УТВЕРЖДАЮ

Заместитель директора ФГУП «ВНИИОФИ»

Н. П. Муравская

M.II.

05

2015 г.

Государственная система обеспечения единства измерений

Дефектоскопы ультразвуковые портативные USM 36

МЕТОДИКА ПОВЕРКИ

МП 018.Д4-15

N.p.61749-15

Главный метролог ФГУП «ВНИИОФИ»

С.Н. Негода

2015 г.

СОДЕРЖАНИЕ

1 ОБЛАСТЬ ПРИМЕНЕНИЯ
2 ОПЕРАЦИИ ПОВЕРКИ
3 СРЕДСТВА ПОВЕРКИ
4 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ4
5 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ4
6 УСЛОВИЯ ПОВЕРКИ5
7 ПОДГОТОВКА К ПОВЕРКЕ5
8 ПРОВЕДЕНИЕ ПОВЕРКИ5
8.1 Внешний осмотр
8.2 Идентификация ПО5
8.3 Опробование
8.4 Определение амплитуды и длительности зондирующих импульсов6
8.5 Определение абсолютной погрешности измерения временных интервалов9
8.6 Определение абсолютной погрешности измерения амплитуды сигналов10
8.7 Определение отклонения установки усиления
8.8 Определение погрешности измерения толщины изделий или глубины залегания
дефектов при работе с прямым ПЭП
8.9 Определение погрешности измерения координат дефектов при работе с
наклонными ПЭП
9 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ
Приложение А (Форма протокола поверки)
Приложение Б (Схема согласующего устройства)

1 ОБЛАСТЬ ПРИМЕНЕНИЯ

Настоящие методика поверки распространяется на дефектоскопы ультразвуковые USM 36 (далее по тексту - приборы или дефектоскопы), изготовленные фирмой GE Sensing & Inspection Technologies GmbH, Германия и устанавливает методы и средства их первичной и периодических поверок.

Дефектоскопы предназначены для измерения координат и оценки относительных размеров дефектов в сварных соединениях и основном металле трубопроводов, сосудов давления, котлов, транспортных и мостовых конструкций и других объектов, а также для контактного измерения толщины изделий из металлов и сплавов.

Дефектоскопы применяются при осуществлении контроля и диагностики объектов энергетики, транспорта, нефтегазовых и нефтеперерабатывающих комплексов, и других объектов различных секторов экономики.

Межповерочный интервал – 1 год.

2 ОПЕРАЦИИ ПОВЕРКИ

2.1 При проведении первичной (в том числе после ремонта) и периодической поверки должны выполняться операции, указанные в таблице 1.

Таблица 1 - Операции первичной и периодической поверок

	Наименование операции	Номер пункта
No		методики
п/п		поверки
1	Внешний осмотр	8.1
2	Идентификация программного обеспечения (ПО)	8.2
3	Опробование	8.3
4	Определение амплитуды и длительности зондирующих импульсов	8.4
5	Определение абсолютной погрешности измерения временных интервалов	8.5
6	Определение абсолютной погрешности измерения амплитуды сигналов	8.6
7	Определение отклонения установки усиления	8.7
8	Определение погрешности измерения толщины изделия или глубины залегания дефектов при работе с прямым ПЭП	8.8
9	Определение погрешности измерения координат дефектов при работе с наклонными ПЭП	8.9

- 2.2 Поверку средств измерений осуществляют аккредитованные в установленном порядке в области обеспечения единства измерений юридические лица и индивидуальные предприниматели.
- 2.3 Поверка дефектоскопа прекращается в случае получения отрицательного результата при проведении хотя бы одной из операций, а дефектоскоп признают не прошедшим поверку. При получении отрицательного результата по пунктам 8.8 8.9 методики поверки признается непригодным преобразователь, если хотя бы с одним преобразователем из комплекта дефектоскоп полностью прошел поверку.

3 СРЕДСТВА ПОВЕРКИ

- 3.1 Рекомендуемые средства поверки указаны в таблице 2.
- 3.2 Средства поверки должны быть поверены и аттестованы в установленном порядке.
- 3.3 Приведенные средства поверки могут быть заменены на их аналог, обеспечивающие определение метрологических характеристик дефектоскопов с требуемой точностью.

Таблица 2 – Рекомендуемые средства поверки

Таблица 2 – Рекомендуемые средства поверки						
Номер	Наименование средства измерения или вспомогательного					
пункта (раздела)	оборудования, номер документа, регламентирующего технические					
методики	требования к средству, разряд по государственной поверочной схеме					
поверки	и (или) метрологические и основные технические характеристики					
	Осциллограф цифровой TDS1012B.					
	Диапазон измеряемых размахов напряжений импульсных					
8.4	радиосигналов от 10 мВ - до 400 В (с делителем 1:10). Пределы					
0.4	допускаемой относительной погрешности измерения амплитуд					
	сигналов для коэффициентов отклонения от 10 мВ/дел до 5 В/дел -					
	± 3 %					
	Генератор сигналов сложной формы AFG3022.					
	Синусоидальный сигнал от 1 кГц до 20 МГц, пределы допускаемой					
8.5 – 8.7	относительной погрешности установки частоты ± 1 ppm. Диапазон					
0.3 - 0.7	напряжений от 10 мВ до 10 В, погрешность ± (1 % от величины +1					
	мВ), амплитудная неравномерность (до 5 МГц) \pm 0,15 дБ, (от 5 до 20					
	$M\Gamma$ ц $) \pm 0,3$ дБ					
	Магазин затуханий МЗ-50-2.					
8.5 - 8.7	Диапазон частот: от 0 до 50 МГц. Декады: 4x10 дБ, 11x1 дБ, 11x0.1					
0.5 - 0.7	дБ, 0-40-70 дБ. Погрешность разностного затухания на постоянном					
	токе: $\pm (0.05 - 0.25)$ %; на переменном токе: $\pm (0.1 - 0.4)$ %.					
	Контрольные образцы №2 и №3 из комплекта КОУ-2.					
8.3, 8.8, 8.9	Образец №2: высота 59.0,3 мм, боковое цилиндрическое отверстие					
	диаметром 6+0,3 мм. Образец №3: диаметр 110-0,23 мм					
	Вспомогательное оборудование					
8.4	Пробник к осциллографу: делитель 1:10					
8.4	Резистор 50 Ом					
8.5 - 8.7	Согласующее устройство для синхронизации. Принципиальная схема					
0.5 0.7	приведена в приложении Б					

4 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

Лица, допускаемые к проведению поверки, должны изучить устройство и принцип работы поверяемого прибора и измерительной аппаратуры по эксплуатационной документации.

5 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 5.1. Работа с дефектоскопом и средствами поверки должна проводится согласно требований безопасности при работе с электроизмерительными приборами, указанными в руководствах по эксплуатации на приборы.
- 5.2. При проведении поверки должны быть соблюдены требования безопасности согласно ГОСТ 12.3.019-80.

