setup", "Configuration" соответствующее установленному диапазону значение амплитуды, указанное в столбце 3 таблицы 7.4, и переходить обратно в окно "DAQmx Generate".

После установления показаний записывать отсчеты мультиметра в столбец 4 таблицы 7.4. Они должны находиться в пределах, указанных в столбце 5 таблицы 7.4.

7.4.6 Остановить генерацию сигнала нажатием клавиши "Stop".

Пиопорон	Установленное значение Измеренное значение		Пределы		
Дианазон, V pook	напряж	ения, V	напряже	ения, rms	допускаемых
v peak	U peak	U rms	AO0	AO1	значений, rms
1	2	3	2	4	5
±0,14142	0,14142	0.1			(99.77 100.23) mV
±1,4142	1,4142	1.0			(0.9977 1.0023) V
±10	10	7.071			(7.0548 7.0874) V

Таблица 7.4 – Погрешность воспроизведения напряжения rms на частоте 1 kHz

7.5 Определение неравномерности амплитудно-частотной характеристики

7.5.1 Выбрать на мультиметре режим "ACV", предел измерения 10 V, апертуру NPLC 100, режим синхронной выборки (SETACV 3), низкочастотный фильтр (LFILTER 1).

7.5.2 Войти в меню "DAQmx Generate", "Analog Output".

Убедиться в том, что в окне "Step Setup" установлен диапазон ± 10 V.

7.5.3 Войти в меню "Create Analog Signal".

Установить в окне "Step Setup", "Configuration" амплитуду напряжения (U peak) 6 V, частоту 1 kHz.

7.5.4 Запустить генерацию сигнала нажатием клавиши "Run".

После установления показаний записать отсчет мультиметра (5 значащих цифр) в столбец 4 таблицы 7.5 для частоты 1 kHz как опорное значение U1. Оно должно находиться в пределах, указанных в столбце 5 таблицы 7.5.

7.5.5 Устанавливать частоту сигнала, как указано в столбце 3 таблицы 7.5.

После установления показаний записывать отсчет мультиметра (5 значащих цифр) в столбец 4 таблицы 7.5.

7.5.6 Рассчитать для каждого значения частоты пределы допускаемых значений по формулам в соответствующих ячейках столбца 5 таблицы 7.5. Измеренные значения напряжения, записанные в столбце 4, должны находиться в этих пределах.

7.5.7 Остановить генерацию сигнала нажатием клавиши "Stop".

Установленное значение напряжения, V		Частота,	Измеренное значение напряжения, rms		Пределы допускаемых
U peak	U rms	KHZ	AOO	AO1	значений, V rms
1	2	3	4	4	5
Диффер	енциальная сх	ема			
		1			U1 = 4.2329 4.2524
6 4.2426	20			(0.999191.00081)·U1	
		22.4			(0.998961.00104)·U1
Псевдодифференциальная схема					
		1			U1 = 4.2329 4.2524
6	4.2426	20			(0.999081.00092)·U1
		22.4			(0.998851.00115)·U1

Таблица 7.5 – Неравномерность АЧХ

7.5.8 Войти в меню "DAQmx Generate", "Analog Output". В окне "Step Setup" выбрать псевдодифферециальную схему: Output Terminal Configuration: Pseudodifferential

7.5.9 Выполнить действия по пунктам 7.5.3 – 7.5.7.

7.6 Определение погрешности частоты

7.6.1 Используя соединительный кабель, подключить выход канала модуля к входу частотомера. Контакт "AO+" модуля должен быть соединен с центральным контактом входного разъема частотомера, контакт "AO–" модуля – с экранным контактом.

ПРИМЕЧАНИЕ: операция может быть выполнена на любом из каналов модуля.

7.6.2 Войти в меню "Create Analog Signal".

Установить в окне "Step Setup", "Configuration" амплитуду напряжения (U peak) 6 V, частоту 1 kHz.

7.6.3 Установить в окне "Step Setup", "Configuration" амплитуду напряжения (U peak) 6 V, частоту 20 kHz.

7.6.4 Запустить генерацию сигнала нажатием клавиши "Run".

7.6.5 Ввести на частотомере режим измерения частоты апертурой 1s. После установления показаний записать отсчет частотомера в столбец 2 таблицы 7.6. Он должен находиться в пределах, указанных в столбце 3 таблицы 7.6.

7.6.6 Остановить генерацию сигнала нажатием клавиши "Stop".

Установленное	Измеренное	Пределы допускаемых
значение частоты, kHz	значение частоты, kHz	значений, kHz
20		19.999560 20.000440

8 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

8.1 Протокол поверки

По завершении операций поверки оформляется протокол поверки в произвольной форме с указанием следующих сведений:

- полное наименование аккредитованной на право поверки организации;

- номер и дата протокола поверки
- наименование и обозначение поверенного средства измерения
- заводской (серийный) номер;

- обозначение документа, по которому выполнена поверка;

- наименования, обозначения и заводские (серийные) номера использованных при поверке средств измерений, сведения об их последней поверке;

- температура и влажность в помещении;

- фамилия лица, проводившего поверку;

- результаты определения метрологических характеристик по форме таблиц раздела 7 настоящего документа.

Допускается не оформлять протокол поверки отдельным документом, а результаты поверки (метрологические характеристики) указать на оборотной стороне свидетельства о поверке.

8.2 Свидетельство о поверке и знак поверки

При положительных результатах поверки выдается свидетельство о поверке и наносится знак поверки в соответствии с Приказом Минпромторга России № 1815 от 02.07.2015 г.

8.3 Извещение о непригодности

При отрицательных результатах поверки, выявленных при внешнем осмотре, опробовании или выполнении операций поверки, выдается извещение о непригодности в соответствии с Приказом Минпромторга России № 1815 от 02.07.2015 г.

Ведущий инженер по метрологии Е.В. Маркин ЗАО «АКТИ-Мастер»