6 УСЛОВИЯ ПОВЕРКИ

- 6.1 При проведении поверки должны быть выполнены следующие условия:
- температура окружающей среды (20 ± 5) °C;
- относительная влажность воздуха от 30 до 80 %;
- атмосферное давление (100 ± 4) кПа [(750 ± 30) мм рт. ст.].
- 6.2 Внешние электрические и магнитные поля должны отсутствовать, либо находиться в пределах, не влияющих на работу прибора.
- 6.3 Измерения на применяемой аппаратуре должны осуществляться в соответствии с руководством по эксплуатации и начинаться только после установления рабочего режима поверяемого прибора и измерительной аппаратуры.

7 ПОДГОТОВКА К ПОВЕРКЕ

- 7.1 Если дефектоскоп и измерительная аппаратура до начала измерений находились в климатических условиях, отличающихся от указанных в п. 6.1, то их выдерживают при этих условиях не менее часа, или времени, указанного в эксплуатационной документации на поверяемый прибор и средства измерения.
- 7.2 Перед проведением поверки, средства поверки и дефектоскоп подготовить к работе в соответствии с руководством по эксплуатации средств поверки и руководством по эксплуатации на дефектоскоп.
 - 7.3 Подготовить контактную смазку.
 - 7.4 Ветошь и контактная смазка не должны содержать твердых включений.

8 ПРОВЕДЕНИЕ ПОВЕРКИ

8.1 Внешний осмотр

При внешнем осмотре должно быть установлено:

- комплектность поверяемого дефектоскопа в соответствии с технической документацией;
 - отсутствие механических повреждений дефектоскопа и его составных частей;
- целостность кабелей, соединяющих электронный блок дефектоскопа с преобразователями;
 - наличие маркировки дефектоскопа;
 - четкая маркировка для всех преобразователей по системе фирмы-изготовителя.

8.2 Идентификация ПО

- 8.2.1 Включить дефектоскоп, нажав клавишу (ம)
- 8.2.2 В течении трех секунд нажимать клавишу . С помощью правой вращающейся ручки перейти в меню «КОНФИГ1», далее перейти к вкладке «КОД», далее выбрать функцию «О ПРИБОРЕ», нажать клавишу .
- 8.2.3 Прочитать с экрана дефектоскопа идентификационное наименование и номер версии ПО.
- 8.2.4 Дефектоскоп считается прошедшим операцию поверки с положительным результатом, если идентификационные данные дефектоскопа соответствуют значениям, приведенным в таблице 3.

Таблица 3 - Идентификационные данные ПО дефектоскопа

		Цифровой	Алгоритм
M	Номер версии	идентификатор ПО	вычисления
Идентификационное наименование ПО	(идентификационный	(контрольная	цифрового
наименование 110	номер) ПО	сумма исполняемого	идентификатора
		кода)	ПО
USM 36	4.2.0.17 и выше	-	-

8.3 Опробование

- 8.3.1 Опробование работоспособности поверяемого дефектоскопа необходимо выполнять в следующем порядке:
- 1) подключить к электронному блоку один из преобразователей, смазать его рабочую поверхность контактной жидкостью и установить его на контрольный образец №2 из комплекта КОУ-2;
- 2) проверить работоспособность систем излучения, приема и индикации на экране дефектоскопа должны быть видны зондирующий и отраженные импульсы;
- 3) проверить соответствие назначению всех кнопок регулировки по соответствующим изменениям эхо сигнала на экране;
- 4) проверить работоспособность прибора в режиме измерения толщины в соответствии с Руководством по эксплуатации (РЭ) дефектоскопа на экране, в строке измеренных значений должен появиться результат измерений;
- 6) используя контрольный образец №2 из комплекта КОУ-2, проверить работоспособность прибора в режиме АСД индикации превышения порогового уровня в соответствии с РЭ дефектоскопа;
- 7) проверить работоспособность прибора в режиме запоминания и просмотра результатов в соответствии с РЭ изображение на экране и параметры настройки должны быть записаны в память, а затем просмотрены по запросу.
- 8.3.2 Дефектоскоп считается прошедшим операцию поверки с положительным результатом, если выполняются все операции, указанные в п.8.3.1 методики поверки.

8.4 Определение амплитуды и длительности зондирующих импульсов

8.4.1 Измерение амплитуды и длительности зондирующих импульсов осуществлять с нагрузкой 50 Ом по схеме, представленной на рисунке 1.

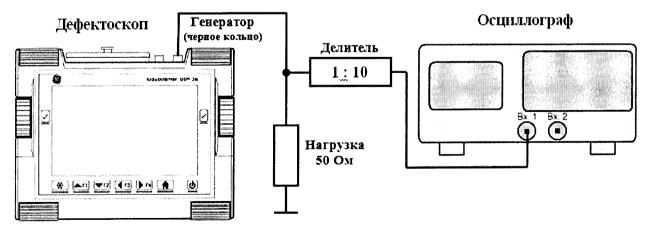


Рисунок 1 - Схема для определения амплитуды и длительности зондирующих импульсов

- 8.4.2 Подключить осциллограф к верхнему правому разъему дефектоскопа (генератор черное кольцо), через делитель 1:10 как показано на рисунке 1.
 - 8.4.3 Включить дефектоскоп и осциллограф в сеть.
 - 8.4.4 Установить следующие настройки на дефектоскопе:
- способ контроля раздельный режим (для этого в меню «Приемник» установить параметр РАЗД/СОВМ в положение ВКЛ)появится пиктограмма ✓;
- установить режим формы импульсов (трех секундное нажатие на клавишу , перейти в меню КОНФИГ2 -> колонка ГЕН ИМП -> ТИП ГЕНЕРАТОРА -> кратковременным нажатием на клавишу установить форму импульсов ОСТР ИМПУЛЬС -> выйти в главное меню трех секундным нажатием на клавишу;
 - демпфирование 50 Oм (ГЕН ИМП -> ДЕМПФИРОВАНИЕ -> 50 Oм);
- частота следования импульсов (ЧСИ) в автоматическом режиме установить на среднее значение АВТО СРЕД 1000 Гц (ГЕН ИМП -> РЕЖ ЧСИ -> АВТО СРЕД 1000 Гц);
 - напряжение Высокое, 300 В (ГЕН ИМП -> НАПРЯЖЕНИЕ -> ВЫСОКИЙ);
 - энергия Высокое (ГЕН ИМП -> ЭНЕРГИЯ -> ВЫСОКИЙ).
- 8.4.5 По показаниям осциллографа произвести измерение амплитуды зондирующего импульса.
- 8.4.6 Произвести измерения амплитуды зондирующего импульса дефектоскопа при установленном значении напряжения Низкое, 120 В (ГЕН ИМП -> НАПРЯЖЕНИЕ -> НИЗКИЙ).
- 8.4.7 Установить на дефектоскопе демпфирование 1000 Ом (ГЕН ИМП -> ДЕМПФИРОВАНИЕ -> 1000 Ом) и измерить амплитуды зондирующего импульса дефектоскопа при установленных значениях напряжения Низкое (120 В) и Высокое (300 В).
- 8.4.8 Вычислить отклонения установки амплитуды зондирующих импульсов (δ_A) от номинальных значений по формуле:

$$\delta A = \frac{A_{\text{\tiny HSM}} - A_{\text{\tiny HOM}}}{A_{\text{\tiny HOM}}} \cdot 100\%, \% \tag{1}$$

где $A_{\text{изм}}$ и $A_{\text{ном}}$ - измеренное и номинальное значения амплитуды, B.

- 8.4.9 Измерить амплитуду и длительность зондирующих импульсов в режиме формы импульсов ПРЯМОУГ ИМП.
- 8.4.10 Установить режим формы импульсов (трех секундное нажатие на клавишу , перейти в меню КОНФИГ2 ->колонка ГЕН ИМП -> ТИП ГЕНЕРАТОРА -> кратковременным нажатием на клавишу установить форму импульсов ПРЯМОУГ ИМП -> выйти в главное меню трех секундным нажатием на клавишу .
 - 8.4.11 Изменить следующие настройки на дефектоскопе:
 - демпфирование 50 Oм (ГЕН ИМП -> ДЕМПФИРОВАНИЕ -> 50 Oм);
 - напряжение 120 B (ГЕН ИМП -> НАПРЯЖЕНИЕ -> 120B);
 - длительность импульса генератора установить 100 нс (ГЕН ИМП -> ШИРИНА -> 100 нс).
- 8.4.12 Ручками регулировки осциллографа получить на экране дефектоскопа импульс, форма которого показана на рисунке 2.

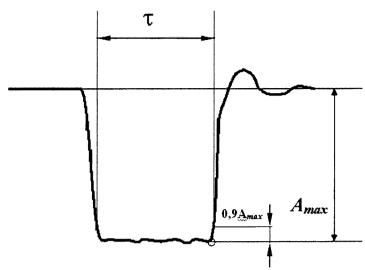


Рисунок 2 - Возбуждающий импульс генератора дефектоскопа в режиме прямоугольной формы импульсов

- 8.4.13 По показаниям осциллографа произвести измерение амплитуды зондирующего импульса.
- 8.4.14 Произвести измерения амплитуды зондирующего импульса дефектоскопа при установленных значениях напряжения 200 и 300 В.
- 8.4.15 Установить на дефектоскопе демпфирование 1000 Ом (ГЕН ИМП -> ДЕМПФИРОВАНИЕ -> 1000 Ом) и измерить амплитуды зондирующего импульса дефектоскопа при установленных значениях напряжения 120, 200, 300 В.
- 8.4.16 Вычислить отклонения установки амплитуды зондирующих импульсов по формуле (1).
 - 8.4.17 Изменить следующие настройки на дефектоскопе:
 - демпфирование 50 Ом (ГЕН ИМП -> ДЕМПФИРОВАНИЕ -> 50 Ом);
 - напряжение 200B (ГЕН ИМП -> HAПРЯЖЕНИЕ -> 200B);
 - длительность импульса 30 нс (ГЕН ИМП -> ШИРИНА -> 30 нс).
- 8.4.18 По показаниям осциллографа произвести измерение длительности зондирующего импульса по уровню 0,9 амплитуды зондирующего импульса.
- 8.4.19 Произвести измерения длительности зондирующего импульса дефектоскопа при установленных значениях длительности импульса 250 и 500 нс.
- 8.4.20 Вычислить отклонения установки длительности зондирующих импульсов (δ_{τ}) от номинальных значений по формуле:

$$\delta \tau = \frac{\tau_{\text{\tiny H3M}} - \tau_{\text{\tiny HOM}}}{\tau_{\text{\tiny HOM}}} \cdot 100\% , \% \tag{2}$$

где $\tau_{\text{изм}}$ и $\tau_{\text{ном}}$ - измеренное и номинальное значения длительности зондирующих импульсов, нс.

8.4.21 Дефектоскоп считается прошедшим операцию поверки с положительным результатом, если диапазон установки амплитуды зондирующих импульсов составляет от 120 до 300 В, диапазон установки длительности зондирующих импульсов по уровню 0,9 амплитуды сигнала составляет от 30 до 500 нс, а отклонения установки амплитуды и длительности зондирующих импульсов от номинальных значений в режимах формы импульсов остроконечный и прямоугольный не превышают \pm 10%.

8.5 Определение абсолютной погрешности измерения временных интервалов

8.5.1 Собрать схему, представленную на рисунке 3. Для синхронизации генератора и дефектоскопа использовать согласующее устройство, схема которого представлена в приложении Б к методике поверки.

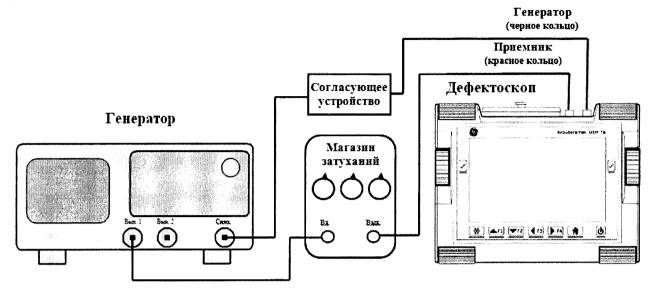


Рисунок 3 - Схема для определения параметров приемника дефектоскопа

- 8.5.2 Установить на дефектоскопе единицы измерений микросекунды (трех секундное нажатие на клавишу , перейти в меню КОНФИГ1 ->колонка РЕГИОН -> ЕДИНИЦЫ -> кратковременным нажатием на клавишу выбрать мкс).
- - 8.5.4 Установить следующие настройки на дефектоскопе:
- способ контроля совмещенный режим (ПРИЕМНИК -> РАЗД/СОВМ -> ВЫКЛ), появится пиктограмма $\overline{\mathcal{N}}$;
 - ПРИЕМНИК -> ДЕТЕКТИРОВАНИЕ -> ВЧ;
 - ДИАПАЗОН -> CKOPOCTЬ -> 5920 м/c;
 - ДИАПАЗОН -> ДИАПАЗОН -> установить максимальное значение развертки экрана;
 - установить фильтр на 4 МГц;
 - СТРОБ A -> ПОРОГ СТРА -> 50%;
 - СТРОБ А -> РЕЖИМ ВЫЧИСЛ -> ПИК;
- значения напряжения, энергии, частоты следования импульсов, демпфирования, установить на уровень необходимый для синхронизации дефектоскопа и генератора.
 - 8.5.5 Установить начальные параметры генератора сигналов:
 - синхронизация внешняя;
 - тип сигнала синус;
 - характер сигнала пачка;
 - количество циклов -1;
 - амплитуда сигнала 2 B;
 - частота 4 МГц;
 - начальный временной сдвиг $T_{\text{слв}0} = 1$ мкс.
 - 8.5.6 Подать сигнал с генератора на дефектоскоп.
- 8.5.7 Установить значение усиления на дефектоскопе так, чтобы амплитуда импульса была не менее 50% экрана.

8.5.8 Установить строб A так, чтобы он пересекал импульс, и снять показания дефектоскопа T_0 . Рассчитать значение времени задержки в кабеле и приемном тракте дефектоскопа по формуле:

$$T_0 = T_{\text{имп0}} - T_{\text{сдв0}} \text{ MKC} \tag{3}$$

где $T_{\text{слв0}}$ – начальный временной сдвиг, установленный на генераторе, мкс;

Т_{имп0} – начальный временной интервал, измеренный на дефектоскопе, мкс.

- 8.5.9 Установить на генераторе временной сдвиг $T_{\text{сдв}} = 10$ мкс. Переместить строб по горизонтальной шкале так, чтобы он пересекал входной сигнал. Снять показания на дефектоскопе, $T_{\text{изм}}$.
- 8.5.10 Рассчитать значение измеренного временного интервала с учетом задержки в кабеле и приемном тракте дефектоскопа по формуле:

$$T = T_{\text{M3M}} - T_0, \text{ MKC} \tag{4}$$

где Тизм – измеренный дефектоскопом временной интервал, мкс;

 T_0 – время задержки в кабеле и приемном тракте дефектоскопа, мкс.

- 8.5.11 Повторить измерения по пунктам 8.5.9, 8.5.10 еще два раза и вычислить среднее арифметическое значение T_{cp} по трем измерениям.
- 8.5.12 Рассчитать значение абсолютной погрешности измерения временных интервалов по формуле:

$$\Delta T = T_{cp} - T_{cdb}, \text{ MKC}$$
 (5)

где T_{cp} — среднее арифметическое значение временного интервала, измеренное дефектоскопом, мкс;

 $T_{cдв}$ – значение временного интервала, установленное на генераторе, мкс.

- 8.5.13 Повторить операции по пунктам 8.5.9 8.5.12 для всех $T_{\text{сдв}}$ из ряда: 20, 50, 100, 1000, 5000 мкс. При необходимости на дефектоскопе изменять задержку дисплея (ДИАПАЗОН -> ЗАДЕРЖКА ДИСПЛ).
- 8.5.14 Дефектоскоп считается прошедшим операцию поверки с положительным результатом, если абсолютная погрешность измерения временных интервалов не превышает ± 0.05 мкс.

8.6 Определение абсолютной погрешности измерения амплитуды сигналов

- 8.6.1 Собрать схему, представленную на рисунке 3. Для синхронизации генератора и дефектоскопа использовать согласующее устройство, схема которого представлена в приложении Б.
 - 8.6.2 Установить следующие настройки на дефектоскопе:
- способ контроля совмещенный режим (ПРИЕМНИК -> РАЗД/СОВМ -> ВЫКЛ) появится пиктограмма 🕏;
 - ПРИЕМНИК -> ДЕТЕКТИРОВАНИЕ -> ПОЛНАЯ ВОЛНА;
 - установить фильтр на 4 МГц: ЧАСТОТА -> 4 МГц;
 - установить усиление дефектоскопа 30 дБ;
 - ДИАПАЗОН -> ДИАПАЗОН -> 50 мкc;
 - установить строб А на 8% экрана и на середину развертки экрана;
- установить в графе Показ 1 отображение амплитуды сигнала в % к высоте экрана для строба A (трех секундное нажатие на клавишу -> вкладка меню ОЦЕНКА -> колонка ВЫЧИСЛ1 -> ПОКАЗ 1 -> А%А -> выйти в главное меню трех секундным нажатием на клавишу :):
- значения напряжения, энергии, частоты следования импульсов, демпфирования, установить на уровень необходимый для синхронизации дефектоскопа и генератора.
 - 8.6.3 На магазине затуханий установить ослабление 10 дБ.

- 8.6.4 Установить начальные параметры генератора сигналов:
- синхронизация внешняя;
- тип сигнала синус;
- характер сигнала пачка;
- количество циклов -1;
- частота 4 МГц;
- временной сдвиг установить таким образом, чтобы сигнал, отображаемый на дефектоскопе находился на середине развертки экрана;
- амплитуду сигнала (A_0) установить таким образом, чтобы сигнал на дефектоскопе был на высоте 80 % экрана (в графе Показ 1 должно быть отображено 80 % от полной высоты экрана).
- 8.6.5 Изменять ступенчато амплитуду сигнала на магазине затуханий согласно таблице 4.

Таблина 4

Затухание, дБ	Номинальное значение выходного
	напряжения, % от полной высоты экрана
+ 1	90
0	80
- 2	64
- 4	50
- 6	40
- 8	32
- 10	25
- 12	20
- 14	16
- 16	13
- 18	10

- 8.6.6 Измерить показания амплитуды сигнала на экране дефектоскопа в графе Показ 1. Измерения каждого значения амплитуды сигнала выполнить пять раз и вычислить среднее арифметическое значение амплитуды по пяти измерениям.
 - 8.6.7 Рассчитать абсолютную погрешность измерений амплитуды сигнала, по формуле:

$$\Delta A = A_{\text{изм}} - A_{\text{ном}}$$
, % от полной высоты экрана (6)

где $A_{\text{изм}}$ – среднее арифметическое значение амплитуды сигнала, измеренное на дефектоскопе, % от полной высоты экрана;

Аном – номинальное значение выходного напряжения, % от полной высоты экрана.

8.6.8 Дефектоскоп считается прошедшим операцию поверки с положительным результатом, если абсолютная погрешность измерения амплитуды сигналов не превышает ± 2 % от полной высоты экрана дефектоскопа.

8.7 Определение отклонения установки усиления

- 8.7.1 Собрать схему, представленную на рисунке 3. Для синхронизации генератора и дефектоскопа использовать согласующее устройство, схема которого представлена в приложении Б.
 - 8.7.2 Установить следующие настройки на дефектоскопе:
- способ контроля совмещенный режим (ПРИЕМНИК -> РАЗД/СОВМ -> ВЫКЛ), появится пиктограмма $\overline{\mathcal{W}}$;
 - ПРИЕМНИК -> ДЕТЕКТИРОВАНИЕ -> ПОЛНАЯ ВОЛНА;
 - установить фильтр на 4 МГц: ЧАСТОТА -> 4 МГц;

- установить усиление дефектоскопа 0 дБ;
- ДИАПАЗОН -> ДИАПАЗОН -> 50 мкc;
- установить строб А на 20% экрана и на середину развертки экрана;
- установить в графе Показ 1 отображение амплитуды сигнала в % к высоте экрана для строба А (трех секундное нажатие на клавишу -> вкладка меню ОЦЕНКА -> колонка ВЫЧИСЛ1 -> ПОКАЗ 1 -> А%А -> выйти в главное меню трех секундным нажатием на клавишу :);
- значения напряжения, энергии, частоты следования импульсов, демпфирования, установить на уровень необходимый для синхронизации дефектоскопа и генератора.
 - 8.7.3 На магазине затуханий установить ослабление 0 дБ.
 - 8.7.4 Установить начальные параметры генератора сигналов:
 - синхронизация внешняя;
 - тип сигнала синус;
 - характер сигнала пачка;
 - количество циклов 1;
 - частота 4 МГц;
- временной сдвиг установить таким образом, чтобы сигнал, отображаемый на дефектоскопе находился на середине развертки экрана;
- амплитуду сигнала (A_0 дБ) установить таким образом, чтобы сигнал на дефектоскопе был на высоте 20% экрана и в графе Показ 1 дефектоскопа было отображено значение 20% от полной высоты экрана.
 - 8.7.5 Установить усиление дефектоскопа (N_{vcr}) 1 дБ.
- 8.7.6 Увеличивая ослабление на магазине затуханий ($N_{\text{изм}}$) привести уровень сигнала на экране дефектоскопа к уровню 70 % высоты экрана.
- 8.7.7 Рассчитать отклонение установки усиления (ΔN) от номинального значения по формуле:

$$\Delta N = N_{\text{изм}} - N_{\text{уст}}, \, \mu B \tag{7}$$

где N_{vcт} – значение усиления, установленное на дефектоскопе, дБ;

N_{изм} – измеренное значение усиления на магазине затуханий, дБ.

- 8.7.8 Повторить измерения отклонений установки усиления дефектоскопа по пунктам методики поверки $8.7.5-8.7.7\,$ для установленных значений усиления на дефектоскопе $5,\,10,\,30,\,50,\,80\,$ дБ.
- 8.7.9 Дефектоскоп считается прошедшим операцию поверки с положительным результатом, если отклонение установки усиления в диапазоне от 1 до 10 дБ (включительно) не превышает \pm 1,0 дБ, в диапазоне от 10 до 80 дБ не превышает \pm 1,5 дБ.

8.8 Определение погрешности измерения толщины изделий или глубины залегания дефектов при работе с прямым ПЭП

- 8.8.1 Определение погрешности измерения толщины изделия или глубины залегания дефектов выполняется с прямыми ПЭП, входящими в комплектность дефектоскопа, на контрольном образце №2 из комплекта КОУ-2.
- 8.8.2 Подключить преобразователь к дефектоскопу в соответствии с РЭ и выполнить следующие настройки дефектоскопа:
- установить режим формы импульсов ОСТР ИМПУЛЬС (трех секундное нажатие на клавишу , перейти во вкладку меню КОНФИГ2 -> колонка ГЕН ИМП -> ТИП ГЕНЕРАТОРА -> кратковременным нажатием на клавишу прокрутив боковое колесо установить форму импульсов ОСТР ИМПУЛЬС -> выйти в главное меню трех секундным нажатием на клавишу ;
 - демпфирование 50 Ом (ГЕН ИМП -> ДЕМПФИРОВАНИЕ -> 50 Ом);

- частота следования импульсов (ЧСИ) в автоматическом режиме установить на среднее значение АВТО СРЕД 1000 Гц (ГЕН ИМП -> РЕЖ ЧСИ -> АВТО СРЕД 1000 Гц);
 - напряжение Высокое, 300 В (ГЕН ИМП -> НАПРЯЖЕНИЕ -> ВЫСОКИЙ);
 - энергия Высокое (ГЕН ИМП -> ЭНЕРГИЯ -> ВЫСОКИЙ);
 - ПРИЕМНИК -> ДЕТЕКТИРОВАНИЕ -> ПОЛНАЯ ВОЛНА;
- способ контроля раздельный или совмещенный режим, в зависимости от того какой ПЭП был подключен (ПРИЕМНИК -> РАЗД/СОВМ -> ВЫКЛ или ВКЛ);
- подобрать фильтр приемника так, чтобы частота ПЭП попадала в диапазон частот данного фильтра (ПРИЕМНИК -> ЧАСТОТА -> название фильтра);
- установить в графе ПОКАЗ 1 отображение пути до строба A (трех секундное нажатие на клавишу -> вкладка меню ОЦЕНКА -> колонка ВЫЧИСЛ1 -> поле ПОКАЗ 1 -> SA -> выйти в главное меню трех секундным нажатием на клавишу);
 - ДИАПАЗОН -> Диапазон -> 140 мм.
- 8.8.3 Установить преобразователь на смоченную контактной жидкостью поверхность контрольного образца №2 из комплекта КОУ-2 как показано на рисунке 4.

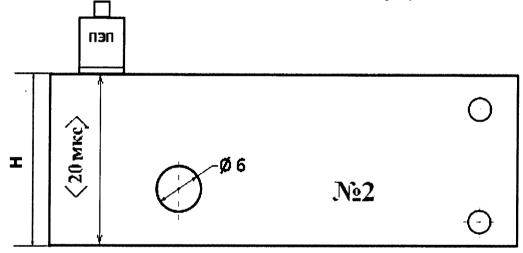


Рисунок 4 - Контрольный образец №2 из комплекта КОУ-2

- 8.8.4 Регулируя усиление дефектоскопа и диапазон развертки, получить на экране два сигнала от донной поверхности контрольного образца.
 - 8.8.5 Выполнить автоматическую калибровку преобразователя:
 - открыть меню автокалибровки (КАЛИБРОВК);
- установить значения первого (ЭТ ТОЛЩ1) и второго (ЭТ ТОЛЩ1) отраженного сигнала от донной поверхности образца. Эт толщ1 = 59 мм и, Эт толщ2 = 118 мм.
- установить строб A на первый сигнал от донной поверхности образца, перейти на строку ЗАПИСЬ, нажать клавишу Z для выполнения записи первого опорного эхо-сигнала;
- установить строб А на второй сигнал от донной поверхности образца, перейти на строку ЗАПИСЬ, нажать клавишу для выполнения записи второго опорного эхо-сигнала.
- 8.8.6 После окончания процедуры автокалибровки на дефектоскопе будут автоматически установлены время задержки в призме преобразователя и скорость распространения ультразвуковых колебаний в контрольном образце.
- 8.8.7 Перемещая преобразователь по контрольному образцу получить наибольшую амплитуду сигнала на дефектоскопе от отверстия диаметром 6 мм, залегающего на глубине $41 \text{ мм} (X_{\text{Hom}})$.
 - 8.8.8 При необходимости изменить диапазон развертки.
- 8.8.9 Изменить усиление на дефектоскопе так, чтобы сигнал от дефекта занимал 80% экрана.

- 8.8.10 Установить строб А на полученный сигнал и измерить глубину залегания дефекта.
- 8.8.11 Повторить измерение глубины залегания дефекта еще четыре раза, каждый раз заново устанавливая ПЭП на контрольный образец.
- 8.8.12 Вычислить среднее арифметическое значение глубины залегания дефекта $X_{\text{изм}}$ по пяти измерениям.
- 8.8.13 Вычислить относительную погрешности измерения толщины изделия или глубины залегания дефектов (δX мм) по формуле:

$$\delta X = \frac{X_{\text{изм}} - X_{\text{ном}}}{X_{\text{изм}}} \cdot 100\%, \%$$
 (8)

где $X_{\text{изм}}$ — среднее арифметическое значение глубины залегания дефекта, измеренное дефектоскопом, мм;

 $X_{\text{ном}}$ – номинальное значение глубины залегания дефекта = 41 мм.

- 8.8.14 Перемещая преобразователь по поверхности контрольного образца получить на дефектоскопе наибольшую амплитуду сигнала от донной поверхности образца. Толщину образца ($X_{\text{ном}}$) взять из свидетельства о поверке.
- 8.8.15 По пунктам 8.8.8 8.8.13 выполнить измерения толщины для первого и второго донного сигналов контрольного образца.
- 8.8.16 Определить абсолютную погрешности измерения толщины изделия или глубины залегания дефектов со всеми прямыми ПЭП, входящими в комплектность дефектоскопа.
- 8.8.17 Дефектоскоп считается прошедшим операцию поверки с положительным результатом, если абсолютная погрешность измерения толщины изделия или глубины залегания дефекта не превышает $\pm 2\%$.

8.9 Определение погрешности измерения координат дефектов при работе с наклонными ПЭП

- 8.9.1 Определение погрешности измерения координат дефекта при наклонном прозвучивании выполняется с наклонными ПЭП, входящими в комплектность дефектоскопа, на контрольном образце №2 из комплекта КОУ-2.
- 8.9.2 Угол ввода ультразвуковой волны преобразователя, стрелу и время задержки в призме взять из сертификата о калибровки ПЭП. Если на преобразователь отсутствует сертификат о калибровке, то определить точку ввода (стрелу) и угол ввода ПЭП на контрольных образцах №3 и №2 из комплекта КОУ-2 в следующей последовательности:
 - 8.9.2.1 Определение точки ввода (стрелы) ПЭП:
- установить преобразователь на поверхность контрольного образца №3, обработанную контактной жидкостью;
- перемещая ПЭП вперед-назад и поворачивая его вокруг оси на 5 10 угловых градусов, добиться максимального уровня эхо-сигнала от цилиндрической поверхности образца;
- метка «0» на образце №3, перенесенная на боковую поверхность ПЭП, указывает на точку ввода преобразователя. Стрела преобразователя расстояние от точки ввода до торца преобразователя (рисунок 5).

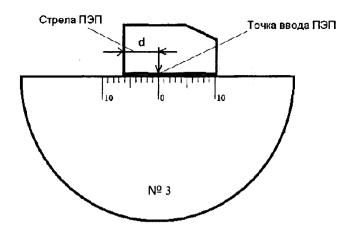


Рисунок 5 - Определение точки ввода (стрелы) ПЭП

8.9.2.2 Определение угла ввода ПЭП:

- установить преобразователь на поверхность контрольного образца №2, обработанную контактной жидкостью;
- перемещая ПЭП вперед-назад по контрольному образцу и поворачивая его вокруг оси на 5 10 угловых градусов, получить на экране дефектоскопа эхо-сигнал максимальной амплитуды от цилиндрического бокового отражателя диаметром 6 мм;
- для ПЭП с углами ввода в диапазоне 40° 60° , включительно, угол ввода определять по боковому цилиндрическому отражателю диаметром 6 мм, залегающему на глубине 44 мм. Для ПЭП с углами ввода в диапазоне 60° 75° , включительно, угол ввода определять по боковому цилиндрическому отражателю диаметром 6 мм, залегающему на глубине 15 мм.
 - отсчет угла ввода ПЭП осуществлять по точке ввода ПЭП, определенной в п. 8.9.2.1;
 - измерение угла ввода ПЭП следует повторить не менее трех раз, результат усреднить.
 - 8.9.3 Выполнить следующие настройки дефектоскопа:
- установить режим формы импульсов ОСТР ИМПУЛЬС (трех секундное нажатие на клавишу , перейти во вкладку меню КОНФИГ2 ->колонка ГЕН ИМП -> ТИП ГЕНЕРАТОРА -> кратковременным нажатием на клавишу прокрутив боковое колесо установить форму импульсов ОСТР ИМПУЛЬС -> выйти в главное меню трех секундным нажатием на клавишу ;
 - демпфирование 50 Ом (ГЕН ИМП -> ДЕМПФИРОВАНИЕ -> 50 Ом);
- частота следования импульсов (ЧСИ) в автоматическом режиме установить на среднее значение АВТО СРЕД 1000 Гц (ГЕН ИМП -> РЕЖ ЧСИ -> АВТО СРЕД 1000 Гц);
 - напряжение Высокое, 300 В (ГЕН ИМП -> НАПРЯЖЕНИЕ -> ВЫСОКИЙ);
 - энергия Высокое (ГЕН ИМП -> ЭНЕРГИЯ -> ВЫСОКИЙ);
 - ПРИЕМНИК -> ДЕТЕКТИРОВАНИЕ -> 2-х П/ПЕРИОД В;
- способ контроля раздельный или совмещенный режим, в зависимости от того какой ПЭП был подключен (ПРИЕМНИК -> РАЗД/СОВМ -> ВЫКЛ или ВКЛ);
- подобрать фильтр приемника так, чтобы частота ПЭП попадала в диапазон частот данного фильтра (ПРИЕМНИК -> ЧАСТОТА -> название фильтра);
- установить стрелу преобразователя (трех секундное нажатие на клавишу -> вкладка меню ОЦЕНКА -> ВЕЛИЧ X -> указать величину стрелы преобразователя, определенную в п. 8.9.2.1);
- установить угол ввода преобразователя (меню ОЦЕНКА -> УГОЛ ДАТЧИКА -> угол ввода преобразователя, определенный в п. 8.9.2.2);
 - установить толщину контролируемого образца. Для образца №2 59 мм;
- установить в графе Показ 1 отображение ультразвукового пути по стробу A (меню ОЦЕНКА -> колонка РЕЗУЛЬТАТ -> ПОКАЗ 1 -> SA);

- установить в графе Показ 2 отображение глубины залегания дефекта, попавшего в строб A (меню ОЦЕНКА -> колонка РЕЗУЛЬТАТ -> ПОКАЗ 2 -> DA);
- установить в графе Показ 3 отображение расстояния от точки ввода УЗК до проекции дефекта на поверхность , попавшего в строб A (меню ОЦЕНКА -> колонка РЕЗУЛЬТАТ -> ПОКАЗ 3 -> РА, выйти в главное меню трех секундным нажатием на клавишу ();
 - ДИАПАЗОН -> Диапазон -> 120 мм.
- 8.9.4 Установить преобразователь на поверхность контрольного образца №3, обработанную контактной жидкостью, как показано на рисунке 5.
- 8.9.5 Перемещая ПЭП вперед-назад и поворачивая его вокруг оси на 5 10 угловых градусов, регулируя усиление дефектоскопа и диапазон развертки, получить на экране 2 сигнала от цилиндрической поверхности контрольного образца №3 максимальной амплитуды.
- 8.9.6 При необходимости включить огибающую (трех секундное нажатие на клавишу перейти во вкладку меню КОНФИГЗ -> НАСТРОЙКА -> ОГИБАЮЩАЯ -> ВКЛ, выйти в главное меню трех секундным нажатием на клавишу .
 - 8.9.7 Выполнить автоматическую калибровку преобразователя:
 - открыть меню автокалибровки (АВТОРАСЧ);
- установить значения первого (Эт толщ1 (S-REF1)) и второго (Эт толщ2 (S-REF2) отраженного сигнала от от цилиндрической поверхности контрольного образца №3. Эт толщ1 = 55 мм и Эт толщ2 = 110 мм.
- установить строб A на первый сигнал от донной поверхности образца №3, перейти на строку ЗАПИСЬ, нажать клавишу Для выполнения записи первого опорного эхо-сигнала;
- установить строб A на второй сигнал от донной поверхности образца №3, перейти на строку ЗАПИСЬ, нажать клавишу ∠ для выполнения записи второго опорного эхо-сигнала.
- 8.9.8 После окончания процедуры автокалибровки на дефектоскопе будут автоматически установлены время задержки в призме преобразователя и скорость распространения ультразвуковых колебаний в контрольном образце.
 - 8.9.9 Установить преобразователь на контрольный образец №2 как показано на рисунке 6.

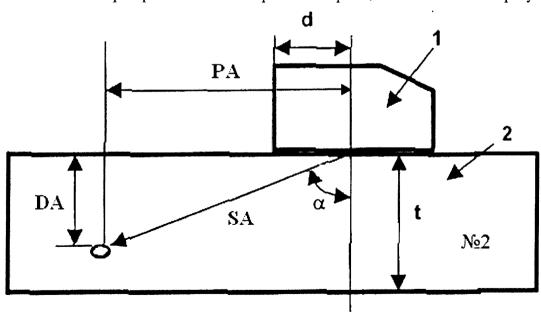


Рисунок 6 - Определение координат дефекта при наклонном прозвучивании. 1 - наклонный ПЭП, 2 - контрольный образец №2, d - стрела преобразователя; α- угол ввода;

PA - расстояние от точки ввода до проекции дефекта на поверхность; DA - глубина залегания дефекта; SA - расстояние по лучу; t - толщина образца.

- 8.9.10 Изменить диапазон развертки так, чтобы эхо-сигнал от дефекта располагался по центру экрана.
- 8.9.11 Изменить усиление на дефектоскопе так, чтобы эхо-сигнал от дефекта занимал 80% экрана.
 - 8.9.12 Установить строб дефектоскопа на принимаемый сигнал от дефекта.
- 8.9.13 В графах Показ 1, Показ 2, Показ 3 будут показаны результаты измерения координат дефекта: расстояние по лучу ($SA_{\text{изм}}$ мм), глубина залегания дефекта ($DA_{\text{изм}}$ мм) и расстояние от точки ввода до проекции дефекта на поверхность ($PA_{\text{изм}}$ мм).
- 8.9.14 Повторить операции по пунктам 8.9.9 8.9.13 еще четыре раза и вычислить средние арифметические значения $SA_{изм}$, $DA_{изм}$ и $PA_{изм}$.
- 8.9.15 По паспортным данным контрольного образца (координатам расположения дефекта относительно ребер и граней образца) и используя номинальные значения местоположения точки ввода на ПЭП и его угол ввода α (пп. 8.9.2), по схеме на рисунке 6 вычислить номинальные значения $SA_{\text{ном}}$, $DA_{\text{ном}}$ и $PA_{\text{ном}}$.
 - 8.9.16 Вычислить абсолютную погрешность измерения координат дефекта по формулам:

$$\Delta SA = SA_{HOM} - SA_{HOM}, MM \tag{9}$$

$$\Delta DA = DA_{\text{HSM}} - DA_{\text{HOM}}, MM \tag{10}$$

$$\Delta PA = PA_{_{\text{HOM}}} - PA_{_{\text{HOM}}}, \text{ MM}$$
 (11)

где $SA_{\text{изм}}$, $DA_{\text{изм}}$, $PA_{\text{изм}}$ - измеренные средние арифметические значения координат дефектов - расстояния по лучу, глубины залегания дефекта, расстояние от точки ввода до проекции дефекта на поверхность, мм;

 $SA_{\text{ном}}$, $DA_{\text{ном}}$, $PA_{\text{ном}}$ - номинальные значение координат дефектов - расстояния по лучу, глубины залегания дефекта, расстояние от точки ввода до проекции дефекта на поверхность, мм

- 8.9.17 Определить относительную погрешность измерения координат дефекта для всех наклонных ПЭП, входящих в комплектность дефектоскопа.
- 8.9.18 Дефектоскоп считается прошедшим операцию поверки с положительным результатом, если при при работе с наклонными ПЭП погрешность измерения координат дефекта не превышает \pm (0,5 + 0,02 · X) мм, где X измеренная координата дефекта, мм.

9 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 9.1 Результаты поверки заносятся в протокол (рекомендуемая форма протокола поверки приложение A).
- 9.2 При положительных результатах поверки оформляют свидетельство о поверке в установленной форме.
- 9.3 При отрицательных результатах поверки, дефектоскоп признается непригодным к применению и на него выдается извещение и непригодности с указанием причин непригодности.

Исполнители:

Начальник

отдела испытаний и сертификации ФГУП «ВНИИОФИ»

А.В. Иванов

Начальник сектора МО НК отдела испытаний и сертификации ФГУП «ВНИИОФИ»

Д.С. Крайнов

Инженер 2-ой категории сектора МО НК отдела испытаний и сертификации

ФГУП «ВНИИОФИ»

А.С. Неумолотов

Приложение А (Форма протокола поверки)

Протокол первичной/периодической поверн	
От «» 20 года.	
Средство измерений:	
Заводской номер:	
Дата выпуска:	
Заводской номер преобразователя:	
Серия и номер клейма предыдущей поверки:	
Принадлежащее:	
Поверено в соответствии с методикой поверки:	
С применением эталонов:	
Условия проведения поверки:	
Температура окружающей среды°С;	
относительная влажность%;	
атмосферное давление мм рт.ст.	
Результаты поверки:	
1. Внешний осмотр	
Результат осмотра	Заключение о пригодности
2. Идентификация ПО	
Результат	Заключение о пригодности
3. Опробование	
Результат опробования	Заключение о пригодности

4. Определение амплитуды и длительности зондирующих импульсов а) Режим формы импульсов остроконечный

	Номинальное	Измеренное	Допускаемое	Полученное	
Демпфи	значение	значение	отклонение	отклонение	Заключе
рование	амплитуды	амплитуды	установки	установки	ние о
рование	зондирующего	зондирующе	амплитуды	амплитуды	пригодн
	импульса $(A_{\text{ном}})$,	го импульса	зондирующего	зондирующего	ости
	В	$(A_{\text{\tiny M3M}}), B$	импульса, %	импульса, %	
50 Ом	Низкое (-120)		± 10		
50 Ом	Высокое (-300)		± 10		
1000 Ом	Низкое (-120)		± 10		
1000 Ом	Высокое (-300)		± 10		

б) Режим формы импульсов прямоугольный

	Номинальное	Измеренное	Допускаемое	Полученное	
Демпфи	значение	значение	отклонение	отклонение	Заключе
рование	амплитуды	амплитуды	установки	установки	ние о
рование	зондирующего	зондирующег	амплитуды	амплитуды	пригодн
	импульса	о импульса	зондирующего	зондирующего	ости
	$(A_{HOM}), B$	(A _{изм}), В	импульса, %	импульса (δ_A) , %	
50 Ом	- 120		±10 %		
50 Ом	- 200		±10 %		
50 Ом	- 300		±10 %		
1000 Ом	- 120		±10 %		
1000 Ом	- 200		±10 %		
1000 Ом	- 300		±10 %		-

Номинальное	Измеренное	Допускаемое	Полученное	
значение	значение	отклонение установки	отклонение	Заключе
длительности	длительности	длительности	установки	ние о
зондирующего	зондирующего	зондирующего	длительности	пригодн
импульса (тном),	импульса (т _{изм}),	импульса, %	зондирующего	ости
нс	нс		импульса (δ_{τ}) , %	
30 нс		± 10		
100 нс		± 10		
500 нс		± 10		

5. Определение абсолютной погрешности измерения временных интервалов

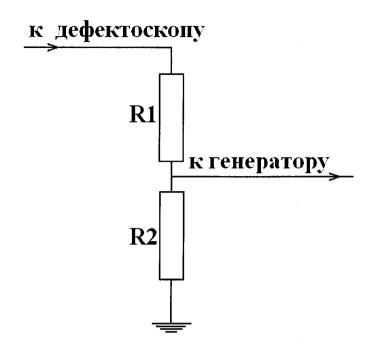
Установленное значение временного сдвига $T_{cдв}$,	Показания дефектоскопа, Т, мкс				Полученная погрешность измерений, $\Delta T = T_{cp}$ - $T_{cдв}$,	Допустимая погрешность измерения, $\Delta_{\text{доп}}$, мкс	Заключение о пригодности, (если $\Delta_{\text{доп}}/\Delta T \ge 1$, то пригоден, если $\Delta_{\text{доп}}/\Delta T < 1$,
МКС	T_1	T ₂	T ₃	T _{cp}	мкс		то не пригоден)
10						± 0,05	
20						± 0,05	
50						$\pm 0,05$	
100						± 0,05	
1000						± 0,05	
5000						± 0,05	

6. Определение абсолютной погрешности измерения амплитуды сигналов

6. Определение аосолютной погрешности измерения амплитуды сигналов								
Ослабление,			Пока	зания		Полученная		Заключение
вводимое	Номинально					погрешность	Допустимая	O
магазином	е значение	_	*		*		пригодности	
затуханий	выходного					$\Delta A = A_{\text{M3M}} -$	измерения,	, (если $\Delta_{\text{доп}}$ /
относительно	напряжения,					A _{HOM} , % OT	$\Delta_{доп},\%$ от	ΔA≥1 , το
амплитуды	% от полной					полной	полной	пригоден,
соответствующей	высоты	A_1	A_2	A_3	Acp	высоты	высоты	если $\Delta_{\text{доп}}/$
80% экрана	экрана	11	1 *2	113	1 - Cp	экрана	экрана	Δ A<1, то не
дефектоскопа, дБ						Экрипи		пригоден)
+ 1	90						± 2	
0	80						± 2	
- 2	64						± 2	, , ,
- 4	50						± 2	
- 6	40						± 2	
- 8	32						± 2	
- 10	25						± 2	
- 12	20						± 2	
- 14	16						± 2	
- 16	13						± 2	
- 18	10						± 2	

7. Определение отклонения установки усиления									
Установленное	Измеренное	Полученное	Допускаемое	Заключение о					
значение	значение	отклонение	отклонение	пригодности, (если					
усиления на	усиления, N _{изм} ,	установки	установки	$\Delta N_{\text{доп}} / \Delta N \ge 1$, το					
дефектоскопе,	дБ	усиления, ΔN,	усиления,	пригоден, если					
N _{уст} , дБ		дБ	$\Delta N_{ m доп}$, д $f E$	$\Delta N_{\text{доп}}/\Delta N < 1$, то не					
тусі, дв				пригоден)					
1			± 1,0						
5			± 1,0						
10			\pm 1,0						
30			± 1,5						
50			± 1,5						
80			± 1,5						

8. Определение погрешности измерения толщины изделия или глубины залегания


дефектов при работе с прямым ПЭП

Наиме нован ие ПЭП, №	глубина залегания дефекта,	,	Измеренная толщина изделия или глубина залегания дефекта, Х _{изм} , мм						Полученная погрешност ь измерения, δX , %	Заключение о пригодности, (если $\delta X_{\text{доп}}/\delta X$ ≥ 1 , то пригоден, если
	X _{HOM} , MM		X_1	X_2	X ₃	X ₄	X ₅	X _{cp}		$\delta X_{\text{доп}}/\delta X < 1$,то не пригоден)
	41	± 2								
	59	± 2								
	118	± 2								

9. Определение погрешности измерения координат дефекта при работе с наклонными ПЭП

Наиме новани е ПЭП, №	Номинальны е значения координат дефектов,	Допустимая погрешность измерения, координат дефектов ± (0,5 + 0,02 · X), мм		ордин D <i>A</i>	нат до А _{изм} , 1	ефект РА _{изм}	ачен гов S , мм ения	Полученная погрешност ь измерения	Заключе ние о	
	MM		1	2	3	4	5	ср	координат дефектов, мм	пригодн ости
	SA _{HOM} =									
	DA _{HOM} =									
	$PA_{HOM} =$								•	

Заключение:								
Средство измерений признать пригодным (или непригодным) для применения								
Поверитель:		/		/				
_	Подпись		ф /()					

Резисторы R1, R2 подбираются таким образом, чтобы выходное напряжение соответствовало срабатыванию синхровхода генератора. Сумма сопротивлений R1+R2 должно быть не меньше 20 кОм для предохранения выхода генератора дефектоскопа